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1 Introduction

Samuelson (1958), with a very simple demo-economic model, was able to raise such fundamental
questions as whether a market economy could reach an optimal equilibrium. His extraordinarily
rich analysis included both static and dynamic aspects. First, he described different steady states
consistent with certain economic constraints. Second, he considered which of these steady states
might or might not be reached by a market economy.

During the nearly four decades since his article was published, additional results on these
topics have been established. Starret (1972), Gale (1973), and Willis (1988) developed some
results for comparative steady states in the discrete N age-group case. Many static results have
been established for the two age group model (Diamond, 1965; Gale (1972); Balasko, Cass and
Shell (1980); Balasko and Shell (1980, 1981a and 1981b); and Esteban, Mitra and Ray (1993).

By contrast, there have been few studies of the dynamics of overlapping generations models,
which is a much more complex topic. Gale (1973) made important progress with the two age-
group pure exchange economy, and conjectured about the N age-group case. A number of results
have been obtained for the two age-group productive economy as well, as in Gale (1972), Tirole
(1985), Weil (1987), Galor and Ryder (1989, 1991) and Galor (1992).

All these works are based on very simplistic demographic assumptions, with the population
divided into a finite number of age groups, typically only two, and everybody dying at the end of
the last age group. Results often depend strongly on such assumptions; in Samuelson’s article,
for example, the three age-group model can support steady states which are impossible in the
two age-group model. Two age group models are not capable of representing the most basic
feature of the human economic life cycle: that it begins and ends with periods of dependency,
separated by a long intermediate period of consuming more than is produced. Models in which

all survive to the end of the last age group cannot be used to investigate the consequences of



mortality change.

Some researchers have extended Samuelson’s steady state analysis to the demographically
realistic case of continuous age and arbitrary mortality in a productive economy (Arthur and
McNicoll, 1978; Lee, 1980, 1994a and 1994b). These more realistic demographic models avoid
many of the special assumptions of the literature reviewed above, and permit exploration of
important issues such as population aging and the consequences of mortality decline. They also
lend themselves more readily to empirical implementation (Lee, 1994a and 1994b).

In this article we consider a continuous demographic model, with a general mortality pattern,
and study both static and dynamic properties of a productive market economy. Most of the static
results known for the NV age-group models are extended to the continuous model. Some results,
previously established for economies without capital, will be extended to productive economies.
Our work also makes important progress on the dynamic properties. Almost nothing was known
for models with more than two age-groups, even for the simplest NV age-group model. In the most
general case of our continuous model with non-trivial mortality we are able to obtain some results
about the stability of some steady-states. In particular, part of Gale’s conjecture is proved. Also,
at the end of this article, we will discuss non-competitive economies with government taxes or
with intergenerational transfers, such as a Social Security System or bequests.

The results are based on a theoretical framework which allows us to get most results in
quite a simple way. Surprisingly enough, although we relax some crucial hypotheses, our proofs
are often shorter than those presented previously. Moreover, while all our economic statements
suppose that the population is in steady-state, the main result of our theoretical approach is
obtained without this assumption. It therefore opens the door for more progress in the study of

the non-stable population cases.



The remainder of the article is organized as follows. In Section 2 we present our theoretical
accounting framework. In Section 3 we first set up the assumptions for our market economy
model. Then two subsections study the static and dynamic properties, respectively. Section 4
will examine the case of more general economies where there are some intergenerational transfers

or government taxes. The main technical proofs are in an appendix.

2 Theoretical background

In this section we develop a general theoretical accounting framework which will be very useful
for the next sections. At this point of the study, rather than giving a precise name to the object
we consider (like “consumption”, “income”, “transfers” or “savings”) we will speak about a
generic object that we call a “system of reallocation”. A system of reallocation g is a function
g(z,t) of age 2 and time ¢ which says that at time ¢ the expected net in-flow (or out-flow,
depending on the convention) from the system ¢ for the average individual of age z is g(=,1).!
For example if ¢ is savings, then g(z,t) equals the net savings at time ¢ by individuals of age
z. If g is Social Security then g(z,t) is the difference between benefits received and taxes paid
by people of age = at time t. We will suppose that the population is homogeneous in the sense
that all individuals of the same cohort have the same expectations although most results hold
for heterogeneous population as well>. We will define some concepts relative to any system of
reallocation, such as the “competitiveness”, the “conservativeness” or the wealth held through a
system of reallocation, and see how these concepts are dynamically related. While it may seem

very abstract at first glance and quite distant from our main objective, the economic meaning

'"We will refer to individuals throughout, but the framework and results can equally be applied to households
by age of head. The issues are discussed in Lee (1980) and (1994b). Alternatively, we could refer to individuals,
but suppose the economic life to begin with adulthood, say at age 20.

2All our results, except Propositions 3.3 and 3.4, and Theorems 3.5, 3.6 and 3.7, hold for heterogeneous
populations if we assume that demographic and economic heterogeneity are independent. All the results, without
exception, hold if, in addition, we suppose that the utility function is homothetic.



and the interest of dealing with such notions will become clearer in the next sections.
Throughout the present section we consider very general demographic hypotheses. The
population is not assumed to be stable and we call p(z,t) the survival pattern of individuals. By
this we mean that p(x,?) is the probability that an individual born z years ago (at time ¢ — )
is still alive at time ¢. We suppose that p(x,?) is integrable and that there exists a “maximum
age” w such that p(z,t) = 0 for all # > w. The number of births at time ¢ is noted B(¢) and
the size of the population is P(#). The population is assumed closed to migrations. We assume

that the rate of interest is an integrable function of time, r(?).

2.1 Some relevant characteristics of the systems of reallocation.

Viewing a reallocation system from a life cycle or longitudinal perspective we define the present
value of expectation of net receipt at birth by :

w t+ax
PV(g,t):/O IOty g a)g (et 4 2)da

Viewing a reallocation system from a cross-sectional perspective, at a given time ¢, we define
the population-weighted average flow by :

Pop(g,t) = % /Ow B(t — x)p(a,t)g(x,t)dx

(note that the number of people of age = at time t is B(t — z)p(z,1).)
PV and Pop are linear applications whose kernels are sub-spaces which have straightforward

economic meanings :

Definition 2.1 We will say that a system of reallocation, ¢ ,is :

- competitive if PV(g,t) =0 for every t.



- conservative if Pop(g,t) =0 for everyt.

