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The long-term pattern of adult mortality and the 
highest attained age 

A. R. Thatcher 
New Malden, UK 

[Read before The Royal Statistical Society on Wednesday, June 17th, 1998, the President, 
Professor R. N. Curnow, in the Chair] 

Summary. Recerrt new data on old age mortality point to a particular model for the way in which the 
probability of dying increases with age. The model is found to fit not only modern data but also some 
widely spaced historical data for the 19th and 17th centuries, and even some estimates for the early 
mediaeval period. The results show a pattern which calls for explanation. The model can also be 
used to predict a probability distribution for the highest age which will be attained in given 
circumstances. The results are relevant to the current debate about whether there is a fixed upper 
limit to the length of human life. 
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1. Introduction 

1. 1. Background 
At every age, there is a probability of dying within 12 months. From soon after 30 years of 
age this probability starts to rise by about 10% with each successive year of age. In round 
numbers, the probability of dying (for modern males) increases from 0.001 at age 30 to 0.1 at 
age 80 years. This inexorable increase follows quite closely the 'law of mortality' which was 
discovered by Gompertz (1825). By 80 years the rate of increase is noticeably slower and 
there is controversy about what happens at higher ages still. There are alternative models, 
which we shall discuss. 

In the 19th century, the probabilities of dying at ages 30-80 years were much higher than 
they are today. However, until relatively recently it was widely believed that, although there 
had been spectacular improvements at lower ages, there had been little change in the prob- 
abilities of dying above 80 years of age. Many believed that, somewhere above 100 years old, 
there is a maximum lifespan which has remained unchanged since ancient times. 

In a very influential paper, Fries (1980) expressed his belief as a physician that there is a 
natural limit to the length of human life, even in the absence of disease, and that the maximum 
lifespan does not change. However, the average length of life has risen dramatically since the 
mid- 19th century. This combination of a rising average and a fixed upper limit means that the 
shape of the survival curve has become more rectangular. Fries thought that the expectation of 
life at birth can be expected to increase to an 'ideal average life span' of about 85 years. 
Chronic illnesses can be postponed by changes in life style. Adult vigour can be extended to 
higher ages, but still within the same maximum lifespan. As a result, morbidity will become 
compressed into a period of senescence before the end of life. A research strategy on aging 
should be fundamentally shifted, towards postponing chronic illness and maintaining vigour. 
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These views were controversial from the beginning and there has been a lively debate which 
is still in progress. We have space to mention only a few references, to give the flavour. 

Manton et al. (1991) said that, although traditionalists might not expect the average length 
of life to rise above 85 years, there were nevertheless reasons for thinking that, with healthier 
life styles and continuing medical progress and intervention, it might be possible to raise the 
expectation of life in the USA to 95 or even 100 years. 

Olshansky et al. (1990, 1991) were more sceptical, arguing that it would require very large 
falls in death-rates at high ages to have much further effect on the expectation of life at birth. 
Longer life might often be attainable only at the cost of a prolonged period of frailty and 
dependence. More research was needed to improve the quality of life of the elderly by 
ameliorating non-fatal diseases. 

Vaupel, quoted in Baringa (1991), challenged Fries. Swedish data showed that mortality 
rates at ages 85 years and over had been falling for 50 years. Data on the length of life of a 
million fruit-flies showed that their probability of dying starts by increasing with age but then 
levels off. There was no evidence of a biological limit to life. Gavrilov and Gavrilova (1991) 
reached the same conclusion independently. 

1.2. The maximum length of life 
If there is a virtually fixed upper limit to the length of human life, then further falls in death- 
rates will make the survival curve even more rectangular and deaths will eventually be 
compressed into a narrower band of ages. In contrast, if there is no fixed upper limit, or if a 
fixed limit exists but is far higher than the ages which have so far been attained, then there 
will be less rectangularization and less compression of the ages at death, but people may live 
even longer. 

These different possible outcomes will be reflected in different patterns for the probabili- 
ties of dying above age 80 years. In principle there are three main possibilities. The first is that 
the probability of dying within 12 months may reach 1 at a finite age. There will then be a 
definite, fixed upper limit to the length of human life. Many people believe there to be such 
a fixed, definite limit. The French demographer Vincent (1951) thought that there were 
enormous odds against anyone exceeding the age of 110 years. Fries (1980) and the biologist 
Hayflick (1994) placed the upper limit at about 115 years, and indeed Hayflick used this 
supposed limit as a reason for rejecting various medical theories. Most recently the 
mathematical statisticians Aarsen and de Haan (1994) have inferred (though from very 
limited data) that there is an upper limit to life which lies, with 95% confidence, between 113 
and 124 years. 

The second possibility is that the probability of dying within 12 months does not reach 1 at 
a finite age, but nevertheless tends asymptotically to 1. In this case there is no definite, fixed 
upper limit, but as age increases the probability of further survival eventually becomes so tiny 
that for practical purposes it can be ignored. This is the scenario which is implied by the 
original law of Gompertz (1825) and also by the more recent models of Weibull (1951) and 
Heligman and Pollard (1980). 

The third possibility is that the probability of dying within 12 months may continue to 
increase monotonically as age increases but may tend to a limit which is less than 1. This is 
what is implied by the 'logistic model', which was first applied to mortality by Perks (1932) 
and later, under different names and notations, by several others. In this model there is no 
definite, fixed upper limit to life and there is not even an age when the probability of further 
survival is negligible. However high the age, there will always be a substantial probability of 
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surviving for at least 1 more year. This model tends towards a Poisson process, so the 
survivors will gradually approach (but not quite reach) a state like that of radioactive atoms 
awaiting decay, with a half-life. Nevertheless, all the survivors will die in the end and there 
will be a probability distribution for the highest age which will be attained in a given group of 
survivors. This will depend on the absolute size of the group. 

Each of these theories has its supporters among biologists, so there is at present no 
consensus in that quarter. These various models, if considered solely from a theoretical point 
of view without any reference to actual data, provide almost unlimited scope for argument 
about whether there is an upper limit to life. 

1.3. New data 
Previous studies of the force of mortality at high ages have been based on data for individual 
countries. More detailed analyses can be made when there are larger numbers, obtained by 
pooling the data for similar countries. In 1990 Peter Laslett set up the Cambridge Group 
project on the maximal length of life, and its members (Kannisto, Thatcher and Vaupel) 
assembled and computerized a new database. This is part of the Archive on Population Data 
on Aging, funded by the US National Institute on Aging and the Danish research councils. 
The database now contains all the available official statistics on deaths at ages 80 years and 
over in 30 countries since 1960, and in many cases earlier. The full data are currently held at 
the University of Odense and at the Max Planck Institute for Demographic Research at 
Rostock. Copies will shortly be placed in the Danish State Archive and published in other 
ways so that they will be available to both institutions and individual research workers on 
request. 

Results from the archive are being published in a series of monographs (Kannisto, 1994, 
1996; Jeune and Vaupel, 1995). The latest in the series is The Force of Mortality at Ages 80 to 
120 (Thatcher et al., 1998). In this book, six possible models for mortality above age 80 years 
are fitted to each of eight data sets, each comprising pooled data for 13 industrialized 
countries. The data sets are for the overlapping periods 1960-1970, 1970-1980 and 1980- 
1990, and for the cohorts born in 1871-1880, for males and females separately. As an 
indication of size, the 13 countries include almost 40 million people who reached 80 years of 
age and over 120000 who reached 100, during the period 1960-1990. They cover over 32 
million deaths at ages 80 years and over in this period. The data used in these analyses, which 
provide one of the foundations for the present paper, are given in full in Thatcher et al. 
(1998). 

At these high ages, the new data are found to be clearly closer to the logistic model than to 
the Gompertz, Weibull and Heligman and Pollard models. This finding is taken as the 
starting point for the present paper. 

1.4. Aims and outline of the present paper 
The first substantive question to be addressed is why mortality should follow the logistic 
model. We shall describe three relevant theories, namely the so-called 'fixed frailty' model 
(Beard, 1971; Vaupel et al., 1979), the stochastic process model of Le Bras (1976) and a recent 
controversial theory based on genetics (Mueller and Rose, 1996). 

Next, we shall investigate how well a three-parameter form of the logistic model fits data 
for the past as well as the present, and at all adult ages, not just high ages. For this, the model 
is fitted to some widely spaced historical life-tables, from Halley's life-table onwards, and also 
to some even earlier estimates for the mediaeval period. The model fits these data rather well. 
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Moreover, the parameters reveal a long-term pattern of adult mortality which on one 
interpretation implies that the so-called 'rate of aging' has been remarkably stable over many 
centuries. 

The fitted parameters can also be used to tackle two difficult problems. The first is to 
estimate the expectations of life at high ages in the historical periods on a uniform basis. The 
second is to estimate the probability distributions of the highest ages which one may 
reasonably suppose to have been attained in England from the Middle Ages onwards. We are 
here dealing with the highest ages which were actually attained in the circumstances of the 
time, not with the potential ages which might have been attained if the circumstances had 
been different. 

As a final illustration, we show the implied trends over the centuries of the mode of the 
distribution of the highest attained ages in stationary populations of various sizes. 

2. The logistic model 

2. 1. Notation 
We shall use the terminology and notation which is traditional in this field. The probability 
that a person who has just reached age x will die within 12 months is denoted qg, in the 
actuarial notation. The probability that he or she will die in the instant between age x and 
age x + dx is ,ux dx, where ,ax is known as the force of mortality. In the literature, this is 
sometimes described as the instantaneous death-rate, and it is also the same as the hazard 
rate in survival theory. It is sometimes written as p(x) and sometimes described as the 
mortality function. 

For adult mortality, the numerical values of ,u, can be estimated or derived in several ways, 
from age-specific death-rates, from the survival curves in life-tables or cohort data, or from 
the probability of dying within 12 months (q,). Conversely, qx can be derived from pu,. The 
relevant formulae are given in Appendix A. 

2.2. Statement of the model 
The logistic model assumes that the force of mortality ,ux is a logistic function of the age x. 
The most general model of this type has four independent parameters and can be expressed in 
the form 

P. =I + -Yz (1) 1 + Z 

where 

z = ae exp(3x) (2a) 
= exp{l(x - q)}, = -ln(oa)/O. (2b) 

However, for studying long-term historical trends and predicting highest attained ages, this 
fully general model is found to be less useful in practice than a simpler but more robust 
version, with only three parameters. When the general model (1) was fitted by Thatcher et al. 
(1998) to the new data for 13 industrialized countries, the fitted parameters showed that ti is 
near 1. This leads us to consider the three-parameter model 

z (3) 
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where z is defined as before. If we use equation (2a) the parameters are oa, and -y. If we use 
equation (2b) they are ,B, -y and q. These two ways of defining the parameters are completely 
equivalent and each will be found to have its advantages. 

Model (3) has two important properties. When z is small (as at ages up to 70 years or so) it 
implies that 

p., - ae exp(3x) + -y, (4) 

which is the 'law' proposed by Makeham (1860), and this was found to be still useful on much 
more recent data from many countries by Gavrilov and Gavrilova (1991). This also includes 
as a special case the original law of Gompertz, namely 

c.t, 0 exp(3x). (5) 

The second important property is that when -y is small compared with z/(l + z), which was 
true at high ages even in the historical periods (and at almost all ages today, when -y is 
negligible), model (3) implies that 

logit(,u_) ; ln(oa) + Ox. (6) 

This is the approximate relationship for old age mortality which was first noted by Kannisto 
(1992), used independently by Himes et al. (1994) and since overwhelmingly confirmed as a 
good approximation by Thatcher et al. (1998). What is just as important for the present 
application is that model (6) is a robust model which has been found to give good results 
when fitted to data below age 100 years and then extrapolated to higher ages, which is exactly 
the operation that we shall require. The same advantage will therefore apply to model (3). 

