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Introduction

Mortality forecasts are traditionally based on forecasters’ subjective judgments, in
light of historical data and expert opinions. This traditional method has been widely used
for official mortality forecasts, and by international agencies. A range of uncertainty is
indicated by high and low scenarios, which are also constructed through subjective
judgements.

In the hands of a skilled and knowledgeable forecaster, the traditional method has
the advantage of drawing on the full range of relevant knowledge for the middle forecast
and the high-low range. However, it also has certain difficulties. First, official mortality
projections in low mortality countries have been found to under-predict mortality
declines and gains in life expectancy when compared to the subsequent outcomes
(Keilman, 1997; National Research Council, 2000; Lee and Miller, 2001). United
Nations’ projections for European and North American countries have also under-
predicted life expectancy gains (National Research Council, 2000:132). These errors have
led to under-prediction of the elderly population, and particularly the oldest old. For
Third World countries, the UN projections have come close on average for countries in
Asia and Latin America (with only a small negative bias), but have seriously under-
predicted gains in the Mideast/North Africa (National Research Council, 2000:132). For
sub-Saharan Africa the projected gains have been much too great, due to the effects of the
HIV/AIDS epidemic which could not have been anticipated. From this review of past
performance, it appears that there may be a systematic downward bias in the traditional
method, at least as it has been applied in this particularly historical period.

A second difficulty is that it is not clear how to interpret a variable’s high-low
range unless a corresponding probability for the range is stated. The traditional method,
unfortunately, cannot provide such a probabilistic interpretation. Nor is it clear whether
the range is supposed to refer to annual variations or to some sort of general trend or long
run average. Third, it is not clear how to combine the uncertainty indicated by the high-
low range with other uncertainties. How is the uncertainty of a forecast for a region, such
as Asia, to combine the uncertainties of the forecasts of the individual countries in the
region? Do we expect some cancellation of errors across the countries? Similarly, how
are we to use the high-low range in assessing the overall uncertainty of a population
projection that also involves high-low ranges for fertility and perhaps migration?

Recently, Lee and Carter (1992) developed a method (henceforth LC) that uses
standard methods for forecasting a stochastic time series, together with a simple model
for the age-time surface of the log of mortality, to model and forecast mortality. A
forecast is produced for the probability distribution of each future age specific death. The
method reduces the role of subjective judgment, since standard diagnostic and modeling
procedures for statistical time series analysis are followed. Nonetheless, decisions must
be made about how far back in history to begin, exactly what model to use, and how to
treat historically specific shocks such as wars or intense epidemics.



The method has used to forecast mortality in a number of OECD countries. For
the G7 countries, the LC method forecasted life expectancies that are significantly higher
than official projections (Tuljapurkar, Li and Boe, 2000). Tests were performed for the
US, in which projections were formulated at earlier dates based on data available before
that date, and hypothetical tests were compared to the subsequent mortality (Lee and
Miller, 2001). The resulting forecasts had a negative bias, but substantially less than the
bias in the official projections of the time. The probability intervals were reasonably
accurate. The 95% probability interval covered 97% of the subsequently observed life
expectancies. Less complete performance tests for Canada, France, Sweden and Japan
were also encouraging (Lee and Miller, 2001). The LC method has also been used to
forecast mortality for some Third World countries, for example Chile (Lee and Rofman,
1994).

Like all time series analysis, the LC method extrapolates historical data. Applications to
the US and other G7 countries were able to draw on mortality time series extending back
at least a half-century, and often more. This was also true of the application to Chile. For
most Third World countries, however, mortality data are very limited. For example for
China, age-specific death rates at the national level are available only for the years 1974,
1981 and 1990. It has often been suggested that the LC approach can not be used widely
for Third World countries because its data demands are too great, relative to what is
typically available.

This paper discusses ways in which the LC method can be used for countries with limited
mortality data.. To produce a LC forecast, four items of information are required, where
the LC notation, to be introduced later, is given in parentheses: 1) a baseline age schedule
of mortality (ay); 2) the relative pace of change by age (by); 3) the overall rate of change
(drift in the random walk model for ki); 4) variability about the trend in mortality decline
(the variance of the innovation term in the random walk model). Sometimes these items
may be estimated for a particular country with severely limited data, using methods
developed in this paper. In addition, it may sometimes be possible and desirable to
borrow information from one or more other countries that are believed to be similar in
relevant respects.

