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Computational Methods for the Lee-Carter Model

The purpose of this report is to explain the technical procedures used in fitting and extra-
polating the Lee-Carter model of mortality change (Lee & Carter 1992, Wilmoth 1993). This

report builds on earlier discussions of similar topics (Wilmoth 1988, 1989).

Fitting the Lee-Carter Model using Weighted Least Squares (WLS)

Lee and Carter (1992) proposed a simple model for describing the secular change in total

mortality as a function of a single time parameter, k,. The model can be written as follows:

Fu =In(f,)=a, + bk, +8, , (@)
where i, | is the observed age-specific death rate at age x during time ¢; a,, b,, and k, are
the model’s parameters; and €, is an error term. When the model is fit by ordinary least
squares (OLS), interpretation of the parameters is quite simple: the fitted values of a, exactly
equal the average of In(#,,) at age x over time, b, represents the age-specific pattern of mor-
tality change, and k, represents the time trend. The units on b, and k, are arbitrary, since one
of these two elements could be multiplied by a constant while the other one is divided by the
same constant without altering the predicted values given by the model. I employ the stan-

dard normalizing constraint on b,, namely, that 6.7 = 1. For full model identification, it is
x

also necessary to require that Yk, = 0.2
i

! Here, A, denotes an observed death rate (observed deaths divided by exposure-to-risk)
and is subject to random fluctuation (see Brillinger 1986). The notation, m,;, refers to the
underlying death rate; it is the rate that would be observed if there were no stochastic varia-
tion, or in other words, if the population exposed to risk were infinitely large. In this notation,
the Lee-Carter model can also be written, m,, =e* " *'. Estimates of m,, within the frame-
work of this model are written t,,, regardless of the estimation procedure employed (i.e., least
squares or maximum likelihood).

2 These constraints can be justified by the interpretation that they lend to the fitted parame-
ters. Requiring Yk, = O ensures that @, equals the row average of f,,. Instead of be =1,it

! x

1-
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Given these constraints, the model can be fit by minimizing the sum of squared errors,

that is, by minimizing
Xu —a — b)) . )
xt

The simplest way to minimize (2) is to set a, equal to the row averages of f,,, and to get b,

and k, from the first term of a singular value decomposition (SVD) of the matrix, (f,, — a,).

Lee and Carter proposed this method for use in forecasting total mortality, but it can also
be used to forecast trends in mortality by cause of death. Since some cause-specific death
rates are zero at certain ages, however, the fitting procedure must be modified in order to
avoid taking logarithms of zero. This problem is avoided if the model is fit by weighted least
squares (WLS), with weights equal to the observed number of deaths in each cell of the data
matrix.? This is also the appropriate choice from a statistical point of view, since the variance
of In(/,,) is approximately 1/d,,, where d,, equals the number of deaths observed at age x

and time ¢t (Wilmoth 1989).

The WLS technique has other advantages in addition to avoiding the "zero-cell" problem.
Figure 1 compares actual and fitted values of 7, for Japanese women in 1955 and 1985.
Since the model is fit by WLS, the predicted values are closest to observed death rates for

those ages and years when the raw number of deaths was highest, thus at younger ages in

would be possible to require 32 = 1. Tt is preferable, however, to standardize the magnitude

I3

of b, rather than k,, so that comparisons of k, between two populations (e.g., when the model
is fit separately for men and women) yield distinctly different slopes when the speed of mortal-
ity change for the two groups has been quite different. If one standardizes k; rather than b,
the &, trends for the two populations may look quite similar, with the difference in the pace of
mortality change "hidden” in the b,’'s. These choices are arbitrary, of course, but for purposes
of presentation and interpretation, it seems better to treat b, as a standardized schedule of age-
dependent changes. Then, k, more accurately reflects differences in the overall pace of mortal-
ity change.