Accordingly, we shall adopt equation (3) as the preferred model for investigating the long- 
term historical trends of adult mortality. 

2.3. Comparisons with other models 
It is of interest to see how the logistic model (3) and the Gompertz model (5) compare with 
the two other contending models which were mentioned in Section 1. One of these is the 
model of Weibull (1951), namely 

,U = ax3. (7) 

The other is the law of mortality used for graduation by Heligman and Pollard (1980). This 
has three terms and eight parameters, but at high ages the first two terms can be neglected 
and the third can be written in the form 

logit(q,) = ae + Ox, (8) 

where ae and f are constants. We may note that, as x - oo, qx -- 1 and hence logit(qx) 
-ln( - q). Also we have - ln(l - qx) i,u(x + 2), from expression (23) in Appendix A. 

On substituting these approximations in equation (8) we see that in the Heligman and Pollard 
model the force of mortality tends asymptotically to the straight line lIx = a - / + Ox. This 
can also be proved more formally. 

When these four models are fitted to actual data, they are all relatively close to the data at 
the ages where most of the deaths are concentrated, and hence relatively close to each other. 
At higher ages, the four models necessarily diverge because they tend to different asymptotes 
(an exponential, a power function, a sloping straight line and a horizontal straight line). 
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Fig. 1. Four models for the force of mortality: Gompertz;* - - Weibull; ...........Heligman and Pollard; 
------ logistic 

Fig. 1 illustrates the size of this divergence in a practical case, when the four models are fitted 
to the same data at ages 80-98 years and then extrapolated to 120 years. In this particular 
example the data were for the deaths of over 8 million females in 13 industrialized countries 
in 1980-1990, but this is immaterial. Whatever the data set, the fitted models always diverge. 

As already stated, the new pooled data for 13 industrialized countries are close to the 
logistic model. If we use one of the other models, we shall overestimate the force of mortality 
at the highest ages and hence underestimate the highest age which will be attained in a 
population of given size. 

2.4. Explanatory theories 
2.4.1. The fixed frailty model 
The first theory which was put forward to explain why ,u, should be a logistic function of age 
was the fixed frailty model, originally proposed by Beard in 1959 (see Beard (1971)). It is 
based on the assumption that the population is heterogeneous. The ith member of a birth 
cohort is subject to a personal hazard function which follows Makeham's law 

Hi(X) = ait exp(/3x) + -y, (9) 

where ali (the frailty) varies from individual to individual but is fixed from (say) 30 years 
of age onwards. The constants 3 and -y are assumed to be the same for all individuals. The 
relative variation in the ai between individuals is assumed to follow a gamma distribution 
with variance a. As the cohort becomes older, those with high frailty are more likely to die 
first and there is an effect which may be described as survival of the fittest. The result is that 
the mix of values of ,pi gradually changes. It can be shown that the average value of tti(x) 
among the survivors follows the general logistic model (1), with ti given by 
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= 
52 (10) 

This model was later discovered independently by Vaupel et al. (1979). It is often called the 
'gamma-Makeham' model. 

2.4.2. The Le Bras stochastic process 
Le Bras (1976) assumed that aging can be modelled by a stochastic process, in which 
individuals progress by jumps at random times through a succession of steadily deteriorating 
states. He considered a cohort which starts as homogeneous, with all the members in the 
same state. As they grow older, the members gradually become spread over many states and 
the cohort becomes increasingly heterogeneous. No assumption is made about how the force 
of mortality depends on age. Nevertheless, when the cohort reaches age x there will be an 
average force of mortality ,i(x) which, on certain assumptions, follows the logistic model (1). 

A slightly generalized version of the Le Bras model was developed by Gavrilov and 
Gavrilova (1991), pages 247-250. In any interval of time dt, the individuals in the ith state 
will (in their notation) have a probability (po + ip) dt of dying and a probability (A0 + iA) dt 
of jumping to the (i+ 1)th state, where po, ,u, AO and A are constant parameters. It can be 
shown that, if this model is to fit the data, a modern person would have to pass through 
about 100000 states before becoming a centenarian. Also puo must be small compared with 
A0, p must be small compared with A and the parameters in equation (1) will satisfy 

S , ~~~~~~~~~~(11) 
K A0. 

Thus ti will depend on the initial rate of transition between states from the homogeneous 
opening start, whereas 3 will depend on how fast this rate of transition changes between 
successive states. 

2.4.3. Biological theories of aging 
There is an enormous literature on biological theories of aging and here we can mention only 
those points which are known to the author and which seem particularly relevant to the 
models of mortality discussed in this paper. 

For life to continue, the internal workings of the body have to be kept in balance 
(homeostasis). This is achieved by compensating mechanisms in the heart, lungs, kidneys, 
liver etc. If the balance is disturbed, the body draws on its reserves of capacity to restore 
homeostasis. In young adults, the functional capacity of the organs is 4-10 times that needed 
to sustain life. After about 30 years of age, however, the capacity of the organs starts to 
decline steadily. Measurements of vital capacity, maximum heart rate, maximum oxygen 
consumption, the rate of cell renewal, etc., all decline with age, and with them the ability to 
restore homeostasis. 

Why does the reserve capacity decline with age? According to evolutionary theory, the 
body must spend some of its resources on the immediate needs of survival (e.g. the ability to 
find food and to avoid predators), some on reproduction and some on the maintenance and 
repair of its bodily functions as they suffer damage. This damage can arise either from 
external causes, or from wear and tear or from the accumulation of DNA mutations and 
damage at the molecular and cellular level. (Whenever a cell divides its DNA molecules must 
be copied, and on each occasion there is a very small chance of damage.) However, the more 
the resources which must be spent on immediate survival and reproduction, the less are the 
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resources which are available for repair and maintenance. A balance must be struck between 
the two. 

This balance is struck by natural selection. If a species is to survive, it is imperative 
that enough of its members should live sufficiently long to reach the age of reproduction. 
What happens after that does not matter very much, from the point of view of evolution. 
Accordingly, when we pass the age of reproduction, we are left with a body with a repair 
mechanism which was primarily developed to reach the age of reproduction, not to live 
beyond it. 

In fact, the deterioration in reserve capacity starts after the beginning of the reproductive 
period but well before its end. Two processes then come into play. In the first, genes which 
have positive effects on fitness early in life can sometimes have negative effects on survival late 
in life (antagonistic pleiotropy). In the second, detrimental mutations which act only late in 
life are not efficiently eliminated by selection and can accumulate (mutation accumulation). 
Medawar (1952) described the post-reproductive period as a 'genetic dustbin'. Both these 
processes are made possible by the decline in the force of selection with age. The physi- 
ological and biochemical manifestations of aging have evolved as the result of a reduced 
investment in maintenance and repair brought about by the two effects mentioned (Williams, 
1966; Kirkwood, 1981). The highly condensed summary given in this paragraph is taken from 
Stearns (1992), p. 182. 

These processes are believed to account for the Gompertz-type increase in the force of 
mortality after the age of reproduction. However, there are now some biological reasons for 
believing that this deterioration may not continue indefinitely. Extensive work on fruit-flies 
has shown that their force of mortality increases sharply with age but then reaches a plateau, 
or even shows a fall (Carey et al., 1992; Curtsinger et al., 1992). Geneticists have now pro- 
duced some mathematical models to explain how such a plateau can arise, from particular 
combinations of the effects of selection, accumulated mutation and antagonistic pleiotropy 
(Mueller and Rose, 1996). One of the findings of their study is that it is possible for the 
plateau to be reached when the probability of dying q, is less than 1, which implies that the 
force of mortality can tend to a finite limit. This theory is controversial and will no doubt 
receive critical examination. If their arguments (or an amended version) command support 
and can be applied to humans, they would supply a biological reason for the upper limit for 
p, in the logistic model. 

2.4.4. Comments 
No doubt all the theories outlined in Sections 2.4.1-2.4.3 contain elements of truth. The 
population is heterogeneous. Genes are important. Also, although responses to life- 
threatening events and bodily developments will depend on genetic make-up, the actual 
incidence and timing of the events may resemble a stochastic process. However, none of these 
theories seems fully satisfactory as it stands and there is scope for further research on the 
reasons why the logistic model fits the mortality data. 

An even more difficult question is why the data should be fitted by the particular model (3), 
i.e., to put the question another way, why is the parameter i, in the more general logistic 
model (1) apparently quite close to 1, when age is measured in years? Equations (10) and (11) 
suggest that possible relevant factors include the degree of heterogeneity in the population 
and/or the pattern of transitions between states, whereas the biological theories suggest that 
it depends on the balance between different types of genes. In the present paper, we shall 
simply regard i, = 1 as a convenient working hypothesis. 
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3. Long-term trends 

3. 1. Historical data 
In this section, we shall be concerned with trends in mortality (at ages 30 years and over) over 
very long periods indeed. The simplest way to obtain a picture of the main changes which 
have taken place over the centuries is to examine a selection of mortality data at very widely 
spaced dates. For this, the most convenient sources of data are published life-tables. 

We shall begin with English Life Tables No. 14, which relate to England and Wales in the 
period 1980-1982. These tables were prepared by the Government Actuary and published by 
the Office of Population Censuses and Surveys (1987). They are based on deaths in the three 
years 1980-1982 combined with population estimates derived from the 1981 census of popu- 
lation. In the three years 1980-1982 there were about 834000 deaths of males and about 
828000 deaths of females at ages 30 years and over. 

We now jump back over 140 years to English Life Table No. 1. This was compiled by 
William Farr from the 1841 census and the then newly established civil registrations of births 
and deaths in England and Wales. It was published by the Registrar General (1843). The 
table was based on the deaths in England and Wales in the single year 1841, during which 
there were about 71 000 deaths of males and about 74000 deaths of females at ages 30 years 
and over. 

Another 150 years back and we have Halley's life-table, based on the ages at death in 
Breslau in 1687-1691. This has been extensively discussed by, among others, Pearson (1978) 
and Hald (1990). Pearson concluded that Halley's life-table provided the best of the available 
estimates of mortality for this historical period. It is estimated, from the information quoted 
by Hald, that there were about 2675 deaths at ages 30 years and over in Breslau in the five 
years 1687-1691. 

We now come to a very recent development. Wrigley et al. (1997) have published a new 
life-table for the period 1640-1689, compiled by family reconstitution from the entries in 
parish registers for married couples who were born and married in 26 parishes in England. 
Their database included 3133 deaths at ages 30 years and over, which is slightly more than 
Halley's. On comparing their results with his, we find that they are remarkably close. This is a 
very encouraging agreement on the force of mortality in the second half of the 17th century. 

Before the 16th and 17th centuries no life-tables are generally accepted as reliable, except 
for small groups like monks. For the late mediaeval period (the 13th-I 5th centuries) there are 
some life-tables constructed by Russell (1948) from the information which was recorded 
when feudal tenancies changed hands. 