The “competitiveness” of a system of reallocation indicates its neutrality, in the sense that to
add a competitive system of reallocation does not change the present value of the expectation
at birth of the average agent. The “conservativeness” indicates whether or not the transactions
of a system of reallocation aggregate to zero at any time. For example, in the set of the
competitive systems of reallocation we find any kind of competitive savings (for agents with
perfect foresight), while the set of conservative systems includes all kinds of Pay-As-You-Go
inter-generational transfers and familial transfers such as bequests. In general, some of the
competitive systems are not conservative (such as investment ), while some conservative systems
are not competitive (such as a Pay-As-You-Go pension system). Credit market transactions are
both competitive and conservative.

This nomenclature helps formalize different kinds of economic assumptions that are usually
made. Throughout this article we denote by ¢(z,t) and y;(x,¢) the consumption and labor
income of individuals of age = at time ¢{. A pure exchange market economy, as considered by
Samuelson (1958) and Gale (1973) is characterized by the fact that there is no durable good
and, therefore, no possible accumulation, which means that Pop(¢,t) must equal Pop(y,1),
and that individual savings are competitive, which says that PV(e¢,?) = PV(y;,t) at any time.
If we are in a market economy with capital then the former condition does not need to hold
anymore. Indeed, in a closed market economy the condition Pop(c,t) = Pop(y;,1) is replaced
by P(t)Pop(y; — ¢,t) = (1) — r(t)K(t) where K(t) is the aggregate capital at time ¢ . Such
economies will be studied in Section 3 of this article. Situations where PV(e,t) and PV(y,,t)

are not always equal are characteristic of non-competitive economies, such as economies where

*For simplicity, we assume throughout this article that there is no depreciation of the capital. Generalization
to an economy where the capital depreciates uniformly at a rate A(¢) would be straightforward. We would only
have to replace r(t) by r(t) — A(t) everywhere.



an institution imposes some (non-competitive) intergenerational transfers. They will be studied

in section 4.

In short, letting :

we can draw the following table :

E(x,t) = c(z,t) — yi(z,t)

Table 1: Properties of different categories of economies.

£ is competitive

£ is not necessarily
competitive.

£ is conservative

Pure exchange market
economy

Samuelson (1958)
Gale (1973)

Pure exchange economy
with intergenerational transfers

£ is not necessarily conservative

but Pop(¢,t) = %(7‘]{ _ %)

Closed market productive
economy

Diamond (1965)

Willis (1988)

This article, section 3

Closed productive economy
with intergenerational transfers
Diamond (1965)

Samuelson (1975)

Willis (1988)

£ is not necessarily conservative

Open productive

economy
Diamond (1965)

Open productive economy
with intergenerational transfers
This article, section 4

Remark : Obviously the lower and the more to the right, the more general is the economy.

Thus, Section 4 of this article deals with the most general economies, and in fact includes the

closed market economies of section 3. However, since most articles have focused on the study of

closed market economies, we decided to dedicate a distinct section to them.

2.2 Wealth held through a system of reallocation.

Our theoretical accounting framework is based on a concept of wealth held through a system of

reallocation which we define as follows

: the wealth held by an individual of age z at time ¢ is




equal to the present value of his net expectation of receipts from the system ¢. It is :

w t _ _ t-I-u—.rTa o
wg<w,t>=/x %gw,wu—x)e T e, (1)

We define the aggregate wealth per capita at time ¢ by the population weighted average :

W(a.0) = g5 [ B0 = (.0 (2)

It is important to note that this notion of wealth, which follows Lee’s definition (1994a and b),
is an expectation, therefore forward looking. It contrasts with the notion of assets used by Gale
(1973) and Willis (1988) which looks backward. To look forward is essential in order to consider
a non-trivial mortality pattern. Indeed, stochastic deaths are very easily included in a notion of
expectation, but when one considers the notion of assets it raises some fundamental questions.
When a person dies, his or her wealth (defined as an expectation) obviously becomes equal to
zero since he or she is not going to be affected by the system of reallocation anymore. On the
other hand, a person may die with some non-zero assets, and we may wonder what becomes of
his or her assets (in the past literature this problem was avoided by considering a trivial mor-
tality pattern: since people knew their age at death, they were supposed to behave rationally
and die with zero assets). A solution might be to base the accounting on the cohort instead of
the individual. This would work fine in the case of a competitive system of reallocation since
PV(g,t) = 0 implies that the aggregate assets held at death by the members of a given cohort
are zero. This property no longer holds for more general systems, which makes the use of this

notion of assets problematic in the present context.

Now, we can announce the main result of this theoretical part. The notion of aggregate



wealth per capita held through a system of reallocation, as we defined it, is linked to the

“conservativeness” and the “competitiveness” of this system as follows :

Theorem 2.2 The wealth held through the system of reallocation g satisfies the equation :

DV 1) = () — m(1))W(g,1) + (1) PV(g.1) — Pop(g. 1)

where n(t) = %%l is the rate of population growth and b(t) = ]Ei(%l is the number of births per

capita.

Comment :

This result is quite natural. It says that the wealth per capita increases because it earns
returns at rate r(t), decreases as a result of dilution due to the population growth, increases (or
decreases) because some people are born with a positive (or negative) wealth?, and decreases
(or increases) as a consequence of the aggregate net flow of wealth. The mathematical proof is

written in appendix 6.1.

2.3 An example: the steady states.

In steady states the dependence in ¢ disappears and the definitions of PV and Pop may be simply

written :

PVig) = " pe)ge)de 3)

Pop(g) = b [ pla)g(a)da 4)

*A typical situation where people are born with non zero wealth would be the case where people have to
participate in intergenerational transfers such as a Pay as You Go pension system. The rate of return for such
systems is n (if productivity growth is zero) and therefore they may have a present value discounted at rate r,
PV | not equal to zero.



where b is crude birth rate, that is the flow of births per capita, and = is the population
growth rate. We may note that from the steady state expression (4) it is clear that the rate of
population growth is always a solution for the internal rate of return earned on any conservative
reallocation and therefore on any intergenerational transfer system. Theorem 2.2 implies that

in a steady-state the wealth held through a system of allocation g must satisfy the equation :

(r —n)W(g) +bPV(g) — Pop(g) = 0

which shows how simply are related the concept of wealth, of “conservativeness” and of “com-
petitiveness” in this particular case.

