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Procedures are developed to allocate the change in mean fertility to the change in
specific parities or groups of parities. One procedure uses the proportion at each parity
and another uses parity progression ratios. Both are based on the delta method for
approximating change in a function of several variables. Drawing on an analogy to
survival in a life table, the relational logit model is applied to parity progression. This
method allows several parity distributions to be synthesized and to have differences
summarized with two parameters. The three procedures are applied to successive
cohorts of white U.S. women who completed their childbearing between 1920 and
1980.

Summary measures of fertility, although useful condensations of large amounts of
information, are liable to mask important aspects of the process that they summarize. To
avoid oversimplification, several methods have been developed to adjust or control for
variations in the risk of childbearing. Thus some methods take account of the effect of age
and sex composition on the crude birth rate (CBR), either by disaggregating into a set of
age-specific fertility rates or by standardizing against a given age distribution. Change in the
CBR can be expressed in terms of change in the age, sex, and marital status composition
(Das Gupta, 1978; Kim and Strobino, 1984). Such methods adjust for variation and change
in the risk of childbearing across population subgroups.

Summary measures such as the total fertility rate (TFR) can also be broken down into
components to measure the effect of the proximate determinants. Here attention is shifted
to factors affecting the risk of childbearing by women in the fertile ages. Decomposition
according to the proximate determinants was developed for aggregates by Bongaarts (1978)
and adapted to individual-level data by Hobcraft and Little (1984). It too has been adapted
to the study of change so that change in fertility rates can be expressed as changes in marital
exposure, contraceptive use, and breastfeeding practices (Pullum, Casterline, and Shah,
1987).

This article develops another type of decomposition. Rather than assessing the impor-
tance of—or adjusting for—the value of some determinants of risk, here the outcome itself
will be the basis of the disaggregation. The mean parity of a group of women will be expressed
in terms of the distribution across specific parities, and more important, the change in mean

Copyright © 1989 Population Association of America

485



486 Demography, Vol. 26, No. 3, August 1989

parity will be partitioned into terms that refer to the specific parities. A model for summarizing
change relative to a synthetic parity distribution will also be presented. Results will be
illustrated with data from the United States, and we shall indicate how our findings relate
to those of other researchers who applied different methods to these data.

Analysts often focus on specific parities, particularly 0 (Tolnay and Guest, 1982), 1
(Polit and Falbo, 1987), and 2 (David and Sanderson, 1987). Ryder (1969, 1982), in
particular, brought out the character of fertility as a transition across successive parities, a
notion recently extended significantly by David et al. (1988). Retherford (1985) described
how a small shift in the dominant parity can have a major impact on the mean as fertility
falls. Apart from the calculation of order-specific fertility rates and parity progression ratios,
however, there are few analytical methods that truly use the fact that children come in
integers. The methods to be developed here are motivated by a perspective on childbearing
as a sequence of transitions across specific parities, terminating in specific parities.

Expressing Change in Terms of Proportions at Each Parity

One behavioral model for family formation, particularly in settings of high control over
fertility, assumes that women or couples have a target family size that is established early
in the process of family formation, even though it is subject to subsequent adjustments (Lee,
1980). Under this model, it is sensible to describe fertility and its changes in terms of the
proportions who eventually terminate at specific numbers of children.

Let M be the mean parity of a cohort of women and p; the proportion of women at
each parity i; thus

M= 2 ip;. (1)

This formula simply states that M is a weighted average of the integersi = 0, 1, 2, . . .,
with weights p; (which sum to unity). M is exactly the same as the cumulative fertility of
the cohort, that is, the (unweighted) sum of the age-specific fertility rates f, of the cohort
up to its present age y:

M=Sf @

When the cohort is observed at the highest age of childbearing, or later, both formulas for
M will be identical to the TFR. One can examine the proportions p; as well as the age-
specific fertility rates f, to obtain a more complete picture of family formation than is possible
with M alone, with the essential difference that the parity distribution expresses the variability
in completed numbers of children, whereas the age-specific rates indicate how the mean
arose over time and age.