For the early mediaeval period, a life-table was constructed by Acsadi and Nemeskeri 
(1970), table 130, from ages at death estimated from forensic examinations of 2300 adult 
skeletons in Hungarian cemeteries of the 10th-12th centuries. These cannot be regarded as 
very reliable, because a recent study has shown that the forensic methods used by Acsadi and 
Nemeskeri tended to overestimate adult ages below 60 years and to underestimate ages above 
60 years (Molleson and Cox, 1993). However, this does not mean that the life-table cannot be 
used. If the method underestimated high ages, we can at least expect that the highest ages 
attained in the mediaeval period will have been higher than those predicted from Acsadi and 
Nemeskeri's life-table. 

Acsadi and Nemeskeri (1970) also constructed life-tables for the Roman era, based on 
inscriptions on tombstones, as distinct from the examination of skeletons, but we shall not 
make use of these. Doubts have been expressed about the accuracy of the ages and about the 
representativeness of those who were given tombstones. Also, the resulting estimates of the 
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Table 1. Historical estimates of the force of mortality compared with values fitted by the logistic model (3)t 

Age Observed force Fitted force of Relative err or Observed force Fitted force of Relative error 
group (years) of mortality mortality (%) of mortality mortality (%) 

A, Hungary, 10th-12th centuries 
30-35 0.0235 0.0232 - 1.2 
35-40 0.0291 0.0281 -3.6 
40-45 0.0337 0.0351 4.2 
45-50 0.0402 0.0453 12.6 
50-55 0.0696 0.0598 - 14.1 
55-60 0.0814 0.0804 - 1.3 
60-65 0.1033 0.1090 5.5 
65-70 0.1485 0.1481 -0.3 
70-75 0.1877 0.1996 6.4 
75-80 0.3008 0.2651 - 11.9 
80-85 0.3442 
85-90 0.4341 
90-95 0.5295 
95-100 0.6237 

-0.4 

B, England, 1640-1689 C, Halley, Breslau, 1687-1691 
30-35 0.0171 0.0171 0.2 0.0164 0.0183 11.8 
35-40 0.0205 0.0188 - 8.2 0.0195 0.0198 1.4 
40-45 0.0195 0.0214 9.6 0.0233 0.0220 - 5.6 
45-50 0.0244 0.0253 3.7 0.0282 0.0255 -9.7 
50-55 0.0307 0.0313 1.9 0.0342 0.0308 -9.9 
55-60 0.0459 0.0403 - 12.1 0.0383 0.0390 1.9 
60-65 0.0513 0.0540 5.3 0.0474 0.0516 8.8 
65-70 0.0701 0.0743 6.0 0.0630 0.0705 11.9 
70-75 0.1129 0.1039 -7.9 0.0995 0.0986 -0.9 
75-80 0.1445 0.1461 1.1 0.1589 0.1392 -12.4 
80-85 0.1974 0.2040 3.3 0.1958 
85-90 0.2794 0.2708 
90-95 0.3716 0.3638 
95-100 0.4757 0.4700 

-0.3 -0.3 

(continued) 

force of mortality do not look very credible: at ages 30-40 years they are in line with the early 
mediaeval estimates but at ages 70-90 years they are below the modern estimates. 

For examining the very-long-term trends in the force of mortality at ages 30 years and over, 
we shall use the 'snapshots' provided by the seven sets of data in the life-tables described 
above. We shall treat males and females separately where this is possible, i.e. in 1980-1982 
and 1841. For each of these seven data sets, the average force of mortality over 5-year age 
groups has been derived by the method described in Appendix A. The results are given in the 
columns headed 'Observed' in Table 1, and they are plotted in Fig. 2. Observed values are not 
given for the very highest age groups, where the life-tables are constructed by approximate 
methods. 

Many important features of the long-term changes in the force of mortality can be seen 
from Fig. 2. Starting from the top, line A gives the estimates for the 10th-12th centuries, 
which of course are the least reliable of our data. However, no-one will be surprised to find 
that the estimated force of mortality in these centuries was higher than in the 17th century 
(lines B and C). 
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Table 1 (continued) 

Age Observedforce Fittedforce of Relative error Observedforce Fittedforce of Relative error 
group (years) of mortality mortality (%) of mortality mortality (%) 

D, England and Wales, 1841, males E, England and Wales, 184], females 
30-35 0.0108 0.0110 2.2 0.0107 0.0107 0.1 
35-40 0.0123 0.0119 -3.2 0.0118 0.0114 -3.5 
40-45 0.0140 0.0133 -4.7 0.0131 0.0125 -4.4 
45-50 0.0159 0.0157 -1.2 0.0145 0.0145 -0.3 
50-55 0.0181 0.0196 8.4 0.0162 0.0177 9.2 
55-60 0.0254 0.0260 2.4 0.0220 0.0231 5.0 
60-65 0.0375 0.0364 -2.9 0.0331 0.0321 -2.9 
65-70 0.0553 0.0532 -3.8 0.0493 0.0470 -4.6 
70-75 0.0815 0.0797 -2.2 0.0736 0.0712 -3.3 
75-80 0.1201 0.1205 0.4 0.1097 0.1094 -0.3 
80-85 0.1771 0.1807 2.1 0.1638 0.1674 2.2 
85-90 0.2617 0.2643 1.0 0.2448 0.2502 2.2 
90-95 0.3884 0.3710 -4.5 0.3674 0.3583 -2.5 
95-100 0.4933 0.4847 

-0.5 -0.2 

F, England and Wales, 1980-1982, males G, England and Wales, 1980-1982, females 
30-35 0.0010 0.0007 -23.0 0.0006 0.0007 21.2 
35-40 0.0014 0.0015 8.4 0.0009 0.0010 10.4 
40-45 0.0024 0.0027 15.4 0.0016 0.0016 -1.2 
45-50 0.0043 0.0047 8.9 0.0028 0.0025 - 10.4 
50-55 0.0079 0.0080 0.8 0.0047 0.0040 - 13.8 
55-60 0.0138 0.0133 -3.5 0.0076 0.0067 -11.2 
60-65 0.0227 0.0220 -3.3 0.0119 0.0114 -4.5 
65-70 0.0365 0.0358 -1.9 0.0187 0.0193 3.0 
70-75 0.0587 0.0577 - 1.7 0.0308 0.0326 5.8 
75-80 0.0930 0.0916 -1.5 0.0527 0.0548 3.9 
80-85 0.1432 0.1422 -0.7 0.0919 0.0908 - 1.2 
85-90 0.2110 0.2141 1.5 0.1567 0.1469 -6.3 
90-95 0.2900 0.3092 6.6 0.2374 0.2290 - 3.5 
95-100 0.3894 0.4236 8.8 0.3215 0.3390 5.4 

1.1 -0.2 

tAverage values of btt in 5-year age groups. 

The fall in the force of mortality between the 17th century (lines B and C) and 1841 (lines D 
and E) is quite clear, at least up to 80 years of age. However, this fall is small compared with 
the large relative changes between 1841 (lines D and E) and 1980-1982 (lines F and G). By 
far the most important single reason for this change was the virtual conquest of infectious 
diseases, following improvements in living conditions, water-supplies, sanitation, hygiene, 
vaccination and later medical improvements. This period also shows the emergence of the 
sex ratio of mortality, which appears as the gap between lines F and G. There is, of course, a 
vast amount of detailed information available about the changes in mortality since 1841, 
including the changes in causes of death, which has been admirably summarized by the Office 
for National Statistics (1997). 

3.2. Fitting the model 
Figs 2-9 give a very clear picture of how the force of mortality has changed over the centuries 
and how well the logistic model (3) fits. 
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Fig. 5. Force of mortality in Breslau, 1687-1691: .---.-., observed values; , fitted logistic model 

The model was fitted by the method of maximum likelihood, as described in Appendix B. 
The data which were used are given in full in the columns headed 'Observed' in Table 1; these 
were derived by the author directly from the life-tables as published in the references cited in 
Section 3. 1, using equation (21) in Appendix A. The fitted parameters of the models are given 
in Table 2. 

The published life-tables give estimates of q,, and functions which can be derived from q,. 
These are sufficient to estimate the parameters, but not to estimate their standard errors. For 
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Fig. 9. Force of mortality in England and Wales, 1980-1982, females: ........... observed values; , fitted 
logistic model 

these, we need more detailed information than is available about the absolute numbers who 
were at risk in the data from which the q, were estimated. Accordingly, some simulated data 
on the numbers at risk were constructed by the method described in Appendix B and used to 
calculate the estimated standard errors in Table 2. 

No single measure of goodness of fit is always appropriate. However, Table 1 shows in 
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Table 2. Parameters of the fitted logistic modelst 

Data set Deaths at ages 30 Values of the followving parameters in model (3): 
years and above 

io%a 

A, Hungary, mediaeval 2300 8.7378 0.0769 0.0127 91.63 
(3.6103) (0.0062) (0.0031) (2.11) 

B, England, 1640-1689 3133 1.8749 0.0864 0.0140 99.28 
(0.5973) (0.0043) (0.0012) (1.38) 

C, Halley, Breslau, 1687-1691 2675 1.4397 0.0888 0.0158 99.56 
(0.5218) (0.0049) (0.0012) (1.50) 

D, England and Wales, 1841, males 71000 0.5035 0.1008 0.0097 98.15 
(0.0299) (0.0008) (0.0001) (0.19) 

E, England and Wales, 1841, females 74000 0.3231 0.1050 0.0097 98.45 
(0.0190) (0.0008) (0.0001) (0.18) 

F, England and Wales, 1980-1982, males 834000 0.4657 0.0992 -0.0004 100.59 
(0.0048) (0.0001) (0.0000) (0.04) 

G, England and Wales, 1980-1982, females 828000 0.1208 0.1093 0.0003 103.62 
(0.0013) (0.0001) (0.0000) (0.03) 

tThe parameters were fitted to the data in the second column of Table 1. The standard errors, in parentheses, use 
estimated data on numbers at risk (see Appendix B). 

detail the relative differences between the observed and fitted values, described conventionally 
as 'errors'. When these are large, they provide warnings that care must be taken. 

In fact, the very largest of these relative errors (at ages 30-35 years in 1980-1982, but with 
opposite signs for males and females) are only quite so large because in these cases the 
absolute values of p, are very small. The other relative errors are not sufficiently large to 
disturb the very broad conclusions which we shall draw later in this section. For the later 
calculations in Section 4, about the highest attained age, it is not the relative errors but the 
cumulative sum of the absolute errors which is relevant. 

3.3. The long-term pattern 
Long-term changes in the pattern of mortality show up as trends in the parameters of the 
model. We can see from Table 2 that the parameter ae has fallen dramatically. The parameter 
/3, although rising, has only changed from 0.08 to 0.11 over this very long period. The 
parameter y has become negligible. The parameter X has increased. We need to consider the 
meaning of these parameters and the reasons for the changes. It is convenient to start with . 

3.3.1. The parameter -y 
When z is small we have pl t , so y will be close to the force of mortality at young adult 
ages. In fact, Tables 1 and 2 show that y is almost as large as the average value of A, at ages 
30-35 years. The observed fall in y therefore reflects the virtual elimination of the causes from 
which people used to die at ages 30-35 years in the past, which overwhelmingly were 
infectious diseases and causes associated with childbirth. 

3.3.2. The parameter 3 
The relative rate at which the force of mortality increases with age corresponds to the slope of 
the lines in Fig. 2. This relative rate of increase with age is sometimes used as a measure of a 
hypothetical 'rate of aging'. In the Gompertz model (5) we have 
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1 d,At B (12) 
, dx 

so the relative rate of increase is the same at all ages. However, in the logistic model (3) things 
are more complicated. Even in the simple case where -y = 0, we find that 

I 
d- - 3(1 - t). (13) 

AL dx 

Thus the relative rate of increase is close to 3 at young ages, where M, is small, but then it 
gradually slackens as age increases. By the very high age where ,u = 2' the relative rate of 2' 
increase has fallen to 12p. 

