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I. Introduction

Important policy decisions are made today based on forecasts of the elderly population
far into the future. Public pension policies are the prime example. Fundamental changes
have been proposed for the US Social Security system in part because of a projected
financial crisis 37 years from now, driven by population aging. Old age dependency
ratios are the key variable in these forecasts, and they depend on the number of elderly in
the numerator, and the number of working age people in the denominator. The
denominator depends heavily on future trends in fertility and perhaps migration, and
these are notoriously difficult to forecast. The elderly in the numerator have already been
born, at least for forecasts up to a 65 year horizon, and so it is on firmer ground. Yet
Keilman (1997) finds systematic under-prediction of the elderly population in a number
of industrial nations. He reports that after 15 years, forecast errors of –15% are not
uncommon for elderly females 85+ (Keilman, 1997:272). A recent National Academy of
Sciences study reports that UN projections done between 1965 and 1990 had average
errors of about –10% for the elderly populations of Europe and North America after 15
years (net of baseline error; National Research Council, 2000:46; average errors in Third
World countries were smaller but also negative). While immigration must have
contributed to these errors, the main culprit is the systematic under-prediction of
mortality decline and life expectancy gain. The National Academy study also reports that
“For industrial countries, increases in life expectancy have been under-projected” (p.132)
and Keilman (1998:38) reaches a similar conclusion. We will suggest that these problems
continue in the recent and current forecasts of industrial nations, including those by the
US Social Security Administration.

Mortality forecasts are typically based on the subjective judgments of the forecaster,
sometimes buttressed by expert opinion, and it is these judgments that have tended to
underestimate the pace of subsequent mortality decline in recent decades. Another
approach, not without its own problems, is to reduce the role of judgment by using
extrapolation to forecast mortality.

Recently, Lee and Carter (1992, henceforth LC) developed a new extrapolative method
for modeling and forecasting mortality based on the analysis of long term trends, and
used it to make probabilistic forecasts of US mortality to 2065. Since that time, the
method has attracted a certain amount of attention and acceptance as well as a number of
criticisms.  The most recent Census Bureau population forecasts (Hollmann et al., 2000)
use the Lee-Carter forecast as a benchmark for their long-run forecast of US life
expectancy.  The two most recent Social Security Technical Advisory Panels have
recommended the adoption of the method, or forecasts consistent with it, by the Trustees.
The method has also been used to forecast mortality in a number of other countries (most
recently for the G7 nations, see Tuljapurkar et al., 2000).

Our main purpose in this paper is to make a careful and detailed assessment of the
performance of the Lee-Carter method for forecasting mortality. The possibilities for the
kind of ex post analysis of forecast performance by Keilman and the NAS panel, reported
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above, are limited, but we will examine performance over the nine years which are
available since the jump-off in 1989. However, because the method involves less
subjective judgment than those that have been used in the past, it is possible to construct
hypothetical forecasts with jump-off years earlier in the 20th century, pretending we had
only the data available up to that point, and comparing the subsequent pseudo-forecasts to
the actual outcomes. We also conduct some similar but less detailed experiments using
the method to produce forecasts for Japan, Canada, France and Sweden, with jump-off
year in 1950. Last, we examine age patterns of decline during the 20th century and
consider the possibility that the age pattern has changed over time contrary to the
assumptions of the method. We discuss the suggestions and criticisms that have been
made in light of the results of these studies.

II. Overview of the LC approach
The basic LC model of age-specific death rates (ASDRs, and denoted mx,t) is:

( ), ,ln x t x x t x tm a b k ε= + + (Equation 1)

Here xa  describes the general age shape of the ASDRs, while tk is an index of the general

level of mortality. The xb  coefficients describe the tendency of mortality at age x to

change when the general level of mortality ( tk ) changes. When xb  is large for some x,

then the death rate at age x varies a lot when the general level of mortality changes (as
with x=0 for infant mortality, for example) and when xb  is small, then the death rate at

that age varies little when the general level of mortality changes (as is often the case with
mortality at older ages). Note that the model assumes that all the ASDRs move up or
down together, although not necessarily by the same amounts, since all are driven by the
same period index, tk . In principle, not all the xb  need have the same sign, in which case

movement in opposite directions could occur. In practice, all the xb  do have the same

sign, at least when the model is fit over fairly long periods. Note that the proportional rate
of decline of any death rate is give by xb ( /dk dt ). If /dk dt  is constant, that is if tk  is

declining linearly, then each ASDR will decline at its own age specific exponential rate,
proportional to xb , and depending on the rapidity of the decline in tk . The same model

was selected by Gomez de Leon (1990) using exploratory data analysis on the historical
data for Norway, out of a larger set of possibilities.