If age specific death rates are available for only a single year, then they can provide the
baseline mortality schedule, and the other three items must be borrowed from another
country. If age specific death rates are available for two years, then they can provide
estimates of the baseline pattern, the pattern of change, and the rate of drift. One would
need to borrow the variance from another country, but might also consider using another
country for the drift and pattern of change as well, since these would be imprecisely
estimated. If age specific death rates are available for three years, as in the case of China,
then in principle one can estimate all four items of information and produce full forecasts
with no borrowing. In practice, estimates may be too imprecise and one might want to
borrow information, but that would not be a necessity.

In this paper, we will not develop the borrowing strategy, although it would also appear
to be promising. Instead, we will consider single-country methods for dealing with



incomplete data, when we have age specific death rates for at least three periods, ideally
separated by a number of years.

In order to apply the LC method to countries with limited mortality data, at least
two questions need to be answered. The first is how to apply the LC method to mortality
data collected at unequal intervals a number of years apart. The second question is what
quality of results can we expect to derive through the LC method, when the historical
data are only available for a small number of time points, as in the case of China. We
answer these two questions in this paper.

The LC method using data at single-year intervals

Let the death rate for age x at time t be m(x,t), fort=0, 1, 2, ..., T, and let the
average over time of log(m(x,t)) be a(x). The LC method first applies the singular-value
decomposition (SVD) on {log[m(x,t)]-a(x)} to obtain

log[m(x,1)] = a(x) + b(x)k(t) + £(x,1) . (1)

The purpose of using SVD is to transfer the task of forecasting an age-specific vector
log[m(x,t)] into forecasting a scalar k(t), with small errors £(x,#) . Notice that b(x)k(t) is

an age (row) by time (column) matrix and the columns are proportional. The condition
for | £(x,t)| to be small is that the columns of {log[m(x,t)]-a(x)} be close to proportional.

This condition for | £(x,?) | to be small appears to hold not only for the G7 countries, but

more generally, except for war and other unusual times. The SVD is a technique to
maximally utilize the over-time similarity in the age pattern of {log[m(x,t)]-a(x)}, by

T o
finding b(x) and k(t) to minimize Z Zg(x, t)* . Define the explanation ratio to be

t=0 x=0

T T ©
R=1->>"&(x,0)’ /.Y {log[m(x,1)]-a(x)}* . Actual values of R for the G7

=0 x=0 t=0 x=0
countries over the period of 1950—1994 are greater than 0.94 in (Tuljapurkar, et al,
2000). In other words, more than 94% of age-specific mortality change in G7 countries
between 1950 and 1994 was accounted for by change in k(t).

Ignoring the small errors g(x,?) , the second stage of the LC method is to adjust

k(t) to fit the reported values of life expectancy at time t. This stage leads to perfect
description of life expectancy in history, and hence to better forecasts of future life
expectancy in the future. (The original LC method fit the observed total number of deaths
in the second stage, but fitting life expectancy is much simpler and works just as well.)

The adjusted k(t) is then modeled using standard time series methods. In most
applications to date, it has been found that a random walk with drift fits very well,
although it is not always the best model overall. Unless some other time series model is
found to be substantially better, it is advisable to use the random walk with drift because
of its simplicity and straightforward interpretation. The random walk with drift is
expressed as follows:



k(t)=k(t—1)+c+e(t)o, e(t)~N(0,]), E(e(s)e(t))=0. 2)

In (2), the drift term c, which is usually negative, represents the linear trend component in
the change of k(t), while e(t)o represents deviations from this linear change as random

fluctuations. A linear component exists in any change, and is generally more significant
in shorter periods. According to (1), the linear component of k(t) corresponds to a
constant rate of decline for m(x,t), reflecting a stable reduction in mortality. The linear
component of k(t) has persisted through the second half of the 20" century and earlier for
G7 countries (Tuljapurkar, et al, 2000). It should exist for other countries, so long as their
mortality declines in a stable manner. This linear decline is the basis for the LC method
to forecast mean mortality. Deviations from the linear change in k(t) are regarded as
random fluctuations, modeled as e(¢#)o , and then simulated to produce uncertainty for the

forecasts.
For different t, [k(t)-k(t-1)] are assumed to be independently and identically

distributed (i.1.d.) variables with mean c and standard deviation o . Parameter c is
estimated as the average across all observed t and t-1 of [k(t)-k(t-1)],

k(T) - k(0)