It is the parameter /3 which ultimately governs the relative rate at which the force of 
mortality increases with age. Table 2 shows that its values were about 0.10 for males and 0.11 
for females in 1980-1982, still between 0.10 and 0.11 in 1841, about 0.09 for each of the 
independent estimates for the 17th century and (if the data can be believed) about 0.08 in the 
10th-12th centuries. This is a remarkable stability over such a very long period, which calls 
for explanation. It would obviously be desirable for this finding to be checked, if further 
historical data can be analysed or collected, but at first sight these results appear to support 
the views of those who believe that there is an underlying pattern of aging, genetically 
determined. 

3.3.3. The parameter q 
When x = q in equations (2) and (3) we have z = l and hence I,k =j2 + Y, which is close to 
0.5. Thus q is simply the age at which the force of mortality reaches 0.5 (and hence the 
probability of dying q, reaches about 0.4). It is also the age at which the logistic curve (3) has 
its point of inflection. 

The value of 0 on row A of Table 2 will be too low, because the forensic method 
underestimated high ages. However, this problem does not affect rows B, C, D and E, which 
all show estimates between 98 and 100. This means that these four logistic curves all pass 
quite close to the point where A, = - at 99 years. It is also related to a feature of the cohort 
mortality rates for England and Wales from 1841 to 1981, which also show a close approach 
to convergence at very high ages (Charlton (1997), p. 26). Our interpretation of these findings 
is that there was a very long period when the force of mortality above 90 years of age changed 
very little, despite the changes at lower ages. However, this long static period came to an end 
in the 1950s, when mortality rates at very high ages started to fall, even (slightly) at ages over 
100. This has occurred not only in England and Wales (Thatcher, 1992) but also in most 
other industrialized countries (Kannisto, 1994; Kannisto et al., 1994). 

3.3.4. The parameter ae 
The force of mortality is dominated at low ages (30-35 years) by the parameter 'y and at very 
high ages (90 years and over) by the parameter 0. In the middle range of ages, the parameter 
ae is dominant. As an illustration, equation (2b) shows that aE = z2 when x = q/2. In a 
modern example, where q/2 ;: 50 and -y is small, it then follows from model (3) that 
A50 ; Vc' . The force of mortality at 50 years of age therefore depends primarily on ae (or vice 
versa). 

There is an important relationship between ae, 3 and b. The definition of X in equation (2b) 
can be rewritten as 
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Table 3. Expectation of life calculated from the logistic model (3) 

Age Expectation of life at the followving mortality levels: 
(years) 

Hungary 10th- England England and Wales 
12th centuiries 1640-1689 

1841, males 1841,females 1980-1982, 1980-1982, 
males females 

30 21.1 27.6 33.1 34.3 42.8 48.4 
40 15.7 22.1 26.6 27.7 33.3 38.8 
50 11.0 16.6 19.9 21.0 24.3 29.4 
60 7.2 11.5 13.7 14.5 16.5 20.8 
70 4.6 7.4 8.5 9.0 10.1 13.3 
80 2.9 4.5 4.8 5.1 5.7 7.6 
90 2.0 2.7 2.7 2.8 3.2 4.0 
100 1.5 1.8 1.7 1.7 1.9 2.2 
110 1.3 1.4 1.3 1.3 1.4 1.5 

3= - ln(ae)/q. (14) 

In the period when 0 hardly changed but ae was falling, we can see from equation (14) that 3 
would necessarily rise. Thus there would be a negative correlation between ae and 3. The size 
of the falls in mortality in middle age could also explain the apparent slight increase in / over 
the centuries. 

3.3.5. The expectation of life 
The fitted parameters can be used to produce some new estimates of the past expectations of 
life at ages 30 years and over, given in Table 3. Their distinctive feature is that all the 
expectations are calculated on a comparable basis. It is also possible to extend the estimates 
to the very highest ages, and this has been done for theoretical interest. The results show that, 
whereas the improvements in the expectation of life at ages 30-50 years have been measured 
in decades, by age 80 they are measured only in years and by age 100 only in months. 

Because Halley's life-table and the new life-table for England in 1640-1689 are almost 
indistinguishable, only the latter is shown separately. We have already noted that the estim- 
ates for the mediaeval period are less reliable than the others. As the forensic methods used 
by Acsadi and Nemeskeri (1970) are now believed to have underestimated ages over 60 years, 
the estimates of mediaeval expectations of life at ages 60 years and over are probably too 
low. 

4. The highest attained age 

4.1. Concept and methods 
4.1.1. Distribution of the highest attained age 
Consider a cohort of individuals, all born in the same year. Suppose that N members of this 
cohort survive to reach age xo. When all these N members have died, their N ages at death 
will have a highest value WN. This is the highest age which was attained by the members of 
this cohort. 

It is important to note that WN is the highest age which was attained by the members of the 
cohort in the circumstances in which they actually lived. It is not the potential highest age 
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which might have been attained if the circumstances had been different. WN is an observable 
quantity and a proper subject for statistical study. 

The observed value WN can be regarded as the extreme value of a sample of size N, drawn 
from the distribution of the ages at death. Thus WN will itself have a probability distribution, 
which can be derived from N and the mortality or hazard function ,u(x). The theory of such 
extreme values goes back to Fisher and Tippett in the 1920s and it was specifically applied to 
human mortality by Gumbel (1937). 

Let s(x) be the expected number of members of the cohort who will survive to reach age x, 
starting from the initial value s(xo) = N. It is a standard result that 

s(x) = Nexp {- i(t) dt}. (15) 

Now the probability that a randomly chosen member of the cohort will have a length of life 
which exceeds x is s(x)/N. Also WN will be less than x if all the N members of the cohort die 
before reaching age x and the probability of this is 

Pr(wN < x) = {1 - s(x)/NIN 

t exp{-s(x)} when N is large. (16) 

The two equations (15) and (16) give the (almost) exact distribution function for WN. 

By integrating equation (3) and substituting in equation (15) we obtain 

s(x) = Nexp[-y(xo - x) + f-' ln{ 1 ?+ a exp(fxo)}_ - 1T ln{ 1 ? oa exp(L3x)}]. (17) 

From equations (16) and (17) we can calculate the 'exact' probabilities for each completed 
year of age. This is the method which was used to construct Tables 4 and 5. 

The probability distribution of WN has a mode, usually denoted by WN. At least for models 
in which s(x) and its first derivative tend to 0 as x oo, and when N is large, it can be shown 
that WN iS close to the value of x which satisfies 

s(x) = 1. (18) 

This is not surprising, since at the highest age there is only one survivor. 
We are here dealing with the classical problem considered by Gumbel, in which there is a 

known model for the distribution of ages at death. In more recent developments of extreme 
value theory, no assumption is made about a model. Instead, observed measurements of 
extreme values (such as floods) are fitted directly to theoretical distributions for extreme 
values. However, this modern approach cannot be used when, as for mortality in the 
historical periods, we do not have any proper reliable data for the extreme ages. In periods 
before the present century we have only isolated observations of very high ages, validated 
with great difficulty. There is therefore no alternative to using the classical approach. Later, 
we shall compare its predictions with some of the high ages which are known. 

4.1.2. Sensitivity to errors 
The value of WN depends on N, but it is not very sensitive to its exact value. In a typical 
situation, even doubling N will not increase WN by more than 1 or at most 2 years of age. (The 
reason for this is that at the highest attained age the probability of survival for 1 more year is 
generally about -. If two people reach age X, we expect that one of them will reach age X+ 1. 
If four people reach age X, we expect that two will reach X+ I and that one will reach X+ 2. 
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Thus doubling the size increases the expected highest age by 1 year.) In consequence, we do 
not need to have a highly accurate value for N to make predictions about WN. 

Nor does the estimate of WN depend very critically on the choice of the age x0 at which the 
calculation is started. In a test comparison it was found that it made hardly any difference 
whether the calculation was started at age x0 = 50 or at age x0 = 90 years. Nevertheless, in 
principle it is best to start from the highest age for which the size of the cohort is known, since 
this will minimize any errors which might result from errors in the mortality function ,l(x). 

4.1.3. Methods for estimating sizes of cohorts 
In all except one of the historical cohorts to be considered later, proper estimates of the sizes 
of the cohorts at appropriate ages can be derived either from the censuses of population or 
from the population reconstitutions made by the Cambridge Group for the History of 
Population and Social Structure. 

In the earliest cohort, before the censuses and parish registers, we can still make a rough 
estimate of the size of the cohort when it reached age 50 years. This happens to be possible 
because it appears to be an empirical fact that the number of people who were 50 years old at 
their last birthday is never very far from 1 % of the total population, over an astonishingly 
wide range of circumstances. It was observed by Wilmoth (1995), analysing high mortality 
model life-tables with expectations of life at birth as low as 20-30 years, that the number of 50- 
year-old people was between 0.6% and 1.2% of the total population. At the other extreme, in 
a modern low mortality population, all the British censuses from 1931 to 1991 inclusive show 
that the number aged 50 years was between 1.0% and 1.5% of the total population, for both 
males and females. At the intermediate levels of mortality studied by the Cambridge Group, 
approximate estimates of the numbers aged 50 years are about 1.1 % of the total population in 
1651 and 1.0% in 1751. Thus as a rough rule of thumb, in the absence of better information, 
we can assume that the number aged 50 years is about 1 % of the total population. 

4.2. Application to historical trends 
As an illustration of the methods described above, we shall now apply them to some 
historical cohorts in England and Wales. These are the cohorts born in five particular 
calendar years, chosen largely for interest and the availability of data. The results are shown 
in Table 4, which is based on data drawn from many sources. 

We first describe how Table 4 was constructed. The top row shows the earliest historical 
cohort for which it was possible to make a rough estimate of size. (Its members were aged 50 
years in 1086, the year of the Domesday Book, when the population of England was 1.1 
million. Following Section 4.1.3, the size of the cohort at 50 years of age was taken as 1 % of 
this figure.) For the cohorts born in 1600 and 1700, the sizes at ages 70 and 80 years were 
derived from the Cambridge Group estimates of the population in 5-year age groups. The size 
of the 1811 cohort at age 80 years was similarly derived from the 1891 census. The size of the 
1881 cohort at age 90 years is given directly in the 1971 census. 

The predicted distribution function for the highest attained age was then calculated by the 
exact method, equations (1 5)-(17), using the nearest relevant parameters in Table 2. It is here 
assumed that the logistic model, having been fitted to the age groups shown in Table 1, will 
continue to hold for just a few age groups further. 

We now examine the results in Table 4. On the first row, the predicted distribution implies 
that the highest attained ages in the cohorts which became extinct in the 12th century were 
generally in the 90s. This prediction is strengthened, rather than weakened, by the fact that 
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Table 4. Predicted distribution of the highest attained age in particular historical cohorts in England 
and Wales, compared with some known high agest 

Year cohort Estimated size at Predicted distribution Known high ages 
born in age shown 

Mode Percentiles 

1% 99% 

1036 11000 at 50 years 92 88 99 
1600 23000 at 70 years 103 101 110 At least 97 in 1701 
1700 27000 at 70 years 104 101 110 100 around 1800 
181 1, males 14500 at 80 years 105 102 111 103-107 in 1911-1920 
1811, females 19000 at 80 years 105 103 111 103-108 in 1911-1920 
1881, males 7800 at 90 years 109 106 115 106-112 in 1985-1994 
1881, females 24500 at 90 years 112 110 118 109-115 in 1985-1994 

tHighest attained ages in completed years. 