Consideration of steady-states also illustrates how we gain in generality when working with
complex demographic hypotheses, rather than with simple ones as in the two age-group model.
Indeed, from (3) and (4), we see that, with our continuous model, the vectorial spaces of com-
petitive and conservative reallocation systems in steady-states are of infinite dimension as well
as their intersection. This contrasts with the usual N age-group models where the two former
spaces are of dimension N — 1 while their intersection is of dimension N — 2, if we are not
in a Golden-Rule steady-state. In particular we see that in the case of two age-group models
(N = 2), which includes almost all studies, the only system of reallocation which is competitive
and conservative at the same time in a non Golden-Rule steady-state is the trivial one (g = 0).
We could also have deduced this result from the following property conjectured by Lee (1993)

and proved in appendix 6.2 :

Proposition 2.3 In a non-Golden-Rule steady state any non-trivial system of reallocation

which is both competitive and conservative must change sign at least twice during the life-cycle.

(It is then obvious that in the context of a two age group models a system of reallocation cannot



change sign more than once, since it takes only two values.)

This absence of non-trivial system of allocation which is competitive and conservative at
the same time in a two age-group model explains why Samuelson (1958) had to introduce
a 3 age-group model to permit the existence of a non Golden-Rule steady-state with some
exchange between generations. Indeed, in a pure exchange competitive economy (that is, with no
durable goods) reallocation between generations must be conservative since there is no possible
investment (this is what Samuelson calls “market clearance”) and must also be competitive
(Samuelson’s budget constraint). Thus, for Samuelson, the only way to leave the “biological
rate of interest” and the no-exchange equilibrium was to consider at least a three age-group
model. However, the three age-group model of Samuelson remained very restrictive since, in
his model, for any values of r and n (with » # n ) all intergenerational exchange that satisfies
both the market clearance and the budget constraint must have the same shape. This limitation
disappears in the continuous model where the variety of systems of reallocations which are

competitive and conservative at the same time is infinite.

3 A closed market economy with capital.

From now on we will suppose that the population, but not necessarily the economy, is in a
steady state, that is that p(z,?), n(¢t) and b(¢) do not depend on ¢t. We suppose also that
we are in a productive world where there is no technical progress and where production is
an homogeneous function of Capital and Labor. Because the population is stable Labor is

proportional to population size, and the production function can be written as :

10



where k() = g;((f)) is the capital per capita at time ¢t. The function f is assumed to satisfy the

usual conditions, f >0, f > 0 and f” < 0 plus the Inada conditions :

;lli%f (k) =400 and kgrfoof (k)=0

We will say that an economy is a closed market economy if the three following conditions
are fulfilled :

e All that is produced is consumed or invested.

e Labor is paid its marginal product.

¢ Individual savings are competitive (agents having perfect foresight).

Recall that in our notation ¢(x,t) and y;(z,t) designate the consumption and labor income

of individuals of age z at time ¢, and &(x, 1) is their difference :

E(x,t) = c(z,t) — yi(z,t)

The notation Wi(ec,t), W(y;,t) and W(&,t) corresponds to the aggregate value per capita of
wealth as defined by equation (2). W(£,t) is the difference between the present values of ex-
pected consumption and expected income, which corresponds to the usual notion of wealth in

the absence of bequests and other non-market transfers, as required by the third condition above.

With this notation the first condition may be written as :

FUR()) = S (0) 4 k() + Pop(e, 1) 5)

which is the basic dynamic equation of Solow’s growth model.

11



As we do not want to make additional assumptions about how productivity varies with age,

we can use the second condition only at the aggregate level. It gives :

Pop(yi, 1) = f(k(t)) — r(1)k(?) (6)

with #(t) = f'(k(t)). °

The third condition says that at any time we have :

PV(y;,t) = PV(c,t) (7)

or, in other terms, that £(x,¢) is competitive in the sense we define in Section 2.

At this point these assumptions may seem restrictive since they rule out non-competitive
intergenerational transfers or government taxes and transfers, but these will be examined in the
last section of this article. On the other hand, the assumptions are more general than those
in numerous articles such as in Galor and Ryder (1989) and Galor (1992). Indeed, following
Samuelson (1958), Diamond (1965), Gale (1972, 1973), Balasko, Cass and Shell (1980), Tirole
(1985), Weil(1987) and Lee (1994a and b), among others, we do not assume that the aggregate
wealth held by individuals equals the amount of capital. Instead, we implicitly accept that there
exists money or some institution that may support a government deficit. In the following we
will call “balance” the difference between the aggregate wealth per capita and the capital per

capita, which is W(&,¢) — k(t). This concept of balance will play a crucial role throughout our

®We can check easily that adding equations (5) and (6) we obtain :

dk . dK
Pop(é.1) = (r = mk + 7 = 5 (K = )

and that this kind of economy is indeed to be found in the second line of table 1.

12



analysis. Our aim is not to discuss how a non-zero balance can be introduced in the real world

during what we may call a “pre-economic” period. But we will pay particular attention to the

evolution of this balance during the economic era, when the three assumptions listed above are

assumed to be satisfied.

In what follows, we will describe the static and dynamic properties of such economies. Be-

fore continuing, however, we claim the following result which is a simple consequence of our

theoretical framework, and which will be useful in subsequent analysis.

Proposition 3.1 In a closed market economy we have :

Proof : Combining equations (5) and (6) we find :

Pop(¢, 1) = Pop(e, ) = Pop(y, 1) = ——(1) + (r(t) = n)k(1)

Also as a consequence of theorem 2.2 we have :

Pop(¢,1) = —Z—Vf(fat) +(r(1) = n(t))W(1) + b(t)PV(E,1)

Since PV(&,¢) = 0 by hypothesis (equation (7)), the subtraction of these two equations give the

desired result.

13



3.1 The steady-states

In a steady state equation (8) may be simply written :

(r=n)(W()—-k)=0

Therefore, using Gale’s classification :

Proposition 3.2 A steady state of a closed market economy is always either “balanced”

(W(&) = k) or “Golden-rule” (r = n).

This result has been obtained without strong assumptions about the behavior of agents. Indeed
we only needed to assume that equation (7) is satisfied, which means that agents only borrow
and lend at a competitive rate. However, although we have been able to describe some properties
that must be satisfied by a steady-state, we do not yet know whether any such steady states
exist. A priori, existence must depend on the agents’ behavior, but we can obtain some results
for a very general class of behavior, including rational behavior.

Suppose indeed that :

e h1) Agents choose their life cycle consumption in order to maximize a utility function U

under the constraint PV(£,t) < 0.

e h2) The utility and the production functions are such that in the hypothetical limit & — 0

(and r — 400), the aggregate wealth implied by h1l would exceed the value of capital.