1 T
=—>Y [k(t)=k(t-D]= 3
¢=7 ;[ (1) —k(t-1)] 7 3)
Using the estimated c, the standard error of e(¢)o is estimated as
1 T
see = \/ﬁZ[k(t)—k(t—l)—c]z . 4)
1=

The values of k(T) and k(0) in (3) are obtained only from one sample or realization of the
matrix m(x,t). In other hypothetical realizations of history, yielding different samples, we
would derive different sample values of c. Let the expected value of ¢ be the average of
all its sample values. The difference between the expected and sample values of ¢ can be
defined as the estimating errors of c. Using the estimated see, the standard error in
estimating c is expressed as

SeC = ,|— ~ —. 5
7 (5

Using the estimated values of ¢ and see, and a set of sampled values of e(T) and
e(s) for s=(T+1) to t, a trajectory of forecasted k(t) for t>T is obtained from (2) as,

k(t)=k(T)+[c+sec-e(T)]|(t—T)+ see Zt:e(s) . (6)

s=T+1



Note that this particular trajectory for future k(t) will depend partly on the estimated drift,
c; partly on a random difference between the estimate of ¢ and the true c¢; and partly on
the random innovations.

A large number of such stochastically simulated trajectories for future k(t), 1000 in this
paper, provides the basis for the stochastic forecast. The frequency distribution of these
simulated trajectories provides an estimate of the probability distributions or confidence
intervals for the forecast items of interest. In (6), the reason for ¢(T) to be independent
from e(s) is, as pointed out by Lee and Carter (1992), that the e(T) describes random
changes in the historical period while e(s) for s>T are in the future.

One trajectory of forecasted k(t) yields a corresponding trajectory of forecasted
m(x,t) from (1) as

log[m(x,1)] = log[m(x,T)]+ b(x)[k () — k(T)], (7

and a large number of trajectories compose the stochastic forecasts of m(x,t). Note that in
(7), the most recently observed age-specific death rates, m(x,T), are used as the baseline
mortality rather than ax as in the original LC. This approach here seems preferable
because it ensures that the forecasts begin from the most recently observed mortality
schedule (Bell, 1997).

The LC method using data at unequal intervals

Now let mortality data be collected at times u(0), u(1), ..., u(T). In the case of China,
u(0)=1974, u(1)=1981, and u(2)=1990. Parameters a(x) are calculated as

ZTllog[m(x, u(t))])/T . Applying SVD on [log[m(x,u(t))]-a(x)], b(x) and k(u(0)), k(u(1)),

..., k(u(T)) are obtained.

For k(u(t)), however, (2) becomes
k(u())—k(u( —1)) =clu(t) —u(t -]+ ofe(u(t —1) + 1) +...+ e(u(?))]. (8)

Thus, for different t, [k(u(t))-k(u(t-1))] are no longer identically distributed.
Consequently, estimating ¢ and o from (8) cannot be as simple as that for i.i.d. variables.

Because the means of the second term in the right-hand side of (8) are still zero, the
unbiased estimate of ¢ is obtained as:

> Tk () k(e ~1) k@)
S () — u(z ~ 1) u(l) ~u(®)

t=1
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Since the variances of the second term in the right-hand side of (8) are no longer the same
for different t, the derivation of the standard error of e(u(t)), see, becomes somewhat
complicated, and is derived in the appendix as

Z[(k(”(f)) — k(u(t =1)) = u(@®) —u(t -]’
see” ==L - . (10)
Z[“(t) —u(t -]
u(T)—u(0) -

u(T)—u(0)

The standard error in estimating c, sec, is obtained from (9) and (10) as

var{y_[e(u(t —1)+1)+...+ e(u(®)]} e oo

[u(T) —u(0)]* U -u(0)  uT)-u(©0)

(1)

sec’ =

When [u(t)-u(t-1)]=1, (9), (10) and (11) reduce to (3), (4) and (5), respectively. Having
the values of ¢ and see, forecasting is carried out by (6) and (7), regardless of whether we
are using data with single-year-intervals or unequal-intervals.