Acsadi and Nemeskeri's (1970) mediaeval life-table was found by forensic methods which are 
now believed to have underestimated high ages. There were certainly mediaeval people who 
were believed by their contemporaries to be over 90 years old but it is difficult to validate 
individual cases by modern methods. We must also remember that only one person out of 
each annual birth cohort reaches the highest attained age for that cohort, so such cases will 
have been exceedingly rare and almost impossible to identify and verify before the days of 
compulsory registrations of births and deaths. 

The predicted distributions for the cohorts born in 1600 and 1700 imply that the highest 
attained ages in 1700 and 1800 were probably above 100 years of age. This is an interesting 
calculation. Hynes (1995) found several possible centenarians who died in England between 
1700 and 1800, but the evidence was not conclusive. The observed value in Table 4 is 
conservative; it shows only the death at age 97 years of Sir John Holland (1603-1701), whose 
documentation is described as indisputable. There is a presuniption that the attained highest 
age around 1800 was higher than this, perhaps at least 100 years by 1800 or soon after. 

For the cohorts born in 1811 and 1881 we are on much firmer ground. The observed high 
ages are from the official death registrations from 1911 onwards, and their accuracy has been 
discussed by Thatcher (1992) and by Wilmoth and Lundstrom (1996). Ages of 110 years and 
over are included only when they have been verified by tracing the original birth registration. 
In each of the 10 calendar years 1911-1920 (and 1985-1994) there was a highest age at death, 
and the last column in Table 4 shows the range of these 10 highest ages. The predicted 1 % 
and 99% percentiles are for the highest age in a single year, not for the range over 10 years. 

4.3. Application to stationary populations 
The method can be applied to a much wider range of population sizes than has been 
experienced in England and Wales. Purely for illustration, some results are shown in Table 5 
for stationary populations. The calculations are easy in this case, because the cohort sizes and 
the mortality function are constant from year to year, and the age distribution is stable and 
consistent with them. For simplicity, Table 5 shows just the total population size. The cohort 
sizes at age 50 years were found by the 1% approximation in Section 4.1.3, assuming also 
that at age 50 years the numbers of men and women are equal. 

The illustrative results in Table 5 show the mode of the distribution of the highest attained 
age in a randomly chosen year. It would, of course, be possible to calculate also the distri- 
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Table 5. Mode of the distribution of the highest attained age in a stationary population in a 
random yeart 

Total population Ages (years) at the level of mortality in the following: 
(males + females) 

Hungary, England, England and Wales 
10th-12th 1640-1689 
centuries 1841, 1841, 1980-1982, 1980-1982, 

males females males females 

10000 81 90 90 91 93 98 
100000 87 96 96 97 99 103 

1000000 92 100 100 101 103 107 
10000000 96 104 104 105 107 111 

100000000 99 108 107 108 110 114 
1000000000 103 111 110 111 113 117 

tAges in completed years. 

bution of the highest age which would be attained in a longer period, such as a decade or a 
century, but for the present purpose it is sufficient to consider a random year. It would also be 
possible to calculate the percentiles as well as the mode, but these all move together and the 
mode is sufficient to show the trends. 

Table 5 shows that the transition from mediaeval to modern mortality increases the highest 
attained age by about 14-17 years. In addition, the difference between a population of size 
10000 and a population of 1000 million can add a further 20-22 years to the highest attained 
age. 

The boldest step in Table 5 is the extension of the mediaeval estimates to very large 
populations, implying ages which are far higher than those observed in the original data. 
However, some unexpected reassurance can be gleaned from Zhao (1995). He found reliable 
records of a few deaths at ages 96-102 years in the 13th-17th centuries in China, when the 
population was over 100 million. At least, the predicted ages in Table 5 are not totally 
without support. 

5. Discussion 

It is perhaps not surprising that a logistic model of the form (3) should be found to fit recent 
data on adult mortality, since it is very close to two other models which are already known to 
fit (namely Makeham's law at ages 30-70 years and Kannisto's logit model at ages 80 years 
and over). What is more surprising is that this model should fit, rather well, not only the 
recent data but also estimates of the force of mortality derived from historical life-tables 
for the 19th and 17th centuries, and some even earlier estimates for the mediaeval period. 
Moreover, the parameter which governs the relative rate at which the force of mortality 
increases with age (the so-called rate of aging) appears to have changed very little over many 
centuries, though it has shown a slight tendency to increase. 

These findings clearly call for explanations. Section 2.4 describes some published theories 
which may perhaps help to explain why adult mortality should follow a logistic model, but 
these require critical examination. Perhaps further theories will be forthcoming, both on 
processes which can generate logistic models and also on the rate of aging. 

The long running search for a law of mortality has recently been reviewed by Olshansky 
and Carnes (1997). In several approaches, deaths are analysed by cause and an attempt is 
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made to distinguish between intrinsic and extrinsic causes (or, in another terminology, 
between endogenous and exogenous causes). However, such methods cannot be applied to 
historical data and in any case the findings in the present paper do not seem to require them. 
It is the 'all-cause' mortality which is found to follow the logistic model. 

The model, once fitted, can be used to make estimates of how the expectation of life at high 
ages, and the highest attained age, may reasonably be supposed to have evolved in England 
over the centuries. The results include the quite specific predictions that ages over 90 years 
were attained in the mediaeval period and that the age of 100 years was probably attained by 
the end of the 17th century. 

We now turn from the past to the future. Although the method in Section 4 enables us to 
predict the probability distribution of the highest age which will be attained, given the 
mortality function, it does not produce a prediction for the mortality function itself. Thus the 
method does not answer one of the major controversial questions of the moment, about how 
much further mortality rates at high ages are likely to fall within the next few decades. The 
investigation, however, provides evidence which is relevant to another controversial question, 
about whether there is a fixed upper limit to the length of human life. 

The view that there is a definite, fixed upper limit to the length of human life is very widely 
held, particularly by many biologists and gerontologists. However, it has not gone unchal- 
lenged. Gavrilov and Gavrilova (1991) commented that the idea of a fixed limit, unchanged 
over time, has become established by a process of 'mutual citation' rather than by convincing 
proof. It is therefore worthwhile to review the arguments. 

If a definite fixed limit exists, call it X. Values of X are of three kinds. The first kind consists 
of values like X = 110 and X = 115 which have been seriously proposed or assumed, e.g. by 
Vincent (1951), Fries (1980) and Hayflick (1994), but which we now know, in 1998, have 
already been exceeded. We have the direct evidence of the case of Mme Jeanne Calment (born 
1875, died 1997) who reached the age of 122 years. The documents authenticating her birth 
and life have been carefully verified by French scientists and the details have been published 
(Allard et al., 1994). 

The second kind of X is somewhere above 122 years of age, but still sufficiently close to 
have a visible effect on the shape of the distribution of ages at death. If X exists, then this 
distribution will come to an abrupt end at age X and ,u,, at this age will be infinite. Even 
before age X, we would expect the observed values of ,u, to start to rise with age faster than 
the expected values given by the Gompertz model. In fact, the new data for the industrialized 
countries show that they are falling below the Gompertz model. Moreover, the age reached 
by Mme Calment was even higher than would be expected from the logistic model, let alone 
the Gompertz model (Thatcher et al., 1998). There is no visible evidence here that the 
observed ages at death have been restricted by the effect of a fixed upper limit X. 

The third kind of X is one that exists, but at so high an age that it has no visible effect on 
our observations. This is a hypothesis which can neither be proved nor disproved. It is also 
indistinguishable, statistically, from the hypothesis that there is no fixed limit. 

Of course, the idea that there may be no definite limit to life is not new. The alternative to a 
fixed upper limit is not that immortality is possible but simply the more mundane hypothesis 
that there will continue to be a probability distribution for the highest age which will be 
attained in given circumstances, i.e. with a given mortality function and a given size of 
population, and which can be calculated by the method used in this paper. Since the 
population cannot rise indefinitely and the mortality function cannot fall indefinitely, there 
must be some high age which is unlikely ever to be exceeded, but it is not predetermined and 
it is not fixed and definite. 
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It is perhaps worth observing that even if there is no strict limit the length of human life will 
still be governed by an interaction between biology and circumstances. It is biology which 
determines the probability that people of a given age will die in given circumstances. Seen from 
this point of view, Fig. 2 illustrates how these circumstances have changed over the centuries. 
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Appendix A: Formulae and approximations for the force of mortality 

If ,u(x) is the force of mortality at age x, then the probability that a randomly chosen individual who has 
just reached age x will die before reaching age x + dx is ,u(x) dx. The force of mortality is also known as 
the hazard rate and as the instantaneous death-rate. 

Let s(xo) be the number of members of a given cohort who reach age xo, and let s(x) be the expected 
number who will survive to reach age x, where x > xo. Then 

= exp { -1(x) dx (19) 
s(xo) Xi 

(x) I- ds (20) sdx 

Now let fi(xo, x) be the average value of ,(x) between ages xo and x. Then 

P(xO, x) = ln{s(xo)/s(x)} (21) 
x - X 

This is the formula which was used to derive the 'observed' values in Table 1 from the published life- 
tables, identifying s(x) with l. in life-table notation. 

The force of mortality at age x + 2 is very close to the average force of mortality between ages x and 
x + 1. Thus from equation (21) we have 

8t(X + 2)ln{s(x)/s(x + 1)1 (22) 
-ln( - qx.) (23) 

where q., in life-table notation is the probability of dying within 12 months of reaching age x. When q., is 
known exactly, model (23) gives a very close approximation for the force of mortality. Even in extreme 
cases, when the force of mortality increases exponentially by 10% with each year of age, the numerical 
error in expression (23) is only 0.04%. 

In a large population, ,u(x) is also close to the age-specific death-rate found by taking the annual 
number of deaths between ages x - 2 and x + ', and dividing this by the average population between 
these ages. Hence [u(x + 2) is close to the age-specific death-rate based on deaths between exact age x and 
exact age x+ 1, which is m, in actuarial notation. Hence 
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This approximation is given by Pollard (1973). In the same extreme case as before, the numerical error 
in expression (24) does not exceed 0.8%. 

The approximations in this appendix apply to adult mortality but not to infants, because the pattern 
of deaths is very non-uniform in the first year of life. 

Throughout the paper, age is measured in years. Thus [u(x) and j(xo, x) measure the force of 
mortality in units of deaths per person-year. 

Appendix B: Methods of fitting the model 

The modern data described in Section 1.3 show the estimated numbers at risk as well as the deaths. If N,, 
people reach age x during a given period, of whom D, die within 12 months, then we can regard Dv as 
the outcome of N, binomial trials, each with probability q, as given by the model. The likelihood of the 
observed data set is the product of all the relevant binomials. The parameters of the model can then be 
estimated by maximizing the likelihood. This method can be applied whenever we know N,. and D, 
whether the population is stationary or non-stationary. 