The strategy is to estimate this model on the historical data for the population in question,
obtaining values for xa , xb  and tk . The values of tk  form a time series, with one value

for each year of data. Standard statistical methods can then be used to model and forecast
this time series. LC selected a random walk with drift as the appropriate model, which
has the form:

1t t tk k c e−= + + (Equation 2)
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In this specification, c is the drift term, and k is forecast to decline linearly with
increments of c, while deviations from this path, te , are permanently incorporated in the

trajectory. The variance of te  is used to calculate the uncertainty in forecasting k over

any given horizon. The drift term, c, is also estimated with uncertainty, and the standard
error of its estimate can be used to form a more complete measure of the uncertainty in
forecasting k.

The projected k can then be used in Equation 1, together with the estimated xa  and xb , to

calculate forecasts of the ASDRs, and from these any desired life table functions can be
derived. The probability intervals on the forecasts of k can then be used in the same way
to calculate intervals for the forecasts of the ASDRs, and (because these are all linear
functions of the same k) the forecast of e0. However, forecast errors in the ASDRs and e0
derive additionally from the εx,t and from uncertainty about the true values of xa  and xb .

LC show that these latter sources of error matter less and less as the forecast horizon
lengthens, and they are dominated by uncertainty about k in the long run. For a forecast
horizon of 10 years, 98% of the standard error of the forecast of 0e  is accounted for by

uncertainty in k; for the individual age-specific rates, the other sources of uncertainty are
more important initially and remain important longer, but after 25 years most account for
less than 10% of the standard error of the forecasts (see LC Table B2).

From inspection of Equation 1 it is apparent that there is no observed variable on the right
hand side of the equation, so ordinary regression methods cannot be used to estimate the
model. LC describes a simple approximate method using regression methods, but the
Singular Value Decomposition (SVD) gives an exact least squares fit. Also note that if

xa , xb  and tk  form one set of coefficients for the model, then xa , xb /A and A* tk  will be

an exactly equivalent set, for any constant A. Similarly, xa  – xb *A, xb , tk (1+A) will be

an equivalent formulation for arbitrary constant A. LC stipulated a unique representation
by setting xa  equal to the average of the logarithms of mx,t over the data period, and

setting the average value of tk  equal to zero. In this case the sum of the xb  values is

unity.

The method has a number of appealing features. The basic model is very simple, and
although its use for forecasting involves a number of steps, each is simple in itself. The
method is “relational” in demographers’ terminology. That is, it involves the
transformation of actual existing mortality schedules for each study population, and
therefore on the one hand is largely non-parametric, and on the other hand incorporates
particular features of the mortality pattern of a given population. The method is also
probabilistic, in the sense that it involves statistical fitting of models, and the quality of
the fit of the historical data can be used to provide probability intervals for the forecasts.
As a matter of empirical fact, in the applications of the method to date, involving at least
ten national data sets, the historical trend in k has always been found to be highly linear
with time, and the random walk with drift has been found to give a good fit. This
approximate linearity is useful for forecasting. It contrasts with the typically nonlinear
trajectories of life expectancy, which rises at a decelerating rate when age-specific
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mortality rates decline at constant exponential rates. Nonetheless, it is clear that if a data
series extends sufficiently far back in time, the linearity of decline would cease to hold.
Finally, the method can also be used as the basis of a simple model life table system, and
indirect estimation methods can be developed to expand the mortality data available as
the basis for forecasting.