The value of analyzing the full parity distribution is well established, so we turn
immediately to the use of equation (1) to partition change in M. We are aware of only one
effort in the demographic literature to achieve this.

Cutright and Shorter (1979) adapted the technique of direct standardization to describe
the impact on M of change in the parity distribution. They applied a modification of well-
established methods for partitioning change in a rate into terms for change in specific rates
and change in composition. To paraphrase their approach, they asked this hypothetical
question: What would be the mean fertility of a cohort if its observed mean fertility for parity
groups 0-1 and 2+ were combined with the sizes of those groups as observed in a second
cohort?” The difference between the actual and standardized means for the first cohort was
then expressed as a ratio to the difference between the actual means for the two cohorts.
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Although this approach may appear to be a direct parallel of the decomposition of
change in the CBR into terms for fertility rates and age—sex composition, it is not valid in
this context.! Standardization is inappropriate for decomposing mean parity because the
mean of a distribution across the integers is a property of that distribution and does not
involve any other rates or means as in, for example, the mean fertility of different ethnic
or educational groups.

We shall describe an alternative decomposition, which is a very simple application of
the familiar delta method with a side condition. The delta method is based on the chain
rule for the differentiation of functions of many variables (e.g., Courant, 1937:vol. 1, pp.
472-476). In a general context, if y is a function f of several variables, labeled x;, . . . ,
x;, then the total differential of y is given by

dy = 2 (ay/ax;) dx;, 3)

leading to the finite approximation

= >, (3y/9x) Ax, )
in which the differentials dy and dxl, ..., dx, are replaced by finite differences Ay and
Ax;, . .., Ax, If a side condition is satlsﬁed by the x variables, of the form g(x,, . . .

x) =0, ‘then the differential is obtained from the partial derivatives of f + Cg rather than
f. The constant C, a Lagrange multiplier, is specified by some boundary condition, such
as the value of the differential when all x variables are 0. (In statistical rather than mathe-
matical terminology, C represents the loss of 1 df, because of the side condition, and the
boundary condition is required for identifiability.) Thus the quantity C(dg/dx;) must be
added to (9y/dx;) above.

The mean parity M is given by M = X, ip;, where p; is the proportion of women at
parity i, with the side condition that =; p; = 1 (or Z; p; — 1 = 0). The sensitivity of M
to changes in a specific parity i is therefore given not by aM/dp; = i, but rather by
dM/dp; = i + C, where C is some constant (not a function of i) required by the side
condition. This is an exact relationship, rather than an approximation, because equation
(2) is linear.

To specify C, it is reasonable to require as a boundary condition that if the mean M
happens to be exactly at the specific integer i, then a change in p; will not in itself induce
any change in M. This requirement implies that the constant C must be given by C =
—M. That is, dM/dop; = i —M. We are then led to this formula for the change between
two successive cohorts: AM = I, (i — M) Ap;. To avoid ambiguity over whether M on
the right side comes from the first or second cohort, we will use

AM = 2 (i — M*) Ap, (5)

where M is the difference M, — M, and M* is the arithmetic average of M, and M,. This
choice of M* is arbitrary. Results would differ slightly if it were replaced by the weighted
average of M, and M, or the geometric average, and so on. The ith term on the right side,
(i — M*) Ap;, will be interpreted as the change in M that is due to the change in p;.

If a specific p; increases by Ap;, then one or more of the other proportions must decline
because the proportions always add to unity. The quantity (i — M*) must be regarded as
a partial effect, in the same sense as a regression coefficient in multiple regression when the
predictor variables are intercorrelated.
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Expressing Change in Terms of Parity Progression Ratios

Another behavioral model for family formation assumes that women or couples arrive
at their completed parity through a sequence of decisions or behaviors at each parity (Udry,
1983). Under this model, it is sensible to describe fertility and its changes in terms of the
proportions who progress across each of the successive parities. In response to this perspective,
the mean will now be expressed as a function of parity progression ratios and the delta
procedure will be applied to that function. Let P; be the parity progression ratio for transitions
out of parity 0, defined in terms of the proportions p; by P; = (2,4, p;)/(Z;41p;). From
the reverse relationship p; = (1 — P;) IiZ{ P; (and py = 1 — P,) and the definition of the
mean, M = I, ip;, it can be shown that