The historical life-tables present a different problem, because they do not show the absolute numbers at 
risk. The life-tables, on their own, simply show the behaviour of a hypothetical stationary population which 
has probabilities of dying qv, as estimated in various ways by the compilers of the life-tables. From the 
life-table we can derive the implied relative frequencyf of observed deaths in the ith age group. We also 
have the probability pi that a death will fall in this age group, according to the model. Now consider a 
hypothetical cohort of arbitrary size N drawn from this hypothetical population. We assume that the 
ages at death in the cohort will follow the life-table, so that the observed number of deaths in the ith age 
group will be Nf . The probability that the model values pi will produce this observed result is then given 
by the appropriate term in a multinomial distribution. The resulting log-likelihood for the observed 
result is ENf ln(pi). The parameters which maximize this log-likelihood are the same for all N. These 
'best estimates' of the parameters, calculated in this way by Trevor Sweeting and given in Table 2, are all 
that we need to construct Tables 3-5. 

Because the best estimates from the life-tables do not depend on N, and are not based on known 
numbers at risk, they have no associated standard errors. However, the earlier historical life-tables are 
based on rather limited numbers of observations (of deaths in Breslau etc.). If we had been fitting the 
parameters to the original data, instead of to the life-tables, the estimates of the parameters might 
have had substantial standard errors. Unfortunately, we cannot find this out directly, because in many 
cases the original data are not available in the form required. It has, however, been possible to make 
estimates of N*, the total number of deaths at ages 30 years and over which were included in the data on 
which the life-tables were based. These are shown in the second column of Table 2. 

Now consider a cohort which starts with size N* at age 30 years and has subsequent deaths which 
follow the values of q, given either by the life-table or by the fitted model. We can calculate the standard 
errors for parameters fitted to such a cohort. Of course, this is not how the life-tables were actually 
constructed, but at least the method gives an order of magnitude for those errors which are un- 
avoidable, owing to stochastic variations in the ages at death in a limited number of observations. 
Standard errors estimated in this way are shown in Table 2. 
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Discussion on the paper by Thatcher 

M. Murphy (London School of Economics and Political Science) 
This paper is at the interface of demography, statistics and biology that is producing a wealth of new 
insights (Wachter and Finch, 1997). As examples, Mr Thatcher's paper helps to demolish the idea that 
there is a fixed human 'lifespan' (or biologically determined maximum lifetime), and he shows that 
mortality at the oldest ages has been improving steadily in developed countries, a topic of debate in 
earlier decades. This paper is an example of statistics as a core part of the scientific process, rather than 
a technique that is useful for other disciplines. Statisticians rightly concentrate on the estimation of 
population aggregates, such as means, and give little attention to extreme values. However, in the case 
of human longevity, both public interest and scientific insight come from the analysis of one individual 
out of the 6 billion on this planet. 

This paper shows that we can be confident that the number of older people will increase substantially 
in decades to come, a trend that is sometimes referred to rather unfortunately as the 'demographic time- 
bomb'. I would like to concentrate on some of the implications for both the elderly and the overall 
populations arising from this paper's analysis, starting with forecasts of the elderly population. Current 
British official projections (Government Actuary's Department, 1998) suggest that the population aged 
60 years and over will increase by 50% between 1996 and 2066, and there will be aging within the elderly 
population, so that of those aged 60 years and over the proportion who are aged 85 and over will 
increase from 9% to 14%. The projected number of centenarians increases 14-fold, from 6000 to 
102000, even though this paper estimates that the first centenarian in England and Wales may not 
have been seen until the 18th century. Population projections, however, are subject to considerable 
uncertainty: in the USA, in 1994 there were 3.7 million people aged 85 years and over; by 2050 this is 
expected to increase to 18.2 million in the central variant projection, but with a range from 9.6 million 
to 31.1 million between the lowest and highest scenarios (US Bureau of the Census, 1996). Even these 
changes are modest compared with what may occur in developing countries. 

In the past, official forecasts in all countries have consistently underestimated improvements in 
mortality at older ages (Olshansky, 1988; Murphy, 1995). The parameterization for old age mortality in 
this paper provides a potentially valuable starting point for improved forecasts and assessment of 
forecasting error. 

The prolonging of life is welcome, but a key issue is how many of these additional years of life are 
likely to be spent in the healthy rather than the unhealthy states (Robine and Ritchie, 1991). 
Establishing trends in the health status of older people is difficult (Grundy, 1997). In the 1970s and 
1980s, it appeared that the additional years of life were mainly being spent in an unhealthy state, 
although often not of a very serious nature. More recently, there is evidence that the health status of 
older people has been improving in countries such as Canada, France and the USA. If US disability 
rates had remained at 1982 levels, there would have been an additional 1.2 million disabled people in the 
USA in 1994 (Manton et al., 1997). Elucidating the interaction between trends in disability and 
mortality would appear to be a priority for future work since the numbers and health status of elderly 
people will have major implications for health care and long-term financing. Germany has introduced 
compulsory long-term care insurance, and in Britain expenditure on health and personal social services 
per person aged 85 years and over was ?3995 compared with ?263 per person aged 18-64 years in 1989- 
1990 (Central Health Monitoring Unit, 1992). 

While people live longer, the average age at entry to the labour force has been increasing and people 
leave it at earlier ages. In 1971 15% of men aged 60-64 years were economically inactive, compared with 
57% in 1996 (Office for National Statistics, 1998), a trend reflecting preferences by workers and/or 
employers, rather than government compulsion. Although the role of aging for problems in funding of 
pensions has been exaggerated, it continues to be important (Johnson, 1997). 

Informal care of older people is usually undertaken by close family members and recent trends in 
developed countries with declines in marriage and increases in breakdowns of partnerships and 
voluntary childlessness are likely to reduce the pool of this key caring group in the long term, although 
not in the short term (Wolf, 1995; Wachter, 1997). 

I am very pleased to propose the vote of thanks to this stimulating and fascinating paper by Mr 
Thatcher. 

J. W. Vaupel (Max Planck Institute for Demographic Research, Rostock) 
Roger Thatcher has presented a thoughtful, thought-provoking analysis of mortality at older ages. 
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His contribution is intelligent, judicious and stimulating, in the best tradition of English statistical 
thinking. 

As Thatcher emphasizes, 'the population is heterogeneous'. Frailty models provide a convenient way 
of roughly accounting for unobserved differences in susceptibility to death among individuals of the 
same age. Thatcher's results, as well as research by Lee and Carter (1992) and Lee and Tuljapurkar 
(1994), and some earlier findings about the evolution of Swedish mortality (Vaupel et al., 1979) suggest 
to me that the following frailty model may provide some useful insights into the dynamics of mortality 
over age and time: 

,u(x, y, z) = z[po(x) exp{-r(x) 0qy)} + c exp{-0(y)}, (25) 

where ,u(x, y, z) is the force of mortality at age x and time y for individuals with fixed frailty z in some 
cohort, pi0(x) is the base-line or standard force of mortality at age x, c is a positive constant, 0qy) and 
0(y) are functions that determine how mortality is affected by altered conditions and r(x) is a function 
that determines the relative effect of altered conditions on mortality at different ages. If z follows a 
gamma distribution with mean 1 at the starting age of observation x0, then 

[i(x,y) = 10o(x) exp{-r(x)0qy)} + c exp{-0(y)}, (26) 
1 + 2(y- x)j po(t) exp{-r(t) 0(y - x + t)} dt 

where j(x, y) is the force of mortality at age x and time y and a2(y _ X) iS the variance at age x0 of the 
gamma distribution for the surviving cohort born at time y - x. This formula can also be written as 

i(x, y) = ,uo(x) exp{-r(x) 0qy)} s(x0, x, y - x) 0x-v) + c exp{-Vb(y)}, (27) 

where s(x0, x, y - x) is the proportion of the cohort born at time y - x that survived from age x0 to age 
x. Other distributions for frailty z could be used, but the gamma distribution is convenient because it 
leads to the simple formulae (26) and (27). 

'Biology', 'circumstances' and 'heterogeneity', three key factors in Thatcher's analysis, are distin- 
guished in formulae (25) and (26). Biology (in specified base-line circumstances) is captured by po (x) and 
c, the effect of changing circumstances by r(x) q(y) and V/{y), and heterogeneity by o2(y_ x). To 
identify the model some arbitrary restrictions must be imposed, such as setting r(0) equal to 1 and X(0) 
and 4'(0) equal to 0. This model is surely oversimplistic and hence wrong, but it might lead to some 
insights about how biology, circumstances and heterogeneity have interacted to determine mortality 
over age and time. Thatcher's logistic formula (3) is a special case of equation (26). 

Models like equation (26) can be fitted to mortality surfaces over age and time. Such surfaces can be 
constructed from reliable data for the past century or longer for Denmark, England and Wales, 
Finland, France, Italy, the Netherlands, Norway and Sweden (Vaupel et al., 1998). Thatcher's results 
demonstrate that research on estimating models of mortality surfaces can lead to important findings. If 
data are available for 100 years of age and 150 years of time, then 15000 death-rates can be analysed. 
Values of 0/y), 4'y) and a2(y _ X) can be estimated for every year and r(x) and ,u0(x) for every age. 
The mortality surface can then be decomposed, in a flexible way, into components pertaining to biol- 
ogy, circumstances and heterogeneity. Alternatively, functional forms might be specified for 0qy), 
Vb(y) a2(y - x), r(x) and pN(x). The mortality surface can be analysed from birth or, following Thatcher, 
for adult ages above 30 years, where the Gompertz model might be a reasonable choice for ,u0(x). To 
capture general trends over age and time roughly the following six-parameter version of equation (27) 
might prove useful, at least at ages above 30- or perhaps 50- years and for restricted stretches of 
time: 

,i(x, y) = a exp{bx - qy} s(x0, x, y - xf + c exp(-Vy). (28) 

Thatcher's paper, in sum, is both interesting in itself and likely to encourage some interesting 
additional research. Consequently, I would like to second the vote of thanks and to congratulate the 
author on his stimulating insights. 

The vote of thanks was passed by acclamation. 
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Vaino Kannisto (Lisbon) 
One of the revelations of Mr Thatcher's excellent paper is that mortality does not rise as high as has 
generally been thought. Projected to age 120 years, the probability of dying within 12 months would still 
be in the neighbourhood of 0.6. I made a search in the Odense database to see whether there are 
exceptions to this pattern. In 147 old age life-tables from 31 countries since 1950 there were about 2000 
q-values at ages 100 years and over. Among them, qx exceeded 0.6 by more than 1 standard error in only 
three instances, and in none by more than 1.5 standard errors. 

I think that this fits neatly into the pattern described by Mr Thatcher in accordance with the logistic 
curve. There is no proof that the underlying probability of dying ever exceeded 0.6 in this material. 

The same may also apply to high mortality countries where any given death-rate may be found at an 
age up to 10 years or even 15 years younger than in the West, leaving few survivors to very high ages. In 
contrast, the subsequent ascent of these high rates with advancing age is slower as is well illustrated in 
Fig. 2 of Mr Thatcher's paper. 

Sidney Rosenbaum (Radlett) 
Over 40 years ago I was struck by a review by Kendall (1955) of Gumbel (1954) and I acquired a copy of 
the book. Although Gumbel's main field of application was floods, he had an interesting example of the 
oldest ages in Switzerland which was closely modelled by the so-called double-exponential distribution 
whose cumulative density function is exp{- exp(-y)}. His estimate for the oldest age was based on the 
mode of the distribution of these ages, plus an add-on factor which was a function of their standard 
deviation (SD). Thus he argued that a large SD could more than compensate for a low mode, using the 
analogy of a stream with a large variation in its flows that could result in greater floods than a bigger, 
more placid river. Hence a country with a lower expectation of life might record a higher age at death. 
We shall explore this in the following indicative calculations. I have some difficulty with Gumbel's 
notation and propose to use the mean rather than the mode, which avoids having to calculate the latter. 