There have been a number of criticisms and suggestions since this original article was
published, and the original method has been modified and extended in various ways.
Some have thought that the probability bands are implausibly narrow (e.g. Alho,
1992:673). Others have argued that many age-specific rates are so low that they can’t
realistically be projected to decline much further. Some argue that biomedical
information should inform the forecasts, perhaps through incorporating expert opinion as
is done by the Social Security Actuaries. Some have called for more within-sample
testing of the methods, and others have questioned whether the xa  and xb should be

treated as invariant. Bell (1997) noted that the model did not fit the jump-off data very
well.

Considerable work has been done to refine and extend the method since the original LC
article. Wilmoth (1993) has developed improved fitting methods based on weighted
SVD. Methods for modeling and forecasting regional systems of mortality have been
developed (Lee and Nault, 1993). Better procedures for dealing with the jump-off year
have been developed (Bell, 1997). Alternatives for modeling mortality for the oldest old
have been explored. Consideration has been given to the special role of leader and
follower countries (Wilmoth, 1998). The method has been applied to cause of death data
(Wilmoth, 1998) to sexes separately, and by race (Carter and Lee, 1992; Carter 1996).
There have been many applications to countries other than the US (e.g., Lee and Rofman,
1994; Tuljapurkar et al., 2000). Lee (2000) provides a summary of the model’s
development, extensions, and applications such as stochastic forecasts of social security
system finances.

III. Assessing the original forecast
In their original article, LC noted that the model would not fit the age-specific mortality
data exactly in the jump-off year, which would mean that the initial conditions for the
forecast would not be quite right. This would inevitably lead to error which would be
particularly important in the early years of the forecast. They noted that it would be
possible to set xa  equal to the most recently observed log age specific-rates, and thereby

fit the initial conditions exactly (with tk  = 0). However, they argued that this practice

might extrapolate idiosyncratic features of mortality in the jump-off year, and it was
therefore preferable to estimate xa  as the average values of the log death rates (LC:665-

666). In retrospect, this appears to have been a mistake, since the error in 0e  of .6 years at

the jump-off year caused significant bias in the forecasts for the first decade, as we shall
see below, and as Bell (1997) has pointed out (LC estimated 0e for 1989 at 75.66 years,

whereas official data puts it at 75.08). Bell (1997) assessed the performance of four
mortality forecasts: LC (as published); LC (with the jump-off year corrected); McNown-
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Rogers; and the Social Security actuaries (SSA). He concluded that the LC forecasts did
better than the SSA or McNown-Rogers, but that a corrected LC forecast did better still.

Figure 1 displays the original LC mean forecast of e0, a similar forecast but with the
correct jump-off level, and the SSA projections done at the same time. The bias in the
original LC projections is apparent, but it is also apparent that those projections correctly
identified the trend in 0e . SSA appears to be somewhat low, ending up about 0.8 years

below the actual e0. The adjusted LC projection is about 0.2 years too low in 1998 (the
latest data available to us). Over this period, the actual e0 always remains well within the
95% prediction interval for both the original LC and the adjusted LC.

If the forecasts of 0e  performed well from 1989 to 1998, how about the forecasts of the

individual age-specific rates? Once again, there are certainly errors due to the errors in
initial conditions. Figure 2 instead focuses on the LC projected age-specific rate of
decline of death rates from 1989 to 1997 for sexes combined, since this will not be
affected by the errors in initial rates. It also plots the actual rates of decline, and those
projected by SSA. The agreement between the LC forecast and the actual rates of decline
is striking, particularly at the older ages. The SSA projections, however, incorrectly
forecast slower mortality decline in the young adult years. We will return to this topic
later, for a different perspective on the age pattern of decline.