M = P, + P,P, + P,P,P, + - = D [I P (6)

i=0

=

i=

This formula appears to have been first used by Ryder (1980:49). Again employing the
chain rule for differentiation, we now have dM = Z; (dM/dP,) dP; or the approximation

AM = 2 (dM/P,) AP, 7)

In contrast with the decomposition of proportions, there is no side condition, because the
parity progression ratios can vary completely independently of one another. The partial
derivative 9M/9P; is simply the coefficient of P; (after grouping and simplifying) in equation
(6):

aM/oP; = [i 1 P,] / P. 8)
I=1 j=0

This quantity is calculated by using the first and second cohorts’ parity progression ratios
and then averaging, to improve the approximation. This averaging will be indicated by
attaching an asterisk. Then (dM/dP,)* AP; is interpreted as the marginal change in the
mean that is due to change in the ith parity progression ratio—that is, as the change in M
that would have occurred if only the ith parity progression ratio had changed. In general,
the sum of these marginal changes will differ slightly from the observed total change because
equation (7) is an approximation.

Synthesizing Several Parity Distributions: The Relational Logit

The decomposition of change according to the specific proportions or parity progression
ratios is useful for comparing distributions with one another but will not bring out any of
their common features. An approach that is better suited for identifying similarities of
distributions and continuities in change will now be developed.

Define d; to be the proportion of the cohort that has experienced parity i. Thus dy =
1, since all women have been childless at some point; d, = P,, since this is the proportion
of women who have gone on to have one child; and in general

d; = 11P fori > 0. 9)

This proportion, the parity attainment proportion, is a direct analog of the survival function
I, in a life table (with radix I, = 1) except that [, is a continuous function of age x, whereas
d; is only defined for integral numbers of children i. By establishing an isomorphism with
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the life table, one has the possibility of applying to the parity distribution a collection of
analytical tools originally established for the study of mortality. Efforts in this direction have
been made by Chiang and van den Berg (1982), Lutz and Feichtinger (1983), and Feeney
(1983). Life-table methodology has already been applied with success to the study of birth
intervals, another aspect of the childbearing process (e.g., see Bumpass, Rindfuss, and
Janosik, 1978; Pebley, 1981; Rindfuss et al., 1982).

Our application of the relational logit to the parity attainment proportions of several
cohorts is based on successful applications of this technique to the survival functions from
sets of life tables. The logit or log-odds was first applied to the life-table survival function
by Brass (1974, 1975; Brass et al., 1968) and has also been used by Stoto (1982).2 The logit
of a proportion such as I, or d; has several desirable properties not shared by the proportion
itself. Of these, two of the most important are (1) that the logit has a full range from —o
to +o, rather than simply from 0 to 1, and better differentiates proportions near 0 and 1
and (2) that the logit is completely symmetric with respect to the criterion category, so a
relabeling of the two categories is equivalent to simply multiplying the logit by —1. The
logit is not defined when the proportion is exactly 0 or 1; since dy = 1, the logit will only
be calculated for parities 1 and above.

Given several cohorts or distributions, the logit of the parity attainment proportions d;,
for parity i and cohort ¢ can be described by a relational logit transformation,

logit d;, = a, + b, (logit d}), fori > 0. (10)

Here the proportions d;* refer to a synthetic or summary distribution that is modified in
each cohort’s experience by parameters a, and b,. The model asserts that under this trans-
formation, all of the distributions in a set can be fitted with these two cohort-specific
parameters and the synthetic pattern. We regard this model primarily as a device for inte-
grating and comparing distributions.