If x denotes the oldest age in each of N years, the standardized add-on is 

max ln(N)- YN ln(N) - for large N 
-\. UN 7r/V/6 

where max is the maximum age in a period of N years and -y is Euler's constant: for N = 100, as in the 
following example, the limiting value is quite accurate. 

To start with England and Wales, suppose that the average of the oldest ages over the past century 
was 108 years, with an SD of 2. Then max is found to be 114. This is for a population at mid-century 
of 40 million. For Uroland, with 10 times the population, i.e. 400 million, we must add a further 
(SW/UN) ln(l0), with max= 118. 

Suppose that the fabulous country of Chindostan has a population of 4000 million with a mean 
extreme age, over the same period, of only 98 years but with twice the SD of 4. Then in comparison with 
England and Wales the effect of the increase in SD alone yields max = 111, with the addition for the size 
of the country of 15, totalling 126. Evidently a further increase in SD would result in even greater ages. 

The effect of a population reduction can be similarly calculated; for instance, to get down to the 
number of Fellows of the Society we must subtract (SU/UN) ln(1 04), say (however, the Society has existed 
for 164 years so the subtraction must be reduced slightly); I calculate that the maximum age would have 
been slightly under 100 years. To my knowledge, we have had one centenarian, Lt Col William Butler, 
who died in 1969 at 101 years of age. 

John Charlton (Office for National Statistics, London) 
Professor Murphy has eloquently said much of what I was intending to say, but it is perhaps still 
interesting to look at the figures that I have which illustrate some of the points. 

The trends shown by Mr Thatcher are the result of both growth in the adult population in the 
preceding age groups ages and improvements in mortality at higher ages-there is a multiplicative 
effect (Fig. 10). If we turn to looking at mortality by birth cohort (Fig. 11) we see widening differences 
between successive birth cohorts, as mortality levels have decreased. 

If the lines in the graph are projected forwards (though we have no certainty that improving trends 
will continue) then life expectancy would be rather longer than previously expected. Perhaps it is worth 
modelling this graph to consider different scenarios. Even with more conservative assumptions about 
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Table 6. Parameters of the fitted logistic modelst 

Dynasties and years of birth Deaths at ages 30 104c a 
years and above 

Tang dynasty and earlier, 805 BC-978 AD 510 18.7 0.057 0.022 111 
(18.1) (0.012) (0.010) (7) 

Song dynasty, 979-1278 AD 433 7.7 0.069 0.000 103 
(2.3) (0.004) (0.000) (3) 

Yuan and Ming dynasties, 1279-1643 AD 337 2.9 0.080 0.010 102 
(2.7) (0.012) (0.005) (4) 

Qing dynasty, 1644-1860 AD 235 7.2 0.072 0.000 101 
(3.0) (0.007) (0.000) (4) 

t Standard errors are given in parentheses. 

improvements in cohort mortality we can see in Fig. 12 that at age 75 years the improvements in cohort 
life expectancy are much greater than those calculated on the basis of period life-tables. 

The improvement observed in overall mortality among those aged 75 years and over has not been 
paralleled in all the underlying causes of mortality, however -for example death-rates for cancers, 
musculoskeletal disorders, mental disorders and diseases of the nervous system (including Alzheimer's 
and Parkinson's diseases) and some other degenerative diseases are rising (Fig. 13). This rise in mor- 
tality may also reflect an increase in morbidity among those over 75 years old among whom the 
centenarians still represent only a small proportion (about 0.1%). Trends in the burden of morbidity 
and disability are of considerable importance to the Health and Social Services, especially if the 
numbers are growing so fast, but these are currently not very well understood. 

David Bartholomew (Stoke Ash) 
The logistic model is distinguished by the fact that, at very high ages, it levels off to a horizontal 
asymptote. This implies that, as age increases, age-independent causes of death are becoming relatively 
more important than age-dependent (i.e. biological) factors. We know that deaths among the very old 
are often precipitated by falls or other kinds of accident and, given the frailty of all within that age 
group, we might expect such 'accidental' death to be largely independent of age. If this observation is 
correct, we would predict a levelling-off of the force of mortality and only the logistic model captures 
that feature. 

Q. Tan and J. W. Vaupel (Max Planck Institute for Demographic Research, Rostock) 
Thatcher presents a logistic model (his formula (3)) and then fits it to several sets of data, with 
parameter estimates shown in his Table 2. We were curious whether his model would fit data that we 
have compiled on historical patterns of mortality in China. Our data consist of the age at death and year 
of death of famous Chinese men who died between 805 BC and 1900 AD (Liao et al., 1990). We omitted 
a small number of cases for which we suspected that the age at death might have been misreported. We 
assessed the age at which each man had become sufficiently famous to warrant his inclusion in the book. 
We then used maximum likelihood methods to fit Thatcher's model to these conditional survival data. 
The resulting parameter estimates are shown in Table 6. A visual inspection of graphs such as those 
presented in Thatcher's Figs 3-9 indicated that the fit was reasonable, although the observed values did 
vary owing to the limited size of our samples. The parameter estimates are interesting because they are 
quite similar to those of Thatcher. This can be taken as additional evidence that simple models might 
provide serviceable approximations to surfaces of mortality over age and time. 

Shiro Horiuchi (Rockefeller University, New York) 
Thatcher has shown that 

(a) the logistic model fits the historical series of adult mortality in England and Wales very well, 
(b) trends in the logistic parameters are interpretable biomedically and 
(c) the estimated logistic models are consistent with records of the highest age attained. 

These findings are important, and I would like to give a few suggestions for future work in this line of 
research. 
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Firstly, to justify the use of the logistic model, it is essential to compare the extent to which the logistic 
and other mathematical models fit data. (I presume that the author is conducting this type of analysis as 
well.) However, in the conventional semilogarithmic plot of death-rates by age, many different models 
often appear to fit data fairly well. Thus I recommend that the life-table aging rate LAR (the age-specific 
rate of relative mortality increase with age) be used for model evaluation. Since the implied LAR pattern 
differs markedly between the mortality models, the observed variations with age of LAR indicate 
unambiguously which model really fits data well. In our analysis of international female mortality data, 
the logistic equation was the only model that fitted the observed LAR patterns reasonably well (Horiuchi 
and Coale, 1990). 

Secondly, this study focuses on period mortality only. It seems interesting to investigate relationships 
between period and cohort mortality patterns in relation to the logistic model. Should the logistic model 
fit period schedules or cohort schedules better? Probably it fits both very well, but levels and trends of 
the logistic parameters are likely to differ significantly between periods and cohorts. For example, if the 
mortality level is declining, the 3s for cohorts should be lower than the 3s for periods. Then a question 
arises: which series of 3s reflect the underlying genetically determined pattern of aging, and which series 
of Os are statistical artefacts? 

Finally, it is wisely assumed in this paper that the K-parameter in equation (1) is fixed to be 1. The 
parameter seems to be determined mainly by death-rates at age 85 years and over, which are lacking in 
the three early life-tables. I would like to stress that this assumption should be limited to data in which 
oldest old death-rates are (partly or totally) lacking or unreliable. The ,c-value is the maximum senescent 
mortality, and its stability should always be checked with the latest data. 

Bernard Jeune (Odense University) 
In his excellent and stimulating paper Roger Thatcher compares Halley's well-known life-table (Breslau, 
1687-1691) with Wrigley's new life-table (England, 1640-1689) and finds remarkably similar results. As, 
however, Buffon (1835) emphasized, mortality figures for this period differ considerably from study to 
study. Recently Bourdelais (1993) has mentioned several new studies that show variations in adult 
mortality in the 1600s and the 1700s based on different geographical areas and social classes. Thatcher's 
remarkably similar results could therefore be nothing more than a coincidence. 

The historical trends of the highest attained age are discussed in Jeune and Vaupel (1995). 
Regrettably, we failed to consider an important study by Charbonneau and Desjardins (1990). Among 
210000 burials registered in Quebec before 1800, 178 listed an age at death of 100 years or more. After 
age validation, only one case could not be refuted. On average the alleged centenarians were in fact 88 
years old. However, among the 20000 people born in Quebec before 1700 Desjardins (1998) reports a 
dozen people aged 95 years and older (the highest confirmed age was 99 years). I therefore agree with 
Thatcher that people in the 1600s could have reached the age of 90 years. But it is still an open question 
whether the age of 100 years was reached before 1800. We still lack valid documentation for even one 
case of a centenarian from that time. 

According to some studies reported by Bourdelais (1993) the probability of reaching the age of 60 years 
in the 1700s for young adults was probably not higher than the probability of living to 80 years old today. 

In Table 5 Thatcher shows that the mode of the highest attained age could have been 100 years in a 
stationary population of 1 million people in the 1600s. This estimation is based on a fitted logistic model 
of the force of mortality in England from 1640 to 1689, where the highest age among the observed cases 
was below 85 years (Table 1). Surprisingly, the mode of distribution of the highest attained age in a 
stationary population of 1 million in England in 1841 is no higher than this, although the force of 
mortality is clearly lower for all ages-at least up to 85 years-and an observed age of 95 years was 
not reached. This fact begs for an explanation. 

Richard L. Smith (University of North Carolina, Chapel Hill) 
My comments are concerned with the application of extreme value theory in Section 4. 

The author distinguishes between 'classical' extreme value theory, in which the underlying distri- 
bution is assumed known, and more modern statistical approaches. He only considers the classical 
approach, but the way in which this is applied is rather trivial. 

Instead, it seems to me that the problem is well suited to modern statistical methods based on 
exceedances over high thresholds; see for example Davison and Smith (1990). The advantage of these 
methods, in comparison with those used by the author, is that they allow attention to be focused 
specifically on the highest ages, so that there is less bias due to a parametric model fitting very well over 
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the bulk of the data but not in the most extreme portion. The author apparently rejects this approach 
because of the absence of 'proper reliable data' for the most extreme ages, but this may be based on a 
misconception of the methodology. What matters is that we have a reasonable quantity of data over the 
threshold selected. If a few of the very extreme observations are suspect, it might be possible to treat 
them as censored observations or in some other way to downweight their influence. The presence of 
such observations does not in itself make the methods invalid. 

I have two other comments related to extreme value theory. 

(a) Determining the distribution of the maximum of a sample of size n, where n is some large but 
finite number, and when the underlying parameters of the model are unknown, can be regarded as 
a problem of predictive inference. Similar issues have arisen in the discussion of athletics records 
(Robinson and Tawn, 1995; Smith, 1997). Bayesian methods have a role to play here. 

(b) Does environmental variation play a role? We often hear accounts of how people in certain parts 
of the world live to exceptional ages because of unique life style or genetic factors. This may 
suggest some kind of random effects analysis, instead of treating the population members as 
independent. 

In making these comments, I do not seek to be critical of the author's work. The data collection 
which he and his colleagues have performed is truly impressive; I see my own comments as indicative 
of the potential for further research. I hope that the data will be made generally available, to allow 
interested statisticians the opportunity to pursue these fascinating questions. 