IV. Analysis of LC Projection Errors in Hypothetical Historical Projections

A. The nature of the tests
In the original LC article, there were some tests of forecast performance within the
historical data period, but none of these involved re-estimating xa , xb  and tk . Tests were

restricted to forecasting tk  from different starting points in the historical period.. Here we

will make a more rigorous test, in which we completely refit the model on each chosen
sub-sample of data. Our earliest experimental forecast is based on data from 1900
through 1920. Our next uses data 1900 through 1921; our next 1900 through 1922; and so
on until our last forecast uses data from 1900 through 1997 to make a forecast for 1998.
In this way, we have 78 different forecasts for mortality one year ahead; 77 for a two year
horizon; and finally one with a 78 year horizon. We re-estimated the xa  and xb for each

set of data, and then re-estimated tk  for these years conditional on these xa  and

xb estimates, by choosing tk  (in the second stage) so as to match exactly the given value

of 0e  in the data for that year.i This departs slightly from the procedure in the original

LC, where tk  was chosen to match total deaths, which requires annual age-distributed

population data as well.

Once tk  was estimated for each year of the sample, we did not carry out standard

diagnostic methods to choose an optimal ARIMA model for each data sub-sample, but
rather assumed that the random walk with drift model held. It was fitted and used to
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forecast tk  over the desired time range, and probability distributions were derived from

the subsample ARIMA errors.

LC introduced a dummy variable for the influenza epidemic of 1918. Our preference
today is to include the dummy (permitting a one time positive change in k in 1918,
followed by a one time equal negative change in k in 1919), and in the forecast to
incorporate a 1/T chance of an identical positive and negative change in k occurring,
where T is the length of the base period over which the model was fit. This has a small
effect on both the mean and the variance of the forecast. We did not do this for these
experimental forecasts, here described.

Although these retrospective tests are something like the ex post analysis of forecasting
errors, there are also significant differences. First, the method was developed with the
benefit of the preceding century of mortality experience, so it would be surprising if it
failed to accord with it. Second, a forecaster would have to decide how far back in time to
go in fitting the model to historical data. Mortality data for the US does not start until
1900, and then covers only for a limited number of the states. All our forecasts use data
back to 1900, although our first forecast has a jump-off year of 1920. Third, we have
assumed that a random walk with drift is the forecasting model always used, although the
rate of drift is estimated afresh for each forecast. It would not be feasible to choose
manually an optimal ARIMA model specification for each of the 78 forecast jump-off
years. Had this been done, the short-run performance of the model would presumably
have been better, but it is possible that the long-run performance would have been worse.

B. Forecasting to 1998 (e0)
Figure 3 plots all 78 forecasts for life expectancy in the year 1998, each from a different
jump-off year, and each over a different forecast horizon. Each forecast for 1998 is
plotted above its jump-off date. The 95% probability intervals are also plotted. The
horizontal line indicates the observed value of life expectancy for 1998, so it is the true
value relative to which the forecasts can be assessed. There are several points to note.
First, although the hypothetical forecasts tend to be too low, they are generally fairly
close to the actual value for 1998. The earlier forecasts, using data up through the 1920s
and 1930s, are on average five years below the true value; beginning in 1946 all forecasts
are within two years of the correct value.  Over all, the mean forecasts look quite good.
Second, the 95% probability intervals failed to contain the true value for 1998 in 12 out
of the 78 forecasts, or 15% of the time, compared to the 5% which was intended. Third,
the median forecast for 1998 fell below the actual value for 1998 in 74 of the 78
forecasts, or 95% of the time. That suggests downward bias.

C. Errors by forecast horizon (e0)
It is also useful to assess forecast errors (defined as forecast value – actual value) by
horizon. We have done this for horizons of 1, 5, 10, 20, 40 and 60 years. For a one year
horizon, we have 78 different jump-off dates, while for the 60 year horizon, we have only
19.  For each forecast, we find the percentile in its probability distribution where the
observed value falls. For example, if the actual value corresponds to the median of the
forecast distribution, we assign it 50. If it corresponds to the lower 7% of the distribution,
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we assign it 7; and so on. We then plot the frequency distribution of these percentile
scores. If the probability distribution associated with each forecast does in fact describe
the probability distribution of errors, then this frequency distribution should be uniform
between 0 and 100. If the actual distribution of percentiles is more concentrated in the
middle, around 50, that indicates that the distribution of the errors is more tightly
clustered then our forecast leads us to expect, and if there are less in the middle of the
distribution and more towards the 0 and 100 end, then our forecast understates the width
of the error distribution. If most of the true values fall below the 50th percentile, then
most of the time we have over-predicted, while if they fall above the 50th percentile, then
we have tended to under-predict systematically the true value.