Figures 1 and 2 illustrate the roles of a, and b, in altering the level and dispersion of
fertility. With an arbitrary choice of attainment proportions d;*, Figure 1 shows the effect
on d; of variations of a, about zero when b, = 1. An increase in a, will increase all of the
parity attainment proportions, raising the mean of the distribution. Figure 2 shows the effect
on d; of variations of b, about 1 when a, = 0. An increase in b, will increase the early
proportions but decrease the later ones, thereby changing the dispersion of the distribution.

Data to Be Analyzed

The three procedures will now be applied to the completed fertility of white women
in the United States during the 20th century. The data consist of the completed parity
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Figure 1. The Effect on d of Variations in a in the Model
logit d, = a + b(logit d})
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Figure 2. The Effect on d of Variations in b in the Model
logit d, = a + b(logit d})

distributions of white American women who completed their fertility between 1920 and
1980. Specifically, using Heuser (1976:237) for the years 1920-1970 and an updating to
1980 (see Bogue, 1985:283, for a convenient summary), we are able to monitor these
distributions, as of exact age 45, for women who were aged 45-49 on January 1 in 1920,

1925, . . ., 1980—a total of 13 five-year cohorts. The birth years of these cohorts were
1871-1875, 1876-1880, . . ., 1931-1935. These distributions will be identified by the
labels 1873, 1878, . . ., 1933, which give the midpoint years of birth of the five-year

cohorts. Table 1 presents the 13 basic distributions in tabular form, including their means
and variances.’

Other researchers, particularly Ryder (1969, 1980, 1986), Masnick (1981), Cutright
and Shorter (1979), and Vaupel and Goodwin (1987), have examined family building in
the United States during the same interval, using the same data. Al-Osh (1986) used time
series methods to generate plausible forecasts of future U.S. fertility with these data. Research
by Lee (1974, 1980), Bouvier (1980), Smith (1981), and others is related as well. The analysis
is limited to white women to improve the homogeneity of the data; the principal differences
between white and nonwhite fertility in the United States have been described by Cutright
and Shorter (1979), Masnick (1981), and Evans (1986).

The analysis will use only a minute fraction of the available data on these cohorts of
women. We will make no reference to changing patterns of marriage, access to contraception,
infant and childhood mortality, female employment, known trends in sterility, and other
known correlates of fertility.* These are the factors through which changes in the parity
distribution came about.

Decomposition by Proportions

The numerical results of the partitioning into parity-specific components of change are
shown in Table 2. The first column gives the net change that is decomposed in subsequent
columns. All calculations are based on more than the two decimal places that appear in
the table. Rounding error accounts for any discrepancies between the table entries and
quantities derived from them.

The pattern in Table 2 can be summarized easily. Up to 1908, with only 2 exceptions
out of 56 components of change, all parities participated in the concentration toward the
mean or had no impact at all. Specifically, mean completed parity fell by 1.41 children
between the 1873 and 1908 cohorts. By adding components in Table 2, we can ascertain
what proportion of this decline can be attributed to changes in the proportion of women at
specific parities or groups of parities. The net contributions of parities 0 and 3 were negligible.
Changes in parity 1 accounted for —0.20, or 14 percent of the decline; changes in parity
2 for —0.10, or 7 percent; changes in parities 4-6 for —0.22, or 15 percent; and changes
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in parities 7 and above for —0.90, or 64 percent. Avoidance of the highest parities was
clearly the main factor in the decline.

Working with nearly the same interval (from 1868 to 1910), Cutright and Shorter (1979)
concluded that “changes in the distribution of women to 0 and 1 parities explain nearly a
third [31%] of the difference in completed fertility between the two cohorts. The remaining
difference is due to the larger numbers of children born to mothers with at least two children
to c. 1868, in contrast to c. 1910” (p. 206). They reached this conclusion with the direct
standardization procedure described earlier, simply distinguishing between parities 0~1 and
2+.