The equations presented above give the answer to the first question posed, how to apply
the LC method to data observed at unequal-intervals. We now turn to the second
question: when the historical data are available only at a few time points, what results can
we realistically expect the LC method to provide?

The mean forecasts based on data at few time points

A special feature of the LC method is that it converts the task of forecasting an
age-specific vector log[m(x,t)] into that of forecasting a scalar k(t). We will start by
discussing how data limitations affect the forecast of k(t).

First, ¢ is the average rate of decline in k(t), both for forecasting and for describing
history. Just as the average speed of linear movement depends only on the initial and
terminal positions and their times, so ¢ is determined only by the first and last values of
k(u(t)) and u(t), and is independent of other values of k(u(t)), as can be seen in (9). Thus,
the mean forecasts of k(t) depend mainly on the death rates at starting and ending points
of the historical period, and mortality data at years between the two points do not matter
much. This property implies that the mean forecasts generated by applying the LC
method to countries with limited data could be just as accurate as those for the G7
countries, if the formers’ historical data span a long enough time period. In the example
of China, the mean forecasts are determined by death rates in 1974 and 1990. What
happens in between, and how often it is observed, does not matter.



Second, (11) indicates that the error in estimating ¢ declines with the length of the
historical period [u(T)-u(0)], not with the number of time points (T+1) at which mortality
data are available. This conclusion can be explained intuitively. According to (9), a given
random disturbance in k(u(T)) or k(u(0)) will make smaller difference for the estimated c,
when the denominator, [u(T)-u(0)], is larger. In the example of China, if the estimated c
were not close enough to its expected value, the reason would be that the period of 17
years is not long enough, not that the 3 time points are too few.

Turning to mean forecasts of m(x,t), (7) shows that a(x) can be omitted altogether
in forecasting, and that mean{log[m(x,t)]—log(m(x,T)]} = mean{b(x)[k(¢t)—k(T)]}. We
show in the appendix that b(x) is estimated without bias, and the errors in estimating b(x)
are independent of k(t), so that mean forecasts of k(t) can be used to derive mean
forecasts of m(x,t). The answer to a part of the second question, therefore, is that the LC
method can provide accurate mean mortality forecasts for countries with historical data at
only a few time points, if the earliest and latest points are sufficiently far apart in time.

The probability intervals for forecasts based on data at few time points

The probability intervals for k(t), such as the 95% probability interval of k(t) at
different times, are based on see in (10), which captures historical random changes in
k(t). To obtain positive see from (10), the number of time points must be larger than 2. In
other words, for only two years of data, the LC method cannot provide uncertainty
forecasts, since there is no deviation from the linear change of k(t).

Because see measures random deviation from the linear component of k(t), its
estimation error, measured by var(see), should depend on the number of these
fluctuations or the number of time points, not the length of the historical period. Since see
usually is larger for faster changing k(t), we discuss see/|c|, which is the standard error
per one year of linear change in k(t). For situation of unequal-intervals, (9) and (10) can
be used to show how var(see/|c|) changes numerically with the number of time points.

We have drawn on the data used for the Tuljapurkar et al (2000) mortality
forecasts for the G7 countries to study this point. Using mortality data for the extreme
years of the G7 study, 1950 and 1994, and for one of the 43 intermediate years, we
calculated 43 different values of see/|c|. The sample value of var(see/|c|) for 3 time points
was obtained from the 43 resulting values of see/|c|, for each of the seven countries. To
make a similar estimate for 4 time points, we can use all 903 possible ways of selecting
two from the 43 years. To ease the computation, we can randomly choose 100 out of the
903 different values. Similarly, based on 100 different choices of 5 out of the 43 time
points, we can again estimate see/|c| for 5 time points. Similarly, but starting from the
other end, we can take away one of the 43 points in 43 different ways, to estimate see/|c|
for using 44 time points, and so on. Figure 1, based on data from the G7 countries, plots
the results.

It can be seen that reducing the number of time points raises var(see/|c|) for every
country, as we would expect. However, we also see that there are large differences across



countries in var(see/|c|), particularly for smaller numbers of time points. It may be that the
higher order moments of e(u(t)) differ for these countries.