Mathematically speaking the assumption A1l means that for all ¢ the longitudinal consumption

plan ¢(z,t + ) is a solution of the program :

M U
PV(c,t)gal%(V(yz ) (e(2))

14



Assumption h2 links together the properties of the individual’s preferences and the properties
of the production function. As k goes to zero the rate of interest goes to +00 and therefore
we expect people to postpone their consumption, so that the wealth would be greater than
the capital. However, at the same time that & tends to zero labor income decreases. It may
happen, in some particular cases, that preferences for present consumption increase as income
decreases in such a way as to offset the first effect. Assumption h2 is made in most articles
on productive two age-group models (as in Diamond (1965), Tirole (1985), Weil (1987), etc.).
However, Galor and Ryder (1989) showed examples where this assumption does not hold. They
were able to establish some necessary conditions for A2 to hold, but they could not obtain an

explicit sufficient condition. A sufficient condition may nevertheless be written as follows :

Proposition 3.3 If preferences are additive and homothetic and if for any ¢ > 0 there exists
ko such that :

J(k) = kf (k) —ef (k)

i > €
for k < ko , then h2 is always satisfied.%

The proof is in appendix 6.3. For our purposes, we only need to assume h2 for the following

proposition which extends Gale’s result (1973) :

Proposition 3.4 If assumptions hi and h2 are fulfilled, there always exist both a balanced
steady-state and a Golden Rule steady state which are consistent both with our assumptions
defining a closed market economy and with rational behavior of the agents.

Moreover, if in the Golden-Rule W (&) > k (resp: W (&) < k), then there exists a balanced

equilibrium with r < n (resp: > n)7.

6Tt is of interest to remark that the necessary condition obtained by Galor and Ryder (1989) for the two age
group model becomes too strong when considering the continuous model.

If assumption k2 does not hold then there may not exist a (non trivial) balanced steady-state when W(¢) < k
in the Golden-Rule (see Galor and Ryder (1989)).

15



The proof is in appendix 6.4. Gale (1973) used the term “Samuelson” for the case where
W (&) > k in the Golden Rule steady-state, and “Classical” for the case where W (&) < k in the
Golden Rule steady-state. As Samuelson (1958) suggested, Golden Rule steady states of the
former kind may be supported by the existence of money (with positive value). A Golden-Rule
equilibrium of the latter kind would require some other institutional support allowing the society

to keep a surplus of capital, since money of negative value is hardly imaginable.

There are several results concerning the welfare of agents. The following theorem, proved in

appendix 6.5, extends the first result of Starret (1972) :
Theorem 3.5 A Golden Rule steady state is Pareto optimal.

It may happen coincidently that the Golden-Rule steady state is also a balanced steady
state. This case corresponds to the “Goldenest Golden Rule” of Samuelson (1975). Indeed,

more generally, we claim that :

Theorem 3.6 If we denote by U(n) the lifetime utility of individuals in the Golden-Rule
steady state with rate of population growth n, and if U(n) is continuously differentiable, then
the first derivative of U always has the sign of the balance W (&) — k of this Golden-Rule steady

state.

In other terms we have :

(W(fgr) - kgr)— Z 0

where the subscripts gr are introduced to remind that we refer here to the Golden-Rule steady
state. Anticipating the result of corollary 4.4 this may also be written as :

aU
>

(Pop(e)(Ae = Ay) = F) G 2 0

16



where A, and A,, are the average ages of consumption and labor income, or also :

dU>

Ay —A-)—
(T+ T)dn—

0

where 71 and 7~ are the in-coming and out-going (competitive) intergenerational transfers. In
particular if the Golden Rule is balanced then % = 0, which is the first order derivative condi-
tion that should be satisfied for an optimal population growth®. More precisely we may say that
if the society is in a Classical (resp: Samuelson) Golden Rule steady-state the welfare of indi-
viduals could be improved, in the long term, by a slower (resp: faster) population growth. This
result has been proved by Arthur and McNicoll (1978) for the case of an additive and atemporal
utility function and is proved in a more general context in appendix 6.6. Willis (1988) was the
first to connect the average result of Arthur and McNicoll (1978) to the balance measure, W — k.

Willis and Kim (1988) derived a sufficient condition for an optimum in the three age-group case.

Coming back to the situation where the rate of population growth is exogenously fixed at a

value n, we have the following properties which generalize Starret’s second result (1972) :
Theorem 3.7 A balanced steady state is Pareto efficient if r > n and inefficient if r < n.

We know from theorem 3.5 that the optimal steady-state is Golden-Rule. With this result,
proved in appendix 6.7, we see that if the economy is initially in a balanced steady-state with
r < n atransition from the balanced steady state to the optimal one is feasible without diminish-
ing the welfare of any individual (such a transition would, however, be classified as non-economic
since it would necessarily violate one of our three hypothesis). On the other hand, if we are in

a steady state with » > n such a transition would necessarily be costly for some individuals.

#Samuelson (1975) intuitively interpreted this necessary condition, % = 0, as a sufficient condition for the

existence of an optimal population growth rate. But Deardoff (1976), with Samuelson’ acknowledgment (1976),
showed that this rate of growth may also correspond to a welfare minimum.

17



These static properties do not imply that a market economy will converge to a Pareto optimal
equilibrium, or even to Pareto efficient one. Samuelson’s numerical example (1958), in a pure
exchange economy with three age-groups, gives a situation where from almost every initial
condition the economy will converge to an inefficient balanced equilibrium. Such a result shows
the interest of studying the dynamic properties of overlapping generations market economies in

general, as we aim to do in the following section.

3.2 Dynamics

Our framework allows us to gain some insight into the dynamics of such closed market economies,
retaining the assumption of steady state population. Of course, the results that we present
here are incomplete, with some questions remaining unsolved. We should not forget, however,
that results on this topic were formerly available only for the two age-group model, with few
exceptions.

Let us begin with the result of proposition 3.1 which says that in market economies we have :

d

(W& 1) = k(1)) = (r(t) = n)(W(E, 1) — k(1))

This can be solved as :

t

W(E) = k(1) = (W(E&0) = k) exp( [ (r(a) = n)da) (10)

Therefore we see that the evolution of the balance W(&,t) — k() depends exclusively on the

18



nature of the generalized integral :

/0 T ) = n)dt

The nature of this integral depends on the evolution of the rate of interest and thus indirectly

on the agents’ behavior. We may, however, obtain some results for the general case.

Proposition 3.8
1) If a program is balanced at some time then it remains balanced for ever.
2) The sign of the balance W (£, t) — k(t) of a program is constant.

3) A balanced equilibrium with r > n is not stable.

Comments :

The first point of this proposition is a generalization of the impossibility theorem of Samuel-
son (1958). It is also in Gale (1973) for a N age group model in a pure exchange economy. It says
that a market economy cannot support the transition from a balanced state to an unbalanced
one.