After 1908 (i.e., after the cohort that was aged 45—49 in 1955), the Baby Boom is
shown in the form of a steadily increasing mean. Mean completed parity rose from 2.25 to
3.10 children, an increase of 0.85. As Bean (1983) remarked, the Baby Boom was less
significant in cohort than in period terms; the period TFR (for whites) increased from less
than 2.2 in the mid-1930s to more than 3.6 in 1957 (Bogue, 1985:255). For the five
successive cohorts that had ever-increasing mean completed parities, the most important
source of change was reductions in parities 0 and 1. If the five cohorts are combined, 63
percent of the increase in the mean can be attributed to parities 0 and 1, 20 percent to
parities 2—4, and 17 percent to increase in parities 5 and above.

We also differ substantially with Cutright and Shorter regarding the partitioning of this
increase in mean fertility. They calculated that 91 percent of the increase in white fertility
from 1910 to 1934 was due to the proportions at parities 0 and 1, compared with our
allocation of 63 percent of the increase from 1908 to 1933. For the intervals of decline and
increase, they attached considerably more importance to the proportions at 0 and 1 than we

do.

Decomposition by Parity Progression Ratios

We shall now partition change in mean parity according to changes in specific parity
progression ratios (P; s). The impact of a fixed change in any P; (e.g., a change of 0.01) will
have maximum effect if it occurs at i = 0 and a progressively diminishing effect for higher
parities because progressively fewer women will ever attain each higher parity and thereby
have the potential to pass beyond it. The results of this decomposition are given in Table
3. The first column repeats the net change in the mean, exactly as in the first column of
Table 2, and the subsequent columns allocate that change across specific parities. The
components of change are equal to the changes in parity progression ratios, weighted by the
sensitivity of the mean to each change.

Except for two positive contributions from Py, the interval from 1873 to 1908 is marked
by negative contributions to change from all ratios. Even among the subsequent cohorts,
for which the ratios for low parities show sharp increases, the contributions to change from
parities above 3 continue to be zero or negative.

More specifically, the decline can be allocated across four parity progression ratios or
groups of ratios that shared approximately equal responsibility for the change from 1873 to
1908. Decline in movement out of parity 1 accounted for 25 percent of the reduction in
the mean; decline in movement out of parity 2 accounted for another 31 percent; decline
in movement out of parity 3 accounted for 21 percent; and decline in the other ratios
accounted for another 22 percent.

From 1908 to 1933, the bulk of the increase of 0.85 in mean completed parity can be
attributed to changes in Py and P,. If the parity progression ratios for parities 1 and above
had not changed at all across these cohorts and only the recorded change in Py had occurred,
then the mean would have increased by 0.38, or 45 percent of the total increase. The
observed changes in P; would have served to increase the mean by 0.37, or 43 percent of
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the total. Adding these two percentages, 88 percent of the increase in the mean was due to
increased transitions out of parities 0 and 1. Changes in P, and P; would have increased
the mean by 0.24, or 28 percent of the total. Changes in the higher parities actually served
to counteract the effects of changes in the low-order ratios.

Continuities: The Relational Logit Model

When the relational logit is applied® to the U.S. data in Table 1, the fitted d;* vector
may be regarded as a synthesis or summary of the parity attainment proportions across the
full interval of data. From this vector, it is possible to compute a set of synthetic parity
progression ratios using pf = df — df, fori = 0 (P = 0 and p7 = df for the
highest parity). Table 4 gives the estimated coefficients a, and b, associated with each cohort
¢ and the logit d* associated with each i. Table 5 then gives the fitted or synthetic vectors
of proportions, parity attainment proportions, and parity progression ratios for the entire
interval. It is necessary to supply two constraints to the parameters for them to be identifiable.
We have required that the arithmetic average of the a,s be 0 and that of the b.’s be 1 across
all cohorts.®

It is more a matter of judgment than of statistical test whether the model provides an
acceptable summary of Table 1, because that table is based on population rather than sample
data. To indicate the quality of fit, we have computed the index of dissimilarity for each of
the 13 cohorts. It ranges from a low of 1.01 percent for 1923 to a high of 4.25 percent for
1933, with an average value of 2.22 percent. That is, an exact correspondence between the
observed and fitted parity distributions could be obtained by shifting an average of only 2.22
percent of the women in each cohort. In our judgment, this is a good fit.