3 Since the weights are zero when m,, = 0, an arbitrary value can be assigned to f, in this
case without affecting the results.
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1955 and at older ages in 1985. Conversely, the fit is noticeably imperfect only for ages and
years where few deaths occur anyway. For this reason, the Lee-Carter model reproduces sum-
mary indicators of mortality, such as life expectancy at birth, almost perfectly when fit by

WLS, as shown in Figure 2.
In fitting the Lee-Carter model (1) by WLS, 1 impose the same constraints on b, and &,
as before, but I minimize the equation

war(fxr —ay — bxkt)z ’ (3)
xt

where w,; = d;. To minimize (3), it is necessary to compute its first derivatives with respect
to a,, b, and k,, and to set these equal to zero. Then, solving for the required parameters

yields three sets of "normal equations,” which must be solved numerically:

SWuFu — boky)

4= @
Wi
Zt: ’
waté\r(fxt - 5x)
b.=— , 5
DWWy kt2 ®
14
war 5.: (fxr - 51:)
f= 6)

pCM sz

X
Simultanecus solutions of these equations are found most easily by an iterative procedure:
after choosing a set of starting values (typically the parameters of the OLS fit), equations (4),
(5), and (6) are computed sequentially using the most recent set of parameter estimates avail-
able on the right-hand side of each equation. This process continues until successive compu-

tations yield little or no change in parameter values.
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In addition t0 a numerical solution of the normal equations, there are other algorithms
available for minimizing equation (3). For example, the "quasi-Newton" and "simplex"
methods are general minimization routines that yield similar results, as shown in Table 1.4 By
specifying a smaller error tolerance, it is possible to get more accurate results by any of these
three methods. In this application, however, the iterative method based on the normal equa-
tions and the quasi-Newton algorithm are much faster than the simplex method: the results

shown in Table 1 for the three methods were obtained in 97 seconds, 55.4 seconds, and about

2.5 hours, respectively.’

Fitting the Lee-Carter Model using Maximum Likelihood Estimation (MLE)

An alternative means of fitting the Lee-Carter model is to specify a probabilistic model,
whose parameters can be estimated by the method of maximum likelihood. Let D,, denote a
random variable representing the death count at age x and time ¢; also, as before, let d,; be
the corresponding number of deaths actually observed. Following Brillinger (1986), D,, can
be satisfactorily approximated by a Poisson distribution with mean A,,, where A, = m_E,,

and E,;, denotes the exposure-to-risk at age x and time f.

Dropping subscripts temporarily, the likelihood function for a single age-time combina-

tion can be written

d . —A
Ld:\) = 7‘;' i 7

Similarly, the log-likelihood in this case is

4 For an explanation of the quasi-Newton and simplex methods, please refer to Press et al.
(1988) or Numerical Algorithms Group (1990).

5 The fit was only slightly better for the procedure based on the normal equations: the

weighted sums of squared errors for the three methods were 62348.66150, 62348.66170, and
62348.66160, respectively.
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Table 1 -- Comparison of 3 Algorithms for Fitting the Lee-Carter Model by Weighted Least
Squares (WLS): Total mortality, Japanese women, 1951-1990

a) a, and b,
a, by,
Normal Quasi- Normal Quasi-
Age | Equations Newton Simplex Equations Newton Simplex
0 | 4367842 -4.367842 -4367842 | 0.319889 0.319887 0.319890
1-4 | -6.848725 -6.848725 -6.848726 | 0.408689 0.408690 (.408689
59 [ -7.868096 -7.868096 -7.868094 | 0.318503 0.318504 0.318501
10-14 | -8.268599  -8.268598 -8.268596 | 0.260755 0.260756 0.260757
15-19 | -7.690136 -7.690137 -7.690136 | 0.253594 0.253594 (.253594
20-24 | -7.242807 -7.242807 -7.242808 | 0.293672 0.293674 0.293673
25-29 | -7.055302 -7.055302 -7.055302 | 0.289151 0.289151 (.289152
30-34 | -6.838585 -6.838585 -6.838586 | 0.257650  0.257650 0.257648
35-39 | -6.539066 -6.539066 -6.539065 | 0.214910 0.214910 0214909
40-44 | -6.190400 -6.190400 -6.190399 | 0.180782 0.180781 0.180780
45-49 | -5.788616 -5.788616 -5.788617 | 0.163517 0.163515 0.163516
50-54 | -5.370836 -5.370837 -5.370835 | 0.155650 0.155648 0.155649
55-59 | 4965041 -4.965042 -4.965042 | 0.154916 0.154916 0.154914
60-64 | -4.504707 -4.504707 -4.504707 | 0.152270 0.152272 0.152272
65-69 | -3.978562 -3.978562 -3.978561 | 0.150485 0.150483 .150486
70-74 | -3.405294  -3.405294 -3.405294 | 0.140851 0.140849 (.140851
75-79 | -2.818259 -2.818258 -2.818259 | 0.122062 (.122060 0.122061
80-84 | -2.248030  -2.248031 -2.248030 | 0.101402 0.101400 0.101402
85-89 | -1.741401 -1.741401 -1.741400 | 0.082019 0.082017 0.082017
90-94 | -1.296679 -1.296679 -1.296679 | 0.068029 0.068028 0.068029
95-99 | -0.9290672 -0.929670 -0.929668 | 0.055517 0.055517 0.055518
100+ | -0.649269 -0.649231 -0.649219 | 0.039241 0.039253 0.039256

Id;M) =dln(Ad) — A —In(d!) .