To be conservative, we could choose the highest value of var(see/|c|) from Figure
1 to reflect the error in estimating see. Alternatively, we could select the average value of
var(see/|c|) in Figure 1. Whichever value we choose for var(see/|c|)), the uncertainty of
the forecast of k(t) is given as

k(t) = k(T)+[c + 26T Vuv(*;r)(s_ez)(‘;(f D (T = T) + [see + Jvaree)e(T —1)] Ses). (12)

When 4/var(see) =0 and u(T)-u(0)=T, (12) reduces to (6). The reason why the random
error in estimating see, described by 4/ var(see)e(T —1), is independent of e(T) is that the
+4 T-1
see+ yvar(see)e( ) e(T)] }=c. Because
T
t
Ze(s) describes random changes in the future, while |/ var(see)e(T —1) reflects

s=T+1
estimating errors in using historical data, they should also be independent.

c is estimated without bias, so the mean{[c +

Just as the estimating errors of ¢ raise the variance of k(t), so do the errors in estimating
see, as shown by (9a) in the appendix. In other words, when the data are available at only
a small number of years, the uncertainty forecasts that the LC method provides include
additional variances, due to errors in estimating historical uncertainty.

Turning to the uncertainty of forecasts of m(x,t), we show in the appendix that the
errors in estimating b(x) are negligible, when the explanation ratio of SVD is high and the
number of time points is small. Thus, the uncertainty of forecasts of m(x,t) derives
exclusively from uncertainty in the forecasts of k(t).

The answer to the other part of the second question is, therefore, is that the LC
method applied to countries with only a few years of data can estimate the uncertainty of
the forecasts. However, with only a few years of data, there will be additional variances
due to errors in estimating the historical uncertainty. When the number of time points
increases from 3, var(see) declines fast in Figure 1, so that the additional variances would
decrease quickly.

Application to China
To provide an example of the worst situation for the LC method to estimate the
uncertainty of its forecasts, we will apply it to the case of China. We use China’s two-sex



combined mortality data for the years 1974, 1981 and 1990'. These data are in 5-year age
groups and the open age interval covers 85 years and older. The Coale-Guo (1989)
approach is used to extend death rates up to the group aged 105 to109 years, so that ages
110 and older form the open age interval. Applying SVD to these data, the explanation
ratio is 0.96. In general, SVD tends to result in an higher explanation ratio when there are
fewer years of data because then the number of parameters is relatively greater compared
to the number of observations. In China, the year 1974 represented the time when both
rural and urban populations were covered by essential but efficient health-care systems,
and in the years 1981 and 1990 the rural health-care system collapsed due to the reform
launched in 1978. Given the major change in the health-care system, 0.96 is a high value
for the explanation ratio.

The mean forecasts would reflect longer trend of mortality change, if there were
mortality data before 1974 or after 1990; but they do not require data at years between
1974 and 1990. Figure 3 compares our mean forecast of life expectancy for China to the
United Nations middle projection (2001). The two forecasts are quite close overall, but
our forecasts are initially higher and subsequently lower than those of the United Nations.
Considering the impact on the health-care system from the urban reform in the 1990s, a
life expectancy lower than our forecasts might well be observed, say from the 2000
census. Assuming a quick reinstatement of the healthcare system at the national level, our
longer-term forecasts could turn out to be too low. These possibilities, however, are based
more on subjective judgments than on recorded trends.

The random change in mortality, measured by see/|c| =1.74, is stronger than in
any of the G7 countries in the period 1950 to 1994. Considering the recent changes in the
health-care system of China, such a high value of see/|c| is not surprising. Without
considering errors in estimating see, the estimates of forecast uncertainty expressed as
95% probability intervals for k(t) and life expectancy, are shown by the dashed curves in
Figures 2 and 3, respectively. The value of see, however, is estimated from data at only
three time points and hence may not be close enough to its expected value. To evaluate
effects on the estimates of forecast uncertainty from the potentially inaccurate estimate of
see, we take var(see/|c|)=0.7, which is larger than the largest in Figure 1. Taking this
unlikely-high estimation error into account, the resulting 95% confidence intervals for
k(t) and life expectancy are plotted by the solid curves in Figures 2 and 3. To different
readers, the confidence intervals in Figure 3 may or may not be too wide, but these
intervals are better than the high-low ranges which have no probabilistic interpretation.