Figure 4 plots the histogram of the percentiles for each horizon. We can see that the
actual forecast errors match the predictive distribution quite well for forecast horizons up
to 10 years. By 20 years, a tilt towards positive errors is unmistakable, and this tilt
intensifies at the 40 year horizon and again at 60 years. Note that the vertical scales are
increasingly compressed as the errors become more concentrated.

Table 1 presents various measures of forecast performance, including the Mean Squared
Error (MSE), the Mean Absolute Percent Error (MAPE), the average error (Bias), the
percent of positive errors, and the proportion of actual values that fall within the 95%
probability interval of the forecast. The table reports performance by forecast horizons as
well as a summary over all forecast horizons.
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Table 1
Forecast

Horizon (N)
Average

error
MAD RMSE MAPE % under-

projected
% within

95% interval
1-5 (380) -0.11 0.45 0.60 0.16 54 99

6-10 (355) -0.32 0.82 1.03 0.47 56 100
11-20 (635) -0.73 1.23 1.60 1.15 67 97
21-30 (535) -1.37 1.47 1.99 2.03 84 100
31-40 (435) -1.68 1.73 2.14 2.45 91 100
41-50 (335) -2.23 2.25 2.75 3.41 96 95
51-60 (235) -3.54 3.54 3.75 5.07 100 89
61-78 (171) -4.38 4.38 4.53 5.39 100 80
ALL (3,081) -1.49 1.76 2.34 2.45 78% 97%
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The average errors are negative, indicating that the method tended to under-predict gains
in life expectancy in the US, particularly when launched from earlier dates . The percent
under-predicted column confirms this. For example, 91% of errors for 31-40 year
projection horizons were negative (predicted e0 less than actual) and 100% of errors
beyond a 50 year horizon were negative.  The 95% confidence bounds contain the actual
e(0) value 97% of the time for all horizons combined. However, they appear to be too
broad for intervals up to a 40 year horizon and too narrow for those beyond a 50 year
horizon.

D. Error correlations by age, horizon
As noted briefly above, Equation 1 has an error term, ,x tε , since the expression does not

provide a perfect representation of variation in age-specific rates over time. In
formulating the probability intervals for the life expectancy forecasts, this error term was
ignored, and only errors arising from the innovation in tk  and from errors in estimating

the drift term, were incorporated. If we were interested only in e0 and if the ,x tε were

uncorrelated across age, this assumption might be relatively harmless, because some
twenty different values of ,x tε enter into the calculation of any life expectancy, and these

will tend to cancel, leaving a small net effect . However, if the errors are correlated, such
that those for older ages tend to move together and those for younger ages tend to move
together, then they might have an important influence even on life expectancy. There are
also errors in the estimation of the xa  and xb coefficients, which are not taken into

account in our probability intervals for the e0 forecasts.

We find that forecast errors tend to be strongly positively correlated at younger ages, less
so at older ages, and the errors at young ages are only weakly correlated with those at
older ages. At longer horizons, correlations become more positive due to dominance of
errors in k.

V. Assessing LC on historical time series from other countries
We also carried out a simple within-sample test for Sweden, Japan, France and Canada.
For Canada, France and Sweden we constructed a forecast to 1995 from a jump-off date
of 1950. For France and Sweden, we used data from 1900 to 1950. For Canada, data are
available only from 1922 to 1950. For Japan, suitable data are available from 1950, so we
took the later jump-off year of 1973. For France, we used dummies to capture the
profound effects of both WWI and WWII but did not allow for a possible recurrence in
the future, which would have greatly increased the variance of the forecast. Such
decisions reflect the judgment of the analyst.

The results are shown in the panels of Figure 5. If the method had been used to forecast
1995 e0 for Sweden, starting in 1950, it would have been right on target until 1980, and
two years too low in 1995. Results for France and Canada are very similar. For Japan,
forecasts from 1973 to 1996 are below the actual value, and are one year too low by
1996.  Looking at all the forecasts combined, the 95% probability bounds contain the
actual e(0) values for 152 out of 162 forecasted values or 94% of the time, which is very
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close to the 95% coverage predicted by the models. However, inspection shows that in
every country there is a systematic tendency to under-predict future gains in life
expectancy, just as in the US. We will return to this topic later.