Although the model was stated in terms of d7, it is notable that the parity progression
ratios P} computed from the fitted d;* are essentially two-valued. Table 5 suggests that the
synthetic distribution could be constructed completely by using a probability of approximately
0.82 for transitions out of parities 0 and 1 and a probability of approximately 0.67 for all
subsequent transitions. Ryder (1969) hypothesized that such a two-valued set of ratios may
be characteristic of settings of high fertility control. None of the observed cohorts shows this
two-valued pattern as clearly as the synthetic distribution.

Table 4. Parameter Estimates for the Relational Logit Model Applied
to Completed Parity Distributions of Birth Cohorts of
White Women in the United States, 1873-1933

Cohort a b Parity logit(d™)
1873 0.2668 0.6562 0 0.0000
1878 0.1685 0.6821 1 1.6308
1883 0.0955 0.7257 2 0.7380
1888 0.0402 0.7875 3 —-0.1350
1893 —0.0338 0.8826 4 —0.8358
1898 —0.1836 0.9575 5 —1.4350
1903 —0.3432 1.0278 6 —1.9507
1908 —0.4579 1.0780 7+ —2.4533
1913 —-0.3716 1.1599
1918 —0.1368 1.2299
1923 0.1532 1.2955
1928 0.3235 1.2367
1933 0.4791 1.2805

Notes: The estimates are parameterized such that the mean value of the a
parameters is 0 and the mean value of the b parameters is 1.
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Table 5. The Synthetic Proportions (p) at
Specific Completed Parities, the Proportions
(d) at or Above Specific Parities, and the
Parity Progression Ratios (P) Implied by
the Fitted Vector d*

Parity p d P
0 0.1637 1.0000 0.8363
1 0.1597 0.8363 0.8090
2 0.2103 0.6766 0.6892
3 0.1639 0.4663 0.6486
4 0.1101 0.3024 0.6359
5 0.0678 0.1923 0.6473
6 0.0453 0.1245 0.6362
7+ 0.0792 0.0792 0.0000

If one accepts equation (10) as an adequate representation of the completed parity
distribution across 13 cohorts, then successive changes in that distribution have been reduced
to changes in only two coefficients, a, and b.. These coefficients show only one departure
from an extraordinary continuity: a single change of direction in the a, parameters, a
restatement of the increase in the mean during the Baby Boom.

Discussion

We have described procedures for allocating the change in mean fertility into changes
in the outcome itself—that is, in the proportions of women who terminate at specific parities
or who ever pass through specific parities. The decompositions rest on two equivalent
definitions of the mean, one in terms of the proportions at each parity and the other in
terms of the parity progression ratios. The first definition of the mean distinguishes women
according to the end result of family formation. If completed parity is the result of a planned
and controlled process, then this decomposition will be more appropriate. The second
approach distinguishes women according to whether they made specific transitions, regardless
of how much farther they subsequently proceeded. This decomposition thus focuses on the
process rather than the end result and is more appropriate when decisions are sequential or
when control is less effective. It is rarely possible to characterize an entire population’s family
formation as wholly by targets or wholly sequential, so the two decompositions are best
regarded as complementary rather than as mutually exclusive.

A conclusion reached through the relational logit transformation is that a single model
can link the parity distributions of successive cohorts of U.S. women. Despite large shifts
and contractions in the distributions, there is a continuity that is not immediately obvious
in either the proportions or the parity progression ratios. Rather than formal distributions
or models that have their basis in statistical theory—for example, the Poisson, the negative
binomial, and the hypergeometric (see Pittenger, 1973, for efforts to use formal distribu-
tions)—we used a relational model and an empirical standard. This integrative formulation
built on the analogy between family building and progression through the familiar life table.