The second point is just more general. Together with the third point they give a partial
answer to Gale’s conjecture?. Indeed, if we are in what Gale calls the classical case (that is with
W(£) < k in the Golden-Rule steady-state) we know that there exists at least one balanced
steady state with r > n. Our proposition says that in this case the economy will tend to
move away (at least locally) from this balanced steady state. Moreover, if the initial conditions
are such that W(&,0) > k(0) then the balance will remain non positive (from point 2 of the
proposition) and the economy will not converge towards the Golden-Rule steady states which

would be characterized by a negative balance.

°Gale (1973) conjectured, for an economy with no durable good, that in the Classical case the balanced
steady-state is unstable, the economy converging toward the Golden-Rule only if the initial balance is negative.
He conjectured also that in the Samuelson case the economy always converges toward the balanced steady-state.
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Proof of proposition 3.8 Points 1 and 2 come directly from equation (10). In point 3 by “not
stable” we mean that for at least some initial conditions infinitely close to the steady-state the
economic path will deviate from the steady-state. Now suppose that there exists a balanced
steady state with a rate of interest »* > n. Let us choose some initial conditions where the
balance is close, but not equal, to zero, and where the rate of interest is close to r* (so that
r—mn > 0). From equation (10) we know that an evolution where r remains close to r* and the
balance tends to zero is impossible. Thus we see that in this case, the economy which starts
from initial conditions arbitrarily close to the balanced steady-state will move away from this

steady-state.

4 General economies.

Although the study of market economies has been the main preoccupation for economists, in fact
all real world economies include many kinds of transfers, not necessarily competitive, and are
therefore non-market in our terminology. Examples of non-competitive reallocations of resources
include child rearing, Pay-As-You-Go pension systems, familial intergenerational transfers, gov-
ernment taxes and transfers, etc. Indeed, such non-market transfers comprise by far the most
important source of, or institutional support for, unbalanced economies (see Lee, 1994a).

The aim of this section is to show how our previous analysis can be easily extended to these
general economies. In particular, we will describe the possible steady states and show how their
characteristics are linked to the properties of “competitiveness” and “conservativeness” of the
non-competitive systems of reallocation that may exist in these economies. We will also give
a simple expansion which makes it possible to compute the wealth held through a system of
reallocation from the moment of the age distribution of this system of reallocation. From this

expansion we obtain the balance of a Golden-Rule economy, linking our results to those of Arthur
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and McNicoll (1978), Willis(1988) and Lee (1994a and b). We can also find the correction terms
to be added when r # n.

Let us call 7 the sum of all the non-market systems of reallocation, familial and governmen-
tal. We may think of 7 as being determined and operationalized by some abstract (or real)
unproductive institution, which gives 7% (z,¢) to any individual of age = at time ¢ and collects
77 (2,1), the net transfers being 7(x,t) = 7% (x,t)—7"(2,¢). In a closed economy, it is the nature
of transfers that all that is given by some individuals is received by others, so that 7(x,t) must
be conservative, satisfying Pop(7,¢) = 0. However, we may think of different situations, such
as an open economy, where 7(z,¢) may include some government taxes collected for payment
to some foreign economies (this would be the case for a country which has to pay interest on
its external debt as in Diamond (1965)). In this case 7 does not need to be conservative and
to avoid any loss of generality we will not make any assumption on the value of Pop(7,?) in the
following.

Let us define here :

0(z,t) = &(x,t) — T(2,t) = c(x,t) — yi(x,t) — T(z,1)

In absence of capital depreciation we have:

E(k) + nk(t) = rk(t) — Pop(6, 1)

The hypothesis that individuals behave competitively (a part from the fact that they participate

in the system of reallocation 7) means that PV(8,¢) = 0. Thus using the theorem 2.2 we get :

d

(WO, 1) = k(1)) = (r(t) = n)(W(8,1) — k(1)) (11)
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In a steady-state all the dependence in ¢ disappears and this equation simply becomes (r —

n)(W(0) — k) = 0. Therefore

Proposition 4.1 A steady-state must be either :
- Golden-Rule

- Non-Golden Rule (and “non consensual”, in the sense defined below) with a balance given

by :

W(E) — k= W(r) = — <bPV(T) _ Pop(r)) (12)

n-—rT

Outside of Golden-Rule, the aggregate individual wealth must equal the sum of the capital and
the aggregate institutional-transfer wealth. In the Golden-Rule this equality is not necessary.
The difference may be supported for example by the presence of money, or more generally by
some other competitive intergenerational transfers. Proposition 4.1 is obviously the generaliza-
tion of Proposition 3.2. Most of the previous results can be extended in the same way. Indeed
we see at a glance that equations (8) and (11) are identical. In the case of a general economy
with institutional intergenerational transfers, the important variable is no longer the balance
W, t)—k, but W(0)—k, which is also W(&) 4+ W (1) — k, the difference between the aggregate
wealth and the sum of the capital per capita and the (institutional) transfer wealth. To avoid
any confusion we will call this difference the “consensual-wealth” to insinuate that this kind
of wealth, which adds to the wealth held in form of assets and to the institutional transfers
wealth, has to arise from a social consensus. The “consensual wealth” includes the wealth held
in money or bonds and also the wealth that might be held from other intergenerational transfers
than 7. We will say that a program is “non-consensual” if the “consensual wealth” equals zero.

Theorems 3.5, 3.7 and Proposition 3.8 become then :

Theorem 4.2 In a general economy with fized (and unchangeable) institutional transfers and

tazes we know that : (i) A Golden-Rule steady-state is Pareto-optimal.
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(i) A “non consensual” steady state is Pareto Efficient if r > n and inefficient if r < n.

(iii) If a program is “non consensual” at some time then it remains “non consensual” for
ever.

(iv) The sign of the “consensual wealth” is constant.

(v) A “non consensual” steady-state with r > n is not stable.

Proof The proof of (¢) is exactly the same as the proof of Theorem 3.5. For the proof of (i)
we can literally follow the proof of theorem 3.7 replacing ¢(z,t) and co(z) by ¢(2,t) — 7(2) and
co(z) — 7(x), respectively. Substituting £ for 6 in the proof of proposition 3.8 proves (i), (iv)

and (v).