®

Assuming that each observation is independent, we may sum over all cells to obtain the full

log-likelihood:

! = Z[dx,ln(lx,) — Ay — In(d, !)] .

x

®)

Maximum likelihood estimates are those values of A,; that maximize equation (9). Since the

third term of the sum in equation (9) does not depend on A,,, it is sufficient to maximize the

cquation,



Table 1 (cont.)
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b} &,
Normal Quasi- Normal Quasi-
Year | Equations Newton Simplex || Year | Equations Newton Simplex
1951 | 4.739999  4.740004 4739992 | 1971 | -0.057999 -0.057999 -0.057996
1952 | 4.137786  4.137790  4.137783 || 1972 | -0.310714 -0.310714 -0.310717
1953 | 3.988692 3983697 3988689 || 1973 | -0316916 -0.316917 -0.316915
1954 | 3.572774  3.572778 3.572772 || 1974 | -0.512001 -0.512001 -0.512000
1955 | 3.165627  3.165631 3.165620 || 1975 | -0.818978 -0.818978 -0.818982
1956 | 3.167535 3.167539 3.167538 || 1976 | -1.063096 -1.063097 -1.063097
1957 | 3.191380 3.191384 3.191380 | 1977 | -1.420068 -1.420970 -1.420967
1958 | 2.606674 2.606677 2.606675 || 1978 | -1.648874 -1.648876  -1.648877
1959 | 2.441321 2.441323 2441318 || 1979 | -1.994736 -1.994739 -1.994735
1960 | 2.306181 2306183 2306177 | 1980 | -1.996261 -1.996263 -1.996257
1961 | 2.049376 2.049378  2.049380 || 1981 | -2.269336 -2.269339 -2.269340
1962 | 1.954556 1.954558 1954553 || 1982 | -2.657163 -2.657166 -2.657160
1963 1.456290  1.456291  1.456290 {| 1983 | -2.746925 -2.746928 -2.746923
1964 | 1.245924  1.245926  1.245930 || 1984 | -3.058973 -3.058976 -3.058967
1965 1.240878 1.240879 1.240873 || 1985 | -3.272097 -3.272100 -3.272099
1966 | 0.867715 0.867716 0.867720 || 1986 | -3.600665 -3.600669 -3.600659
1967 | 0.722623 0722624 0.722625 || 1987 | -3.952763 -3.952768  -3.952766
1968 | 0.556422 0.556423 0.556427 || 1988 | -3.809855 -3.899859 -3.899854
1969 | 0.398816 0.398816 0.398818 || 1989 | -4.260716 -4.260721 -4.260720
1970 | 0.382330 0.382330 0.382326 || 1990 | -4.333860 -4.333865 -4.333856
E[dx,ln(ln) - xx,} . (10)
Xt

If there are no restrictions on the form of A,;, then it is easy to verify that equation (10)

attains its maximum value when A,, = d,; (note, therefore, that s,

= d,/E,, is the unres-

tricted maximum likelihood estimate of m,;). In the case of the Lee-Carter model, however,

we require that A, should satisfy the equation,

Ay = myE,

=ée

a,+b,k,E
-

(i1

Thus, ML-estimates of the parameters of the Lee-Carter model are found by substituting

e " b’k‘Exr for A, in equation (10) and then maximizing that equation with respect to a,, b,,

and k,.

As seen in Table 2, parameter estimates derived by WLS (based on the normal

-6-
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equations algorithm) and MLE (using both the quasi-Newton and simplex methods) are very
close though not identical.® Figure 3 provides graphical comparisons of WLS and MLE esti-
mates of a,, b,, and k,. Clearly, the differences between the two scts of estimates are

exceedingly small.