Application to South Korea

Between the mortality data situation of China and the G7 countries, there are
many Third World nations in transition from having limited mortality data to collecting
death reports annually. All Third World countries will move through this transition
sooner or later. For these countries, age-specific death rates are available annually in

* Data of years 1981 and 1990 are from census of 1982 and 1990. The 1974 data are
from the China Death Cause Survey of 1973—1975,Yearbook of Chinese Population,
1985.



recent periods. However, such periods are often not long enough for the LC method to
provide accurate forecasts. For these countries, the LC method can be used to forecast
mortality by combining the recent annual data with earlier data available at unequal time
intervals. The formulas developed in this paper apply directly to these countries, because
whether or not the recent data are collected annually does not matter. To provide an
example for using the LC method to these countries, we choose the case of South Korea.

The sex-combined age-specific death rates of South Korea are available for the
years 1972, 1978, and then annually for 1983 through 20007, The period that contains
annual data lasts forl7 years. Although it is hard to determine whether such a period is
long enough to apply the LC method, adding data at the two earlier years improves the
situation in any case. These data are also in 5-year age group and the open age interval
covers 80 years and older for most of the years. The Gompertz formula is used to
estimate the death date for the age group 80-84. The Coale-Guo approach is then used to
extend death rates to the age group 105-109 years, and ages 110 and older form the open
age interval. The explanation ratio of the fitted SVD model is only 0.84, implying that the
changes in the age pattern of mortality have been stronger and less regular in South
Korea than in China and the G7 countries.

The LC method uses a drift term in the random walk model to describe the linear
change in k(t), and treats deviations of k(t) from this linear change as random
fluctuations. When there are only a few years of data, these deviations are assumed to be
random fluctuations, although it is not possible to rule out the presence of a nonlinear
trend. In the case of South Korea, with 20 time points over a period of 28 years, we are
on firmer ground. Figure 4 shows clearly that the k(t) did indeed change linearly with
random fluctuations about the trend.

If there were no random fluctuations, the linear trend in the historical change of
k(t) would suggest forecasting future changes of k(t) along such a linear trend, as is done
for the mean forecasts of k(t) for 2002 through 2050 plotted in Figure 4. In history,
however, k(t) did not change exactly along the linear trend, but fluctuated around it
randomly. The standard error of these random fluctuations, estimated as see, measures
the amount of uncertainty around the linear historical trajectory. Figure lindicates that
estimates of uncertainty should be quite accurate when based on the see for 20 years of
data. The random walk model derives uncertainty forecasts for k(t), as described by the
95% confidence intervals in Figure 4, assuming that the random disturbances in the future
will resemble those in the past. The forecasts of k(t) simply extrapolate the historical
mean trend and uncertainty into the future, without subjective judgments.

The corresponding forecasts of life expectancy, derived from the forecasts of k(t)
shown in Figure 4, are shown in Figure 5. It can be seen that the mean forecasts from
using the LC method are significantly higher than those of the United Nations. Most of

2 Data for years 1983 through 2000 were obtained from the Korea National Statistical
Office (http://www.nso.go.kr/eng/). For 1972 and 1978 data were obtained from the
United Nations (through personal communication with Thomas Buettner).
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the difference can be attributed to the lower United Nations estimates of South Korea’s
life expectancy for 1980 to 1995. However, the United Nations forecasts would still be
lower than the LC forecasts, even if the data used were the same.

For China, the 50-year LC forecast is for life expectancy of 76 in 2040, a gain of
about 7 years over the level observed in 1990. The projected pace of increase is modest,
at 1.4 years per decade. For South Korea, the 50-year LC forecast is for life expectancy
of 88 in 2050, a gain of 12 years over the level observed in 2000. The forecasted pace of
increase in South Korea is 2.4 years per decade, the rate of increase found by Oeppen and
Vaupel (2002) for the record (or leader) national life expectancy from 1840 to 2000.
Despite the historical precedent, this seems to be a very fast rate. The 2050 life
expectancy forecast for South Korea is ahead of all LC forecasts for the G7 except that of
Japan (Tuljapurkar et al, 2000). Is this reasonable and plausible? Or would we expect the
pace of improvement in South Korean mortality to decelerate as it approached the life
expectancy levels of the leader countries?