We have not yet given any method to compute the balance of an economy in the Golden-Rule.
Theoretically this may be done with an argument of continuity. At this point we must be careful
since we know that there may exist some discontinuity when r equals n due to the theoretical
viability of money or of competitive intergenerational transfers in the Golden-Rule which is
impossible in other steady-states. Here we resort to the artifact of considering the Golden-Rule
steady-state as a non-monetary economy with institutionally fixed intergenerational transfers.
Let 74, denote the sum of all the different kinds of intergenerational transfers in the Golden-Rule
steady-state (including transfers of money) '°. The Golden-Rule steady-state is the limit when
r — n of non-monetary economies with fixed intergenerational transfers 7,,. We know then that
the balance in the Golden-Rule must equals the limit of the balances of these non-monetary

economies and is therefore given by the limit of (12) when » — n and when 7 is taken equal to

Tgr-

1%Rigorously Tgr() is equal to cgp(2) + igr(2) + mgr(2) — ygr(z) where cgr(2) , igr(2), mgr(z), and ygr(z) are
respectively the consumption, investment, net credit transaction, and total income at age z, in the Golden Rule
steady-state.
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In general we would like to be able to compute the balance from the parameters which
are easily observable, such as the rate of interest and the age-distribution of the system of
reallocation. Although (12) and the remark above give us a theoretical solution, this is not
necessary the most efficient and informative way to compute this balance. In particular, when r
and n are close and, even worse, when we have to consider the limit » — n to obtain the balance
in the Golden-Rule, the apparent singularity of expression (12) when r = n would very probably
introduce some lack of precision when used empirically. It would be particularly subject to
criticism since we know from Lee (1994a and 1994b) that the balance in the Golden-Rule has a
very simple expression. Thus the aim of the end of this section is to develop an exact expansion
which expresses the balance, or more generally the wealth held through a system of reallocation,
as a clearly continuous function of r — n, measuring in some sense the distance to the Golden-
Rule, and the moments of the age distribution of the system of reallocation we consider. The

first step consists in the following result :

Lemma 4.3 For any system of reallocation g(x) (constant over time) such that Pop(g) # 0

we have :

bpvig) = s popl) (14 U oy ) )

Where A, ng, Kg(3), pg(4), ete. are the (population weighted) mean, variance and higher

moments of the age distribution of g(z). They are defined by :

o Jo @ = Ay)Pe ™ p(a)g(x)da
g Jo e p(x)g(x)de
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_ Jie = A p(a g n)de

Hg(k) T e p(a)g ()

Proof : For any 6 we compute :

PV(g) — 6(71—7“)5 0‘|‘Oo p(x)e(n—r)(w—ﬁ)e—nxg(x)dx
(14)

1 n—r)k o] —nx
= clr 8 L [ ple) (e - 6)e g () da

Choosing 6§ = A, as defined above gives formula (13).

Usually we are interested in systems of reallocation which may be positive at some ages
and negative at others. For this kind of system lemma (4.3) is not very satisfactory because
the definitions of the mean, variance, and other moments given above do not then have a clear
physical meaning. Also, for any conservative system, Pop(g) will be zero and the lemma will
not apply. But note that any system of reallocation ¢ can be decomposed into ¢ = ¢t — ¢~
where g*(z) describes the resources flowing to the agent (such as social security benefits) while
¢~ () describes resources flowing from the agent (such as social security taxes paid). Then the

previous result can be applied, yielding :

Corollary 4.4 In a steady-state, for any system of reallocation g we have :

Wig) = = <P0P(9+)(€(H_T)Ag+ —1) = Pop(g™)(e"" 0 — 1)>

=) <P0p(g+)ff§+ Mgt POP(Q_)UgQ—@(n_T)Ag_>
15
L (15)

n—r)*71 n—r - n—r —
+ =2 (Pop(y g (R4 = Poply ™y (1))

This expression gives an empirically efficient method for computing the wealth held through
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a system of reallocation. We may apply it to compute various relevant economic values. For
instance, according to (12), setting g(«) = 7(z) we obtain the balance of the economy. Another
application would be to choose g7 (z) = ¢(z) and g~ (z) = y;(«) which leads to computation of
the wealth W () from the age-specific profiles of consumption and labor income. Indirectly we
obtain a method to estimate the value of capital per capita.

If we develop the first term of (15) our expression takes the form of a perturbation expansion
in r — n, which gives some insights on the validity of the Golden-Rule approximation and on
how fast it deteriorates. Concerning the particular case of the Golden-Rule steady-state we can
easily check from (15) that, for any system of reallocation, W(g) — Pop(g™)A,+ — Pop(g™)A,-
when (r —n) — 0. So, for example, we find that in the Golden Rule W(c) = Pop(¢)A, and

W(y1) = Pop(yi1)A,, and that the balance is given by W(£) — k = Pop(71)A .+ — Pop(77)A,_

results which are consistent with the results found previously by Lee (1994a and 1994b).

5 Conclusion

The extensive literature on overlapping generation models is rich and productive, yet it suffers
from its reliance on simplistic demographic assumptions which are largely unnecessary. The
past literature has mainly assumed only two age groups and perfect survival until the end of
the second of these. Theoretical results for two age groups sometimes do not generalize, and
without mortality one cannot study the implications of its change. Such a crude model cannot
even simultaneously accommodate dependent childhood, productive mid years, and retirement.
Any kind of empirical implementation of these models is virtually impossible.

This paper adopted a continuous age distribution with an arbitrary age schedule of mortality.
The core economic model was standard. The new concept of reallocation system is sufficiently

broad to include the real world variety of individual and institutional mechanisms, ranging from
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real capital formation through credit transactions to non-market transfers through the family
or the government. A simple two-by-two categorization of these according to whether they are
competitive and/or conservative captures their analytically critical features. A notation based
on this categorization facilitates compact expressions.

Life cycle age profiles of planned survival-weighted earning and consumption, in conjunction
with the age distribution of the population, give rise to an aggregate demand for wealth. If
this demand is exactly satisfied by aggregate holdings of capital, the economy is said to be
balanced. More generally, however, the demand for wealth differs from the size of the capital
stock, and wealth is additionally held in some other form—typically as transfer wealth. The
difference between wealth and capital per head is called the balance of the economy.

We have derived a considerable number of theoretical results in this paper. Some of these
extended the findings of other studies to a more general demographic context or to economies
with capital; some provide simpler proofs; and some established new results. We began with
a very general expression for the evolution of wealth in non-steady state economies and non-
stable populations. We then considered closed market economies. The previous result, applied
to a market economy with a stable population, led to a simple expression for the evolution
of the balance of the economy. This in turn implied that all steady state market economies
must be either golden rule or balanced. We also showed that with rational agents with additive
homothetic preferences and some conditions on the production function, there will always exist
one balanced equilibrium and one golden rule equilibrium. Next we established some welfare
results for closed market economies. A golden rule steady state was shown to be Pareto Optimal.
When the balance is positive, which occurs when the average age of consuming exceeds the
average age of earning, then a steady state with a higher rate of population growth will permit

a higher level of welfare in a comparative static sense, and when the balance is negative, then a

27



steady state with more rapid population growth would be beneficial. A balanced steady state
is Pareto Efficient if r exceeds n, but inefficient if r is less than n. Finally we derive some
dynamic results for closed market economies, showing that a balanced economy cannot become
unbalanced, and that in an unbalanced economy, the sign of the balance cannot change. A
balanced economy with r greater than n is not stable, despite being Pareto Efficient. This set of
results achieves a synthesis, generalization and extension of a substantial literature in this area.