Table 2 -- Comparison of WLS and MLE Procedures for Fitting the Lee-Carter Model: Total
mortality, Japanese women, 1951-1990

a) a, and b,
a, b:c
WLS MLE WLS MLE
(Normal Quasi- {Normal Quasi-
Age Equations) Newton Simplex Equations)  Newton Simplex
0 -4.367842  -4.375644  -4.375629 | 0.319889  0.319141 0.319135
1-4 -6.848725  -6.891012  -6.891291 0408689 0415549 0.415661
59 -7.868096  -7.881207  -7.879456 | 0.318503  0.318659 0.317979

10-14 | -8.268599  -8.276777 -8.278144 | 0.260755  0.259999  0.260368
15-19 | -7.690136  -7.708180 -7.707408 | 0.253594  0.254663 (.254608
20-24 | -7.242807  -7.256903  -7.256455 | 0.293672  0.294634  0.294637
25-29 | -7.055302 -7.065622 -7.065643 | 0.289151  0.288909  (.288848
30-34 | -6.838585  -6.845449  -6.845894 | 0.257650  0.256684  0.256744
35-39 | -6.539066  -6.543347 -6.543329 | 0.214910 0.213577 0.213626
40-44 | -6.190400 -6.192562  -6.192205 | 0.180782  0.179408 0.179353
45-49 | -5.788616  -5.789548 -5.789561 | 0.163517  0.162151 0.162267
50-54 | -5.370836  -5.371382  -5.371282 | 0.155650  0.154288  0.154349
55-59 | -4.965041  -4.965470 -4.965445 | 0.154916  0.153472  0.153497
60-64 | -4.504707 -4.505178 -4.505222 | 0.152270  0.150709 0.150766
65-69 | -3.978562  -3.979367 -3.979576 | 0.150485  0.148871  0.148863
70-74 | -3.405294  -3.406862 -3.406797 | 0.140851  0.139161 0.139124
75-79 | -2.818259  -2.820978  -2.820959 | 0.122062  0.120257 0.120238
80-84 | -2.248030  -2.250805  -2.250798 | 0.101402  0.099637  0.099656
85-89 | -1.741401  -1.743699 -1.743665 | 0.082019  0.080485 0.080441
90-94 | -1.296679  -1.298601 -1.299034 | 0.068029  0.066714 0.066584
95-99 | -0.929672 -0.931990 -0.931281 | 0.055517  0.054306 0.054394
100+ -0.649269  -0.657554  -0.654429 | 0.039241  0.036680  0.038375

One advantage of the MLE technique is that it should provide a quick and simple means

6 Values of the likelihood function in these two cases were almost identical:
61699948.998670 by quasi-Newton method, and 61699948.998823 by simplex method.
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Table 2 (cont.)

b) &,
WLS MLE WLS MLE
{(Normal Quasi- (Normal Quasi-
Year | Equations) Newton Simplex | Year | Equations) Newton Simplex

1951 | 4.739999 4751099 4.751567 || 1971 | -0.057999  -0.045540 -0.046670
1952 | 4.137786  4.162784 4.161884 | 1972 | -0.310714  -0.295481  -0.295545
1953 | 3988692  4.028413 4.028992 | 1973 | -0.316916  -0.308267  -0.308196
1954 | 3.572774  3.600345 3.601515 || 1974 | -0.512001  -0.507440  -0.508393
1955 | 3.165627  3.198202 3.197831 || 1975 | -0.818978  -0.811831 -0.813051
1056 | 3.167535  3.206461 3.217847 || 1976 | -1.063096 -1.059148  -1.057706
1957 | 3.191380  3.228762  3.228077 || 1977 | -1.420968 -1.414880  -1.415965
1958 | 2.606674  2.638555 2.636870 | 1978 | -1.648874  -1.644626 -1.642713
1959 | 2.441321 2475148 2461087 || 1979 | -1.994736  -1.993302 -1.972376
1960 | 2306181  2.336542 2.336936 || 1980 | -1.996261  -1.998084 -1.993773
1961 | 2.049376  2.074799 2.074668 | 1981 | -2.269336 -2.274513  -2.286810
1962 1.954556 1962155 1.960685 | 1982 | -2.657163  -2.669427  -2.668205
1963 1.456290 1.468767 1466411 || 1983 | -2.746925 -2.761737 -2.761793
1964 1.245924  1.255634  1.252687 || 1984 | -3.0589073  -3.085240 -3.086916
1965 1.240878 1.229257  1.229736 | 1985 | -3.272097 -3.301664  -3.299982
1966 | 0.867715  0.873174 0.874355 || 1986 | -3.600665  -3.646791  -3.648041
1967 | 0722623  0.725517  0.726927 || 1987 | -3.952763 -4.017366  -4.018835
1968 | 0.556422  0.555603  0.555426 || 1988 | -3.899855 -3.956856 -3.960509
1969 | 0.398816  0.403661 0.402840 || 1989 | -4.260716  -4.344224 -4.344751
1970 | 0.382330 0.376866 0.378019 | 1990 | -4.333860 -4.415328 -4.414130

of estimating the variance of the estimated parameters. According to the theory of mathemati-
cal statistics (for example, see Silvey 1975), the covariance matrix of a vector of ML-
estimators approaches the inverse of the Fisher information matrix for large sample sizes.