VI. Changing age-shape of mortality
A number of people have suggested that the xb coefficients might vary over time; this

possibility was not explored by LC. Kannisto et al. (1994) found that the rate of mortality
decline had been accelerating over recent decades for ages 80 to 100. Horiuchi and
Wilmoth (1995) show that in a number of countries, mortality declines at older ages now
take place more rapidly then at lower ages, reversing the historical pattern. This research
suggests that it is important to take very seriously the possibility that the age pattern of
mortality decline may change over time, and may not be well described by a fixed set of

xb coefficients. Note that the xa  coefficients will always be changing over different

historical periods, because they are the average log death rates, and these averages will
change in level as mortality falls, and change in shape because the xb coefficients tell us

that at different ages, mortality declines at different rates. This poses no problem, because
the changing shape and level of the xa  are implicit in the xb , and no additional treatment

is necessary.

Recall that our earlier examination of the post-publication performance of LC showed
that it correctly forecast the age pattern of mortality decline as well as the increase in e0

over the past 9 years. This suggests that the fixed xb assumption has worked well.

However, a closer examination of the age pattern of decline in the US shows otherwise.
Figure 6 plots the average rate of decline for sexes combined mortality by age for 1900 to
1950 and for 1950 to 1995. It suggests that there has been an important change, with
mortality now declining at roughly the same rate across all ages above 15, whereas for
the first half of the century it declined far more rapidly at the younger ages. Figure 7,
which shows changes in the historical age pattern of mortality decline in Japan, Sweden,
Canada, and France, indicates similarly striking alterations, with a flattening of the age
profile of decline.

Is this a long term change, rooted in the changing cause structure of mortality, or in the
resistance of mortality at different ages to biomedical progress? Or is it due to what we
might hope will be more transitory influences on young adult mortality in industrial
nations, such as AIDS and accidents? We are not sure. But the more prudent course is to
assume that these changes are long term, and to incorporate them into our forecasts in one
way or another. A simple and satisfactory solution, adopted by Tuljapurkar et al. (2000),
is to base the forecast on data since 1950, and assume fixed xb over that range but not

over the whole century. Only about 6% of life table deaths now occur in the age range
affected by the changing age pattern, say from 10 to 50, so the changing age pattern of
decline has relatively weak effects on the forecast of e0. It seems likely that the
systematic tendency of the LC method to under-predict gains in e0 at long horizons is in
some way due to this changing age pattern of decline, but it is not clear exactly how.
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VII. Comparison of official forecasts from SSA and others to LC
forecasts

A. Forecasting to 1998
We have examined the historical record of SSA projections, including two earlier ones
that were used by SSA but prepared by other agencies. Figures 8 and 9 examine forecasts
of e0 for the year 1998.  Figure 9 compares the middle series forecast from SSA with the
median LC forecast. The figure shows that the official projections have been
systematically too low – by 12 years in 1930, by about 7 years in the 1940s, and then by
2 to 4 years until those done in 1980. In 1980, the SSA forecasts jumped too high for a
few years, then dropped down too low again. It can be seen that the SSA estimates
reacted strongly to the slow mortality gains of the 1960s, and then to the rapid gains of
the 1970s. By contrast, the LC method responds only modestly to these fluctuations,
since they only modestly affect the average trend over the century. The LC method also
tends to be somewhat low in early years, but performs substantially better than SSA.  It
would have been closer to the true value in 1998 for most forecast horizons.  It picks up
the correct track for 1998 considerably earlier.

Figure 9 shows the high-low range of SSA projections along with the 95% probability
interval of LC. The true value of e0 for 1998 lies beyond the high bound for most of the
SSA forecasts up until 1970.