In these hypothetical closed market economies, it is not entirely clear how it is possible for
unbalanced economies to occur and be sustained by market institutions. In the real world,
non-market interage transfers are pervasive, and lead to positive or negative transfer wealth,
and thereby readily create and support unbalanced economies. Unfunded public sector pension
programs, or familial support by adults of their elderly parents, for example, create enormous
positive transfer wealth which sustains positive balance in the economy. Intended or unintended
bequests, and publicly funded education, create very substantial negative transfer wealth, tend-
ing to create a negative balance (see Lee, 1994a and b). We considered economies with transfers
of this general sort, and showed how earlier results generalized. A steady state economy with
transfers must either be golden rule or have a balance related in a specific way to the age profile
of transfers. Results on the optimality, efficiency and stability of the different kinds of steady-
state were extended straightforwardly, as well as the results on the dynamic. Further analysis
led to a perturbation expansion about the golden rule case which provided a convenient basis for
evaluating the balance in the golden rule case as well as outside of it. In golden rule, the balance
is given by the average per capita inflow of transfers times the average age of receiving a trans-
fer, minus the corresponding product for the outflow of transfers, a result which holds for open
economies as well as closed ones. In closed economies, the inflows and outflows of transfers must

be equal, so the sign of the balance of the economy is positive when the population-weighted
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average age of receiving transfers exceeds that of making them, as appears to be the case in the

U.S. and some other industrial nations (Lee, 1994a and b).

Economists should not be put off by the apparent complexity of realistic demographic models,

models which in principle should permit a much greater degree of generality and relevance to real

world phenomena and policy problems. The same model that has been empirically implemented

elsewhere to study the consequences of population aging has here been related to a deeper

theoretical literature. We have shown that such models remain tractable, and that comparative

static, dynamic and welfare theoretic results can be obtained.

6 Appendix

6.1 Proof of theorem 2.2

From equation (1) we may compute :

(L Dty = (—glas )+ r(tyug(a, 1) — L2t P

de = dt z, hwg(z, 1))

Multiplying both sides by B(t — «)p(«,t) and integrating between 0 and w we get :

On the other hand let us note :

S0 = POW(g.0) = [* Bt = o)ple, (e, t)da
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We have :

£t = /Ow <B'(t — (e, Owy(x, O)de + B(i - x)%(p(ac, D,z t))> da

Integrating by parts the first term of the integral yields :

d

710 = B0,y (0.0 + [ Bt = )5+ ol (o)) da

The first term on the right hand side of this equation is precisely B(¢)PV(g,t). Then, using

equation (17) we obtain :

!

f(t) =r()P(1)W(g,1) — P(t)Pop(g,1) + B(1)PV(g,1)

f(t) Wig,t)

and since W(g,t) = 70 implies that & = = —nWi(g,t) + %f/(t) we get exactly the an-

(t)

nounced result.

6.2 Proof of proposition 2.3

We show that there is no function g(z) which solves :

| erp@gtants = ["emptgtordn =0 (18)

which does not change sign more than once and which is not identically zero. Let us imagine
that there exists such a function and, for example, that » > n and that g(2) < 0 for # < ¢ and

g(z) >0 for z > z9. We would have :
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w

/:’ e p(x)g(x)de < e(mTTITo / e p(x)g(x)de

0 Zo
If g(x) is not identically zero one of these inequalities must be strict. Adding these two inequal-
ities would lead to a contradiction of equation (18). Thus we see that the existence of such a
function is impossible. The cases r < n or g(z) > 0 for < zg and g(z) < 0 for 2 > g may be

treated similarly.

6.3 Proof of proposition 3.3

As remarked by Kessler and Masson (1988) any additive homothetic intertemporal utility func-

tion may be written as :

U(e)= [ pw)ate)u(e(a))de

where u(c) = Cll__; A simple calculation shows that the consumption pattern that follows from
utility maximization satisfies ¢(x) = ¢(0)el"=**)*/7 where A, = —p(gg)la(x)%(p(w)a(x)). The

value of ¢(0) is determined by the constraint PV(c¢) = PV(y;) and we have :

1 _Jy e p(a)elr ey
= f(;U e_msp(x)e(r—/\m)x/wdx

PV(y)

It follows that for any age a such that p(a) # 0 there exists rq such that 1Pop(c) > e"=PV(y,)
for r > ro. In particular, since the income profile (given by the labor productivity) is supposed
to be fixed, we know that there exists ¢ > 0 such that for r large enough Pop(c) > e Pop(y;).
Assumption h2 says that W () should be greater than k in the hypothetical limit & — 0.
We know from theorem 2.2 that (r — n)W (&) = Pop(€) so assumption A2 is also equivalent to:

“In the hypothetical limit » — 400 we should have Pop(c¢) — Pop(y;) > (r — n)k.”
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We have seen that for some positive ¢ we have in the limit r — 400 :

Pop(c) — Pop(y;) > (e — 1)Pop(y;) > e "Pop(y;) = eqf/(k)(f(k) - kf/(k)) (19)

Thus, assuming that preferences are additive and homothetic, the condition which says that for

any € > 0 we must have :

Fk) —kf' (k) _ _.f

for k small enough is enough to ensure assumption h2.!!

6.4 Proof of proposition 3.4

Assuming that agents behave rationally, for any hypothetical steady state, characterized by a
value of capital per capita k and a rate of interest r = f/(k), there corresponds an income profile
yi(z) determined by the marginal productivity of Labor and a consumption profile ¢(z) which
maximize U(e(z)) under the constraint PV(e) = PV(y;). We will note {(z) = ¢(2)) — yi(2))
where —£(2) is in some sense the “rational” investment of individuals of age z from their labor
income. An hypothetical steady state will actually be a feasible steady state if the desired
investment, —Pop(&), is equal to the investment needed to maintain the capital per capita at

his level. This means that a steady-state is feasible if and only if :

—Pop(§) = (n — 1)k

Let us call z(r) = —Pop(§) — (n — r)k which is the difference between the rational investment

and the necessary investment to support a steady state. We will show that z(r) has always

1 Tn fact we could have shown that (19) is true for any €; smaller than the difference between the maximum age
at death and the minimum age of non-zero productivity. We would obtain a weaker sufficient condition supposing
only that (20) has to be true for some € smaller than this age gap.
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at least two roots when r varies in [0,4oc], and therefore that there are always two possible
steady-states.
The root » = n corresponding to the Golden-Rule steady state is obvious. Indeed when

r = n the application PV and Pop are proportional and :

Pop(¢) = Pop(c) — Pop(y) = bPV(c) — bPV(y) = 0

since PV(¢) = PV(y;) is the constraint of the individual maximization program.