This question raises the general issue of whether mortality forecasts should be
done not country by country, but rather for collections of countries in some coordinated
way. One possibility is to model mortality change in individual nations as a process of
convergence toward a trending target. That target could be tied to international trends, but
reflect individual features of each country. The process of convergence would be subject
to disturbance, as would the evolution of the international trend. Lee (2002) has
developed a preliminary analysis of this sort. However, it is important to note that in
these LC forecasts, Japan remains in the leader position, well ahead of South Korea.
Therefore, the case for deceleration would have to be based solely on the plausibility that
South Korea could overtake the leading European countries by 2050, which it is now
trailing by 2 to 4 years.

Discussion

The methods developed here extend the LC approach to situations in which
mortality data are available at only a few points in time, and at unevenly spaced intervals,
situations often encountered in statistics for Third World countries. We have shown that
useful forecasts can still be derived, both for the mean and for the probability interval
about the mean forecast. Other modifications of the approach, not developed here, would
include borrowing missing information from similar countries, and forecasting mortality
change as a process of convergence within an international system.
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Appendix

A. Estimating variance for independently distributed variable e(u(t))
Similar to the single-year-interval situation, we start from describing

E{[k(u(t)) = k(u(t —=1)) — c[u(t) —u(t —=1)]]*} , using the c estimated from (9). Since

[k(u(t))-k(u(t-1))] are independently distributed, so that which one to be the first does not

matter and we may focus on t=1. Suppose that for t=1 the second term of the right-hand

side of (8) is [e(1)+ e(2)+ ...+ e(m)], and the e(t) included in the whole historical period

are e(1), e(2), ..., e(n), there is

D [k(u() = k(u( =1))]
E{[k(u(D) - k(u(0) - =— [u(1) —u(0)]1*}
D [u() —u(t = 1)]

t=1

T

D [k(u(0) = k(u(t =1))]
= E{[[k(u(1)) = k(u(0))] - clu(l) - u(0)] - (= —O)u®)-u(0]1’}  (la)
D [u(@) —u(t =1)]

t=1

" [k () = k(u(z =1))]
= E{[o) () [
. 2 Lu() —u(t =)
" 2Tk (1) = k(u(t = D) - cfu(®) —u(t = 1)]
= E{[o) e(i) -+

= cJ[u(t) —u(0)]1*}

[u(1) —u(0)]1*}

D [u(@) —u(e =1)]

. maZT: e(i)
= E{[o eld) - ——T}

2

= G—ZE{[(n -m)(e(1)+...+e(m))—m(e(m+1)+...+ e(n))]z}.
n

Notice that all e(i) in the last row of the right-hand side of (1a) are i.i.d. variables and are
different each other with respect to 1, all cross terms, e(s)e(t), shall disappear. Therefore
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{Tk(u(D) — k(u(0)) — c[u(1) —u(0)]]*}
=a—22E{[(’1—’71)2[€(1)2 +e(2) +...+e(m)’ 1+ m’[e(m+1)> +...+e(n)’]}
n

n

=(—
n

"2 me? + (M (n— m)o? (2a)
n

n—m
Yymo'*

= (

n

g u=u©) o
Loy ORIl

Because which [k(u(t))-k(u(t-1))] to be used as the first does not matter, (2a) applies to
any t:

u(t)—u(t—1)

(T +1)— u(l)][u(t) —u(t—1)]o". (3a)

E{[k(u(t)) - k(u(t = 1) = clu(t) —u(t = D]*} =[1-

Sum (3a) through all t and divide the coefficient of &> on both sides, there is

D Tk(u(r)) = k(u(t —1)) = Clu(t) —u(t = D]I*
o’ = E{~ - 1. (4a)
D lu(®) —u@@ -]

(D) =u0) = )

Therefore,

T

D[k (u()) = k(u( = 1)) = Clu(?) —ut = D])’

see’ =7 - , (52)

D [u(@®—u@ =17’

() =)= )

is the unbiased estimate of &°.
B. Errors in estimating see raise variance of k(t)

Let

13



:M, B =see, C=,|var(see)/ see,

v u(T) —u(0) (62)

X=eT), Y= Zt:e(s),Z:e(T—l),

(12) is written as
k(t)=k(T)+c(t—T)+(AX + BY)1+CZ). (7a)

Denote the probability density function of (X, Y, Z) by F(x,y,z), and notice that the
means of X, Y, and Z are zero, the variance of k(t) is

var[k()]= Y>> (Ax + By)*(1+ C2)*F(x, y,2) - (8a)