The Fisher infomation matrix, furthermore, is easily approximated based on second derivatives

of the log-likelihood function:

2
Ig=— “———a 1(8) . (12)
00? o=0

where 8 is the vector of parameters being estimated (in this case, a,, b,, and k,).” Thus, the

7 In equation {12), the second partial derivative of the log-likelihood function with respect
to the vector, 0, is a matrix, whose ij"' element is the second partial derivative of [(0) with
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theoretical variance of the parameter estimates can be estimated by the main diagonal ele-
ments of I ' Until now, however, I have been unsuccessful in applying this theory to derive
plausible variance estimates. Therefore, the issue of standard errors for parameter estimates of
the Lee-Carter model (and similar models) will be addressed in a future report. It will be
necessary to compare variance estimates based on the theory of ML-gstimation with estimates

derived from computational methods such as bootstrapping.

Extrapolating Mortality Trends based on the Lee-Carter Model

In a previous work (Wilmoth 1993), I calculated four sets of mortality projections for
Japan. The purpose of this section is to document the details of those four extrapolations,

called Methods I, II, ITI, and IV.
Method [

This projection is identical to the procedure proposed by Lee and Carter (1992}, except
that the model of mortality change was fit by the method of weighted least squares (WLS), as
described earlier, rather than ordinary least squares (OLS). Mortality rates during the observa-
tion period, 1951-1990, were organized by S-year age groups (0, 1-4, 5-9, 10-14, ..., 95-99,
100+). The estimated mortality index, k,, was extrapolated using standard time series models
(thus, the slope of the projected mortality index equals the arithmetic mean of the first
differences in estimated k, during the observation period). Projected mortality rates and other
life table quantities were computed based on projected values of k, and estimates of a, and
b, from the original model. Confidence intervals (for k, as well as other projected quantities)

include uncertainty from both the random walk process and estimation of the drift term, but

respect to the i‘:‘ and j* elements of 0. This derivative is evaluated by substituting the param-
eter estimates, 9, in place of 6.
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they ignore uncertainty due to estimation of the parameters of the underlying model.8 The

entire procedure was applied separately to male and female mortality.

Method II

With this method, mortality forecasts for Japan were derived by projecting the mortality
index, k;, based on the slope in the Swedish &,. Values of k, for Sweden (men and women
separately) were calculated based on observed values of e In other words, using the esti-
mates of a, and b, for Japan from the previous method, I computed (by a numerical search
algorithm) the value of k, that exactly reproduces an observed ey Single-year life tables
were available for Sweden during 1960-1990, and for each of these I derived an estimate of
k,. The slope of the k, trend for Sweden was found by calculating the arithmetic mean of the
first differences of ié, for 1960-1990. The projected trend in the Japanese &, under this
method was computed using the slope in the estimated k, for Sweden and the final observed
value of the mortality index for Japan, k 1000- No confidence intervals were calculated for this

method.
Method II1

The third set of projections was based on mortality trends by cause of death. Projections
by cause present three particular methodological problems. First, several cause-specific death
rates are zero for some age-time-cause combinations. Since the Lee-Carter model is fit to the
logarithm of each age-specific death rate, the presence of zero-cells poses an awkward prob-
lem. Several solution may be considered, including the elimination of any age group that

contains at least one zero-cell. In the end, I decided that the preferred solution is to fit the

8 Sec Appendix B of Lee and Carter (1992) for an explanation and justification of this
choice.

.10-
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model by weighted least squares, as described earlier, using weights that equal the number of
deaths observed in each cell. Since these weights equal zero whenever the death rate equals

zero, an arbitrary, non-zero value can be substituted for the death rate {or its logarithm) in all

zero-cells.
Thus, the following model was fit separately for each cause of death:

f =a® 4 bk 4 e (13)

where

(@) if A0
99 if m3=0

) =
xt

(14)

In this notation, A, 9 is the observed death rate due to cause i at age x and time 7; and
a®, b, and k() are the parameters of the model for cause i. The model in equation (13)
was fit by minimizing the weighted sum of squared errors, where the weights equal the
observed number of deaths, 4, at age x in time ¢ for cause i. Note that 45 equals zero if
and only if Y also equals zero; thus, the value of 99 that is assigned to £, in this case is
arbitrary and irrelevant, since no weight is accorded to such an observation in the fitting pro-

cedure.