B. Errors by horizon, comparison to LC
In assessing errors by forecast horizon, we have restricted our sample to post-1950
government forecasts.  We have only three early government forecasts (pre-1950) –
which provided e(0) forecasts for only a few select years in the future.  This makes the
analysis of errors by length of horizon complicated for these groups. For comparison to
LC, we use both the full sample (1920-1997) and a restricted sample which matches the
time period of the SSA forecasts (1950-1997).  For LC, we have hypothetical forecasts
for every year. For SSA, the forecasts have been issued irregularly until 1980, after which
they are available annually. In our calculations we have weighted each SSA forecast by
the reciprocal of the number of forecasts issued within the decade.  In this way, each
decade contributes equally to the error estimates.  Without weighting, the SSA results are
dominated by forecasts done since 1980, and the longer horizon forecasts count for little.

Figure 10 compares the average bias in the SSA and LC forecasts by length of forecast
horizon.  Horizons are by single year from 1 to 7 and then grouped (8-12, 13-17, 18-22,
23-27, 28-38, 39-46, and 39-60 years).  SSA forecasts issued since 1950 compare
favorably with LC forecasts issued since 1920 for horizons up to 15 years, and do worse
thereafter.  However, when we compare only those LC forecasts issued during the same
time period (since 1950) as the SSA projections, we find that LC performs very much
better at all horizons.

Figure 11 compares the root mean square error (RMSE) for SSA and LC forecasts, again
weighting each SSA forecast by the reciprocal of the number of forecasts issued within
the decade. Once again the SSA forecasts since 1957 do better than the LC forecasts from
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1920. However, when we compare the LC forecasts made over the post-1950 time period,
then at all horizons beyond two years, the LC perform better than SSA and substantially
better as the forecast horizon increases.

C. General problem of official forecasts
Long-run government forecasts have relied on expert opinion which proved to be too
pessimistic about the future. This pessimistic outlook might be attributed to the mood of
the country at the time the forecasts were issued. Two of the earliest population forecasts
were produced by the National Resource Committee (1937) during the Great Depression
and by the National Resource Planning Board (1943) during the second World War. And
yet, at those times, the data were telling a different story, since mortality had been
declining quite rapidly over the previous decades.  A quote from the 1943 report is telling
in this regard. Thompson and Whelpton state their objection to statistical forecasting
methods such as extrapolation: “More important, the extrapolation of past trends
according to such formulas might show future trends which seemed incompatible with
present knowledge regarding the causes of death and the means of controlling them.”
(National Resources Planning Board, 1943, p. 10). This suggests an alternative
explanation for the pessimistic bias of expert opinion:  present knowledge informs us
about current limits, but not the future means of overcoming them.  The Lee-Carter
approach bases its long-run forecasts on the century-long decline in mortality in which
limits have been continuously confronted and overcome.

VIII. Conclusions
We can extract the following lessons from these investigations:

1) The LC forecasts of life expectancy and the age pattern of mortality performed quite
well for the period since publication, at least after adjusting for an error in jump-off
level.

2) Hypothetical LC projections from various historical jump-off dates in the 20th century
would have preformed well.  For forecasts with jump-off after 1945, LC projections
are always within two years of the actual e0 in 1998.  However, the forecasts tend to
under-predict future gains, especially those in the distant future. Although the 95%
probability bounds contain the true value of e0 97% of the time, the bounds appear to
be too broad for horizons up to 40 years and too narrow for those beyond 50 years.

3) Social security projections also have systematically under-predicted gains in e0 since
1950.  The average error and mean squared error for LC forecasts since 1950 are
substantially lower than those of SSA since 1950, when each decade is given equal
weight.

4) LC life expectancy forecasts for Canada, Sweden and France with jump off year 1950
and for Japan with jump-off year 1973 would have performed very well.However, as
in the US, the forecasts would have systematically under-predicted actual gains,
particularly at longer horizons.
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5) Contrary to a basic assumption in the Lee-Carter model, the age pattern of mortality
decline has shifted systematically in the US, Sweden, France, Canada, and Japan in
the second half of the 20th century, with a flattening of the age-specific rates of
decline above age 15. While this has distorted e0 projections only slightly, it can have
a substantial effect on projected death rates at ages from 1 to 35. For example, the
median forecast for the US life expectancy in 2075 based on post-1950 data is 86.2
years- about 0.5 years higher than the forecast based on post-1900 data. The age-
specific rates for ages 1to 35 are 30% to 80% lower in the forecast based on post-
1900 data. However, the absolute errors are small because the projected rates
themselves are so low.