It remains to see that there is at least one other root. The consumption being non negative
we have —Pop(¢) < Pop(y) = f(k)—rk. Thus we see that 2(r) < f(k)—nk and since f'(k) — 0
when £ — +00 we have :

lim z(r) = —o0 (21)

r—0

From theorem 2.2 we know that in a steady state we have Pop(§) = (r—n)W (&) (since PV(£) = 0

from the individual budget constraint). Therefore :

2r) = (n—r)(W(E) - k) (22)

and hypothesis h2 implies that z(r) < 0 when r — 4oc.

The function z(r) is continuous, non positive when r — +o00 and when r — 0 and is equal
to zero when 7 = n. Moreover we know from equation (22) that the derivative of z in r = n is
given by :

= —(W(&) = K)lr=n

E|7’:7’L

which is the opposite of the balance in the Golden Rule equilibrium. Thus in the classical case

where W () < k in the Golden rule we know that there exists at least one root of z(r) greater
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than n and in the “Samuelson’s case”, when W(&) > k in the Golden rule we know that there

exists one root smaller than n.

6.5 Proof of theorem 3.5

By claiming that a Golden-Rule steady-state is Pareto optimal we mean that agents in such
a steady-state have a higher lifetime utility that in any other steady state. Indeed let us call
kg, cg(x), 1, the capital per capita, labor income and consumption profiles of the Golden-
Rule steady state and k and ¢(z), yi(z) the values in another steady-state. To show that
U(c(x)) < U(cy(x)) we only need to prove that Pop(c) < Pop(y;,) since ¢y(z) is by assumption
a solution of the program :

Max Ule,(z
Pop(cy)<Pop(yiy) (g( )

(in the Golden Rule the function Pop and PV are proportional). But it is well known that the
Golden Rule steady state is the steady state that maximizes the aggregate consumption. So we

have Pop(c) < Pop(c,) < Pop(y,), which completes the proof.

6.6 Proof of theorem 3.6

Let us note ¢,(z) and y;,, the consumption an labor income of individuals of age z in the Golden-
Rule of rate of population growth (and rate of interest) n. We know that ¢, maximizes the
utility function under the constraint PV(¢,) = PV(y;,,). Thus, any consumption pattern such
that PV(¢) < PV(¢,) would make individuals worse off and any better consumption pattern
will have to satisfy PV(¢) > PV(¢,). Consequently, as we assumed U(n) to be continuously
differentiable, the sign of 2Z(n) will be the same as the sign of PV(22).

We know that for every Golden Rule steady state we have PV(¢,,) = PV(y,, ). Differentiating

both sides of this equality and wusing the fact that for a positive system of
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reallocation #-(PV(g)) = —A4,PV(g) + PV(g—i) we obtain :

— APV(c) + PV(Z—Z) = — A, PV(i) + PV(%) (23)

n

bPV(%) or also Pop(%) is the variation of aggregate income at constant structure by age and

is given by :

V(L) = Pop(38) = L (shy by = (F () - GE k= k(20

which corresponds to the classic effect of capital dilution of the growth model of Solow. Using

the result of Lee (1994) or anticipating the result of corollary 4.4 we know that :

W(&) = (Ac — Ay )Pop(c) (25)

From (23) (24) (25) we get PV(5%) = $(W (&) — k) which completes the proof.

6.7 Proof of theorem 3.7

Let us prove first that a balanced equilibrium program with r > n is Pareto-efficient, or in other
words that there does not exist any transition that makes nobody worse off and at least one
individual better off. For this we show that the existence of such a transition would lead to some
inconsistency.

Let us call kg, 79, cg the values of the capital per capita, rate of interest and consumption
of the steady state, before the transition, and call PVy the function PV obtained for r = rq
Applying the result of theorem (2.2) we know that :

dWy
dt

(c,t) = (ro — n)Wo(e,t) + bPVo(e, t) — Pop(e, t)
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where we call Wy the notion of wealth defined as in equation (2) for r = 9. With equation (5)

we get :
W = (Wo(e,t) — k)(ro — n) 4 rok — f(k) + bPVo(e,t)
Calling :
a(t) = (Wole,t) — k) — (Wo(co) — ko)
we have :
%(ae(”_m)t) = el (rok — f(k) + bPVo(e,t) — (n — ro)(Wo(co) — ko)) (26)

or also given the fact that «(0) = 0, per definition, and that (n — ro)(Wy(co) — ko) = roko —

(ko) +bPVo(co) (since the zero indices correspond to a steady state program) we obtain :
t
a(t) = / o= =) (rok(u) — f(k(u)) = (ro — f(ko)) + bPVo(c,u) — bPV(eo))du  (27)
0

Now mnote that a simple study of the variation of the function 7ok — f(k) shows that for all
k we have rok — f(k) > roko — f(ko) since 7o = f (ko) and f'(k) < 0. Remark also that a
transition that makes one person better off and nobody worse off must pass by a point where
PVq(c,t) > PVg(eo) and be such that PVy(e,t) > PVg(cg) for every t. Thus, since 79 > n, we
see from equation (27) that such a transition transition would lead to :

lim (Wo(e,t) — k)(t) = 4o

t—4oco

which is physically impossible (it would mean that the expected consumption of agents, dis-

counted at the rate rg, would tend to infinity).
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To prove that a balanced steady-state with r < n is not Pareto efficient we must construct
a transition that makes nobody worse off and some persons better off. The idea is very simple.
Imagine that starting from this balanced steady-state we add after some time ¢ = tg an infinites-
imal conservative intergenerational transfer going from the younger to the elderly. The capital
per capita is not affected by such a transition since we make only a reallocation of resources
between generations. It is easy to check that after the transition is achieved people will have a
higher utility than those who were alive before the transition since from an individual viewpoint
this intergenerational transfer is like an infinitesimal investment at a rate n > r. For people
alive during the transition the situation is even better since they receive all the benefit of this

kind of “investment” without having paid all the contributions.
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