Notice that X, Y, and Z are independent each other and denote their probability density
functions as Fx(x), Fy(y) and Fz(z) respectively, there is

var[k(1)]=[4>D_ x> Fx(x) + 24BY_xFx(x)Y_ yf () + B> Y. y* Fy(WI[D_ (1 + Cz)* Fz(2)]
=[4° var(X) + B> var(V)][D Fz(z) + 2CY_ zFz(z) + C* Y 2* Fz(z)] (%a)

=[A4’ var(X) + B* var(Y)][1 + C* var(Z)] 2 [4° var(X) + B* var(Y)].

Because [4” var(X) + B var(Y)] is the variance of k(t) when C = +/see/see =0, errors
in estimating see raise the variance of k(t).

C. Errors in estimating a(x) and b(x)

In order to discuss errors in estimating a(x) and b(x), their expected values of
must be defined. Viewing the values of m(x,t) as of from one sample, the corresponding
values of a(x), b(x), k(t) and &(x,?) in (1) are also from this sample. The values of m(x,t)
would be different in other samples, so that (1) would produce different sample values of
a(x), b(x), k(t) and &(x,?) in other samples. Let expected values of a(x) and b(x) be
corresponding averages of all sample values, the errors in estimating a(x) and b(x) can be
defined as the differences between sample and expected values.

Without enough sample values of a(x) and b(x), their expected values cannot be
obtained and therefore assumptions have to be introduced. For example, in assessing the
errors of estimating c, e(t) in (2) are assumed as 1.i.d. variables. In order to assess errors
in estimating a(x) and b(x), €(x,?) in (1) have to be assumed as i.i.d. variables over time t,
and independent across age x. In fact, these assumptions have already been used in

T o
applying SVD, because SVD minimizes Z Zez (x,t), and terms g(x,¢)e(y,s) are

t=0 x=0
ignored.
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Noticing that the LC method uses k(t) to explain m(x,t) in history and forecast
m(x,t) in the future, k(t) and m(x,t) can be regarded as independent and dependent
variables respectively. Observable variable values may be common, but not necessary. In
structural equation models, for example (Agresti and Finlay, 1997: 634—638),
independent and dependent variables are unobservable but measured using factor analysis
on other observable variables. In terms of structural equation model, k(t) is a latent
variable that describes the underlying force of mortality change, and SVD is used to
measure the values of k(t) from observed m(x,t). From this point of view, although values
of a(x) and b(x) are estimated by SVD, they can be re-estimated using ordinary least
square (OLS) on the unequal-interval version of (1) for each x separately,

log[m(x,u(t))] = a(x) + b(x)k(u(t))+ e(x,u(t)) . (10a)

In (6a), values of log[m(x,u(t))] are observed, of k(u(t)) are measured by SVD, and
&(x,u(t)) are assumed i.i.d variables. The reason of using OLS is that its estimates of a(x)
and b(x) are identical to that of SVD, since otherwise one of the SVD or OLS does not
minimize its target function. There are three reasons of doing the re-estimation. The first
one is that it interprets a(x) and b(x) as unbiased estimates in terms of OLS. The second
reason is this re-estimation points out that the errors in estimating a(x) and b(x) can be
assumed independent from k(t), because these errors come from £(x,u(¢)) that are
orthogonal to k(t) according to SVD. The third reason is that the re-estimation assesses
errors in estimating a(x) and b(x) (e.g., Fox ,1997: 115) as

_ 0,
var(a(x)) = o) —u(0)’ (11a)
var(b(x)) = T“& : (12a)
Dk (u())
D e(x,u()’?

Equations (11a)—(13a) show that var(a(x)) and var(b(x)) come from the SVD
errors £(x,u(t)). Involving estimating errors in a(x) and b(x), therefore, is to take the

SVD errors into account. By doing so, potential improvements, in explaining historical
change of m(x,t), would be to reduce the (1-R) unexplained fraction left by SVD to some

extend, which may not be necessary when the R is close to 1. To do so, 2 (x) needs to be

precisely estimated, which is impossible for using data at small number of time points.
Therefore, involving estimating errors in a(x) and b(x) is an issue that is sophisticated
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when the SVD explanation ratio is high, and difficult when the number time points is
small.
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