6) Overall, the results suggest that the LC method produces surprisingly good forecasts
over rather long time periods. Used for long-term forecasts within the 20th century, it
would generally have tended to under-predict future gains. The probability intervals,
despite some problems, also do a surprisingly good job of containing the true
outcomes.

These findings bear on some of the criticisms and suggestions addressed to the LC
method, that were briefly mentioned earlier. Some suggested that the probability bounds
were too narrow. We found that for forecasts up to 50 years into the future, the
probability bounds are too broad rather than too narrow, but for longer forecasts they are
somewhat too narrow with 80 to 90% coverage rather than the intended 95%. Some have
argued that many age specific-rates are so low that they can’t realistically be projected to
decline much further. Although death rates at ages 10 to 50 continue to decline, their
rates of decline have decelerated relative to those at other ages. These changes in the age
distribution of decline may reflect an approach to lower limits. However, the declines at
the younger and older ages continue unabated or have accelerated. Some have suggested
that biomedical information should inform the forecasts. But if so, how? The Social
Security Actuaries have used expert opinion on mortality decline by cause of death. We
find that their forecasts have been systematically too low, more so than those of the LC
extrapolative approach, and the mean squared errors of their forecasts have been greater
than those of LC as well. Some have questioned whether the relative pace of decline by
age should be treated as invariant over the century. They are correct. In the second half of
the century mortality at older ages has declined more rapidly relative to that at younger
ages than in the first half of the century. Some have suggested that it would be better to
take the most recently observed age-specific death rates as the jump-off point for the
forecasts, rather than the fitted age distribution in the jump-off year. Based on the
experience of the past ten years, this point also appears to be correct.

The Lee-Carter method takes a simple extrapolative approach. It is easy to think of
reasons why its long-run forecasts should fail. Indeed, we have uncovered a number of
shortcomings in the method’s performance. What impresses us overall, however, is not
these shortcomings we have so far found, but rather that they are not larger and more
numerous. On these tests, the method performs better than we had reason to expect, both
in predicting the future (and pseudo future), and in indicating uncertainty.
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These results suggest that projections using the Lee-Carter method should be taken
seriously. For example, Tuljapurkar et al (2000:792) use this method to project for a
number of industrial nations that e0 will be 1 to 4 years higher in 2050 than indicated by
official projections, with larger discrepancies for Japan. It may well be that the systematic
under-prediction of life expectancy by national and international agencies is continuing
today. As industrial nations strive to confront the long-term funding problems of their
public pension systems, it is particularly important that they have realistic projections of
mortality. While we cannot know what future mortality trends will be, we suggest that
Lee-Carter type forecasts provide a useful baseline forecast for planning.
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Figure 1: Forecasts of life expectancy from 1989.
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Figure 2: Average Annual Decline in Age-Specific Mortality, 1989-1997
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Figure 3: e(0) Forecasts for the Year 1998 by Forecast Date
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Canada from 1950
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Figure 5:  LC forecasts of life expectancy



Figure 6: Average Annual Reduction in Age-Specific Death Rates, US
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Figure 7: Average Annual Reduction in Age-Specific Death Rates



Figure 8: LC and SSA e(0) Forecast for 1998, by Forecast Date
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Figure 9: 95% Probability Interval and High-Low Range by Forecast Date
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Figure 10: Average Bias in Forecasts of Life Expectancy
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Figure 11:  Root Mean Squared Error in Forecasts of Life Expectancy

0.00

0.50

1.00

1.50

2.00

2.50

3.00

0 5 10 15 20 25 30 35 40 45 50

Length of Forecast

R
M

S
E

SSA (1957-1996, decades equally weighted)

LC (1920-1996)

LC (1950-1996)

LC (1920-1996)

SSA (1957-1996)

LC (1950-1996)