When the Lee-Carter model is fit by WLS (see equations 3-6) for a cause of death that
contains zero-cells for an entire age group, missing values in the age-based parameter esti-
mates (4, and Bx(i)) are encountered at each step of the algorithm due to division by zero.

For computational purposes, it is convenient to set missing values equal to some arbitrary

9 See earlier foomote about the distinction between m,,, i, and #,, in the analysis of
all-cause mortality. The same distinction is used in the case of cause-specific mortality as
well.

-11-
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number (such as 99) whenever they occur in the normal course of the algorithm. After con-
vergence, these meaningless parameter estimates are set once again to zero or NA. (If there
are some zero-cells for an age group, but also at least one year with a non-zero death rate,
this problem does not arise. In this case, the parameter estimates produced by the algorithm
reflect the level of mortality and the pattern of mortality change suggested by the non-zero

death rates only.)

The second methodological problem is measuring and comparing the model’s goodness-
of-fit for individual causes of death. If the Lee-Carter model is fit by OLS, an obvious meas-
ure of goodness-of-fit is the proportion of variance explained by the model. In this case, sums

of squares are defined in the traditional manner. The total sum of squares is
SST =X(fu -V . (15)
Xt

where f is the grand mean of f,, across both age and time. The residual sum of squares

equals
SSR = Y(fu = Fu) (16)
xt
. . . . SSR . .
and the proportion of variance explained by the model is thus 1 — T (Since the model is

fit in a logarithmic scale, it is reasonable to measure goodness-of-fit in this metric as well.)

When the model is fit by WLS, it seems appropriate to include a consideration of the
weight (or importance) of each observation in an analysis of goodness-of-fit. Therefore,

weighted sums of squares were calculated as follows:
SSTyy = Xwa(fu = fu)? (17)
Xt

where f,, is the weighted grand mean of f,,, and

-12-
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SSRy = S (fur = fu)? - (18)
xt

(Note that f « in cquation (16) refers to fitted values based on OLS, whereas f,, in equation
(18) refers to fitted values based on WLS.) The measure of goodness-of-fit presented in Table

2 of Wilmoth (1993) expresses the percent of the “weighted variance” explained by the

SSR,,
SST,, |

model, thus 100 x [1 -

The third problem encountered in making projections by cause of death is that trends in
cause-specific mortality are not as regular as in the case of all-cause mortality. Trends in total
mortality are nearly linear (in a logarithmic scale) for Japan during 1951-1990, and thus the
estimated mortality index, l?,, for the Lee-Carter model is very close to linear. Afier fitting
the Lee-Carter model to matrices of death rates by cause, however, it was apparent that this
lingar pattern is not observed for all individual causes. The k&% for some causes were close
to linear over the entire observation period, 1955-1990; for other causes, however, a linear
pattern is a reasonable approximation of reality only for a more recent time period, such as
1975-1990 or 1980-1990. The choice of a time period on which to base the projection for
each cause of death was made by a visual inspection of the trend in I?,(i). I made linear pro-
jections of I?,(i) for all causes based on a time period that varied by cause of death (for details,
see Wilmoth 1993). I avoided quadratic and other forms for these extrapolations on the
grounds that they tend to produce quite extreme projections after only a short time period.

After projecting the mortality index, k,, for each cause of death, projected cause-specific
mortality rates were computed based on fitted model parameters for each cause of death. Pro-
jected total mortality rates were found by summing across causes. Summary indicators such

as life expectancy at birth were computed in the traditional manner based on projections of
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total mortality rates.

Method IV

As discussed in Wilmoth (1993), the mortality projection based on Method III is perhaps
implausible because it projects forward without question an observed increase in cancer death
rates at older ages. Method IV attempts to correct this characteristic of Method TI0 by elim-
inating all increasing trends from the projections of cause-specific death rates. Thus, for every
age-cause combination where the projected values of m,$/) are increasing with time in Method
I, I fixed the projected age- and cause-specific death rate at its 1990 value in Method IV.

Other than this slight adjustment, the two methods are identical.
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