An earlier analysis (Pullum, 1980) took a more conventional data base (although sim-
ilarly limited to fertility outcomes), namely the array of age-specific fertility rates from 1920
to 1970. The goal of that analysis was specifically to distinguish the roles of age, period,
and cohort in accounting for variations in age-specific rates. That analysis found that age
was by far the most important source of variation, followed by period-related influences,
and finally by cohort-related influences. The complementary analysis given here suppresses
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short-term period variation and better reveals the continuity from one cohort to the next.
The cohort data imply that period-related factors will influence the timing of childbearing
but do not dominate or drive the process by which a final completed parity is achieved.

The methods presented here can be applied to successive cross-sections, such as the
distributions of children ever born in decennial censuses, and to the parity distributions at
successive stages in the life course of a specific cohort. In those applications, some or all of
the women appearing in one distribution will also appear in another one. The methods can
also be applied to cohorts or cross-sections that are differentiated by covariates such as type
of place of residence, in an effort to identify the sources of differences in means. It is thus
possible to describe the roles of different parities in accounting for subgroup differentials in
fertility—in much the same way that differentials can be attributed to different levels of the
proximate determinants with Bongaarts’s decomposition (1978).

In work not presented here, we have applied the relational logit model to sets of parity
distributions from Asia and Latin America to generate synthetic distributions that characterize
those regions of the world. It is similarly possible to synthesize parity distributions arising
internationally in settings of low control, fertility transition, and high control to characterize
changes in the distribution beyond the decline in its mean, with the same objectives as
David et al. (1988).

Because the chain rule of differentiation can be extended to higher order differentials,
it is possible to develop formulas to decompose change in the second moment and in the
variance of the parity distribution (as well as higher moments). Since a change that increases
the mean will generally serve, however, to increase the second moment and also the variance,
little appears to be gained from taking such a step; most of the information is contained in
the decomposition of the mean.

Notes

! There are other problems with the Cutright and Shorter (1979) decomposition, particularly
involving the treatment of an interaction term. The first author will provide a more detailed evaluation
on request.

X 2 The conventional form of the logit transformation in the statistical literature, and the one used
ere, is

logit I, = log[l,/(1 — L)].

Following Brass (1975), however, demographers have often defined the logit of the survival function
by

logit I, = Y2 log[(1 — 1)/1].

This definition can be obtained from the other form after multiplication by — 5.

} The published parity distributions end with an open-ended category (7 +). By using the mean
completed parity, we are able to infer the mean parity within the open-ended category. For the
calculation of the variance and standard deviation, it was arbitrarily assumed that all women in the
open-ended category were concentrated at the value thus computed.

*+ Although it would be desirable to articulate changes in fertility with changes in the proximate
determinants, the picture would not necessarily be clarified by doing so. For example, changes in
nuptiality should have their greatest impact on Py, the rate of parity progression out of the childless
state. Yet during the interval of decline in the mean, P, showed virtually no change, despite increases
in marital exposure. During the period of increase in the mean, contraception was becoming pro-
gressively more widely known and available. These examples illustrate that trends in the most important
proximate determinants were often contrary to trends in completed fertility.

A factor that could potentially account for changes in fertility is the underlying fecundity of each
cohort, which would be affected in turn by the health of women and their partners. Most of the
evidence of primary or secondary sterility has pertained to the black population (e.g., see Farley, 1970;
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McFalls, 1973; Tolnay, 1981). White life expectancy steadily increased and other health indicators
improved during the entire interval of analysis, with major gains through the decades of high child-
lessness and long before the cohorts of Baby Boom mothers. The long-term trend in this variable also
does not parallel the long-term trends in fertility.

5 The parameters of the relational logit model were estimated by an iterative procedure equivalent
to that used in a different context by Stoto (1982). On request, the first author will provide details and
a copy of the computer program.

¢ One must be cautious in the interpretation of specific values of a, and b, (as well as d;*) because
of the underidentification problem. The ratio of successive b.’s is invariant with respect to alternative
parameterizations; the monotonic increase of about 7 percent that continued into the Baby Boom is
thus not a consequence of how one deals with underidentification. No equally simple function of the
a/s is invariant, but the concave pattern of these estimates is observed under any plausible parame-
terizations.
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