Nicholas T. Longford (De Montfort University, Leicester) 
I think that this paper brings out very nicely how crucial is the model specification in estimating 
quantities about which the data contain little information. A freak event (record longevity) will almost 
always happen, especially if we search for it sufficiently hard. This makes all models for single extreme 
events very vulnerable. Although appreciating the historical importance of the 'highest attained age' as 
an estimand, I would propose as an alternative a high percentile of the ages at death, such as 99.9%, 
because its estimation is likely to be much more precise, and yet it is a similar characteristic of the 
studied population. 

The following contributions were received in writing after the meeting. 

Russell Ecob (Medical Research Council Medical Sociology Unit, Glasgow) 
May I congratulate the author on his formidable undertaking in collating and modelling mortality, 
particularly in older age groups over both time and place? These models have potential use to aid in the 
explanation and understanding of differences in mortality by social groups, regions and countries, both 
contemporarily and historically (incidentally, I wonder how representative of national populations are 
the life-tables used in Hungary and England over the period 1640-1689?). Currently there is some 
concern (Drever and Whitehead, 1997) over the differences in mortality between social groups in both 
Britain and other European countries, differences in life expectancy at birth for males in the UK during 
1977-1981 showing differences between social classes I and II and IV and V of 4.5 years and showing 
some signs of an increase since then, and differences in life expectancy for males between extreme 
regions in the UK in 1987 amounting to 3.2 years (Illsley et al., 1990). 

Differences between regions also vary according to age, a decrease in the between-regional variance 
particularly in age groups below 35 years over the period 1931-1981 resulting in larger between regional 
variance over the period 1971-1981 in the 35-64 years age group (though with more recent increases at 
ages 25-34 years to similar values) (Ecob et al., 1997). Interestingly there is a relative lack of between- 
regional variation in the age groups 75 years and over. 

What would the author suggest as the most useful method of extending such models to accommodate 
these differences? In discussion of the 'fixed frailty' model, he suggests that individual frailty ozi is fixed 
from the age of 30 years onwards. However, the above findings suggest that such models may be 
usefully fitted to data disaggregated by social-economic factors and possibly by region, allowing in 
addition random variation at individual and higher levels in other parameters, possibly -. 

Finally, could such extensions to the model account for the apparent lack of fit of the model in 
particular age groups (particularly the underestimation of mortality in recent periods for females in 
England and Wales between ages 45-60 years, shown in set G in Table 1)? 
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T. B. L. Kirkwood (University of Manchester) 
Thatcher provides an analysis of mortality patterns which will be of undoubted value to those interested 
in the biology of aging. As he correctly states, most gerontologists now believe that aging results 
primarily from the gradual accumulation of random damage to cells and tissues in the body, which 
builds up at a rate that is determined, on average, by the evolutionary optimization of investments in 
somatic maintenance and repair (Kirkwood, 1996). There is an important difference between this view 
and the earlier idea that aging is programmed by some kind of biological clock. If such a clock existed, 
the concept of a fixed definite limit would make more sense. However, there are strong evolutionary 
arguments against programmed aging. Aging through the accumulation of damage is a process that one 
would expect to be susceptible to modification, if circumstances change so that the body is subject to 
fewer intrinsic and extrinsic stresses. The long-term trends described by Thatcher are consistent with 
this interpretation and it is interesting to ask what biological mechanisms may be responsible for the 
long-term stability of the parameter 3. 

The slowing of the mortality rate increase at the highest ages, as shown by the better fit of the logistic 
model, has attracted much biological interest. There is good reason to regard the model by Mueller and 
Rose (1996), which suggests that a mortality plateau is intrinsic to the predictions of evolutionary 
theory, as flawed (Pletcher and Curtsinger, 1998; Kirkwood, 1998). Current explanations for apparent 
mortality plateaus include genetic heterogeneity, non-genetic heterogeneity due to the stochastic nature 
of the aging process and modifications of behaviour (human centenarians tend, for example, to receive 
greater support than people in their 80s and 90s, whereas old fruit-flies crawl instead of flying). All these 
factors may contribute. 

Thatcher's analysis of the distribution of the highest attained age is illuminating and confirms that a 
species's maximum lifespan is a statistic that should be used with caution, a point which I and others 
have argued previously (see, for example, Kirkwood (1985)). Comparative biologists are coming to 
appreciate that the parameters of the gamma-Makeham or logistic model provide a better basis for 
analysing species or population differences (but this requires larger samples than are often available). 
This paper reinforces this important message. 

Anthony W. Ledford and Michael E. Robinson (University of Surrey, Guildford) 
The standard practice in extreme value statistical modelling is to base inference on just the extreme 
observations, and to model these by using a family of theoretically justified tail models. This approach is 
adopted because the non-extreme and extreme observations may behave differently; thus models which 
are appropriate for the main part of the data may be inappropriate when extrapolated into the extremes 
and vice versa. As extreme ages are of primary interest here, extreme value methods have a useful role to 
play. 

We focus on one such method: the peaks-over-threshold approach of Pickands (1975) and Davison 
and Smith (1990). Let the random variable X denote age at death and u some high age. Then, under 
standard assumptions, the behaviour of X above u may be described by the generalized Pareto distri- 
bution (GPD) given by 

Pr(X > u + xlX > u) = (1 + (X/T)+/4 for x > 0, 

where s+ = max(s, 0), a > 0 is a scale parameter and ( E IR is a shape parameter. The parameter ( is of 
particular significance: if > 0 then the upper tail of X extends to infinity, but if ( < 0 then X has a finite 
upper tail. To illustrate the above, we followed the approach suggested in Appendix B and fitted the 
GPD to the males and females data for 1980-1982 (see Table 1) for several values of u. For both sexes, 
our results suggest that there is a finite upper end point for the age at death. However, owing to the 
limited nature of the available data, this finding is not conclusive. 

Modern extreme value statistical methods may be useful here in other ways. For example, the 
similarities between the force-of-mortality curves in Fig. 2 suggest that a joint analysis may be 
appropriate, with parameters that vary with time and depend on sex. Such an analysis would make 
more efficient use of the available data and would quantify how the extremes of age at death vary 
between the sexes and how they have changed through history. However, to address such issues 
adequately, data recorded at a finer resolution or at an individual level may be required. Although the 
author remarks that reliable historical extreme age data are not available, a careful use of censoring may 
allow less reliable data to be incorporated appropriately in such methods. We are pleased that the full 
data sets are to be made available to researchers, and we commend the author for his efforts. 
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John R. Wilmoth (University of California, Berkeley) 
Roger Thatcher presents a concise and well-reasoned account of our present knowledge about the shape 
of the age pattern of mortality in adult humans and about the highest ages attained throughout history. 
I agree with almost everything that Thatcher says in this paper, but I would like to make two specific 
comments regarding statements made in the discussion. 

First, Thatcher asserts: 'The results include the quite specific predictions that ages over 90 years were 
attained in the mediaeval period and that the age of 100 years was probably attained by the end of the 
17th century'. Here, I think it is appropriate to underline that this conclusion, which emerges from 
Table 4 of the paper, applies to England and Wales only, not to the entire world. For example, the 
modal maximum age at death for the single cohort born in England and Wales in 1036 would have been 
only 92 years. However, estimates of the size of the world's population during the 11th century were 
around 300 million, compared with 1.1 million for England and Wales in 1086. Referring to Table 5, we 
see that the modal maximum age at death based on mediaeval life-tables in a population of 300 million 
would have been around 100 years already in this period. Furthermore, Thatcher notes that these 
life-tables are now thought to underestimate the number of survivors to older ages. Overall, I find 
Thatcher's empirical results to be entirely consistent with my previous conclusion that human cen- 
tenarians should have occurred regularly once the world's population exceeded about 100 million 
people, which is thought to have occurred around 2500 BC. Of course, this conclusion requires the 
rather heroic assumption that early human mortality was not significantly higher than during the 
mediaeval period, but the extant evidence from various high mortality populations suggests that such a 
presumption is not entirely unreasonable. 

Second, Thatcher concludes: 'Since the population cannot rise indefinitely and the mortality function 
cannot fall indefinitely, there must be some high age which is unlikely ever to be exceeded, but it is not 
predetermined and it is not fixed and definite'. After such a careful discussion of the probabilistic nature 
of limits to the human lifespan, I found this statement to be puzzling. I would say that the evidence for 
finite limits to the earth's 'carrying capacity' for human life or for an insuperable lower bound on age- 
specific mortality rates has no firmer scientific foundation than the claim that the maximum length of 
life is fixed. 

Anatoli Yashin (Max Planck Institute for Demographic Research, Rostock) 
I congratulate Mr Thatcher on his very interesting and stimulating paper. I have just two brief 
comments. First, I would like to mention that the logistic mortality curve of the LeBras model of 
changing frailty is identical with the mortality curve obtained in the 'gamma-Makeham' fixed frailty 
model (Yashin et al., 1994). This observation shows that survival data alone are not enough to dis- 
tinguish between the two fundamentally different mechanisms of aging and survival. It seems that data 
from longitudinal studies of aging, which require more sophisticated models (Yashin and Manton, 
1997), are more appropriate for this purpose. Second, there is some question about the explanatory 
power of the gamma-Makeham model in describing the levelling-off of mortality at late ages due to the 
fact that univariate frailty models are non-identifiable. Since there is no biological background for the 
choice of the Gompertz-Makeham underlying hazard, other functions can be used for modelling pLo(x) 
as well. In particular, the logistic pLo(x) can be used. Such a choice, however, may exclude heterogeneity 
in mortality from the causes of the levelling-off of the mortality rate. Fortunately, the bivariate 
correlated gamma-frailty model (which is identifiable) can be used for the evaluation of both the 
heterogeneity distribution and an underlying hazard from survival data on related individuals. The 
analysis of twin data shows that the estimates of ,I0(x) may increase faster than the Gompertz curve 
(Yashin and lachine, 1997). 

The author replied later, in writing, as follows. 

I am grateful to both the proposer and the seconder of the vote of thanks for their kind words. Both 
have adopted a very wide perspective, but they have not raised any specific points on the paper which 
call for reply. One may note an interesting difference of approach between mine and Vaupel's. Given a 
very large volume of data, my natural instinct was to try to find a simple model which would fit. Vaupel, 
seeing the simple model, has generalized it. Such action and reaction are the stuff of progress and I shall 
be glad if my paper encourages further research. 

Of the specific issues which were raised in the discussion, the most important is whether the force 
of mortality tends to a finite limit as age increases. The paper argues that both the modern and the 
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historical data are consistent with the logistic model, which has this property. This implies the corollary 
discussed in Section 5, that, if a fixed upper limit to life exists, it must be at so high a level that it has no 
visible effect on our observations. 

In any debate about whether there is a finite limit to life, the views of biologists must be crucial. I am 
therefore extremely glad to see the authoritative contribution by Kirkwood. He lists three current 
explanations for the levelling-off of mortality at high ages, namely genetic heterogeneity, non-genetic 
heterogeneity due to the stochastic nature of the aging process and modifications in behaviour. 
Bartholomew adds a further reason, the proneness to accidents at very high ages. 

In the discussion, two additional pieces of factual evidence were presented which further support the 
conclusion. Charlton showed very clearly in Fig. 11 how age-specific death-rates (and hence the force of 
mortality) have levelled off at high ages in the cohorts born in England and Wales since 1841. Kannisto 
reported an important new finding, that the observed upper limit for q, has not significantly exceeded 
0.6 in any of the 31 countries which are now included in the new database on old age mortality. 

On the other side of the argument, Ledford and Robinson apply one of the modern methods of 
extreme value theory, the 'peaks-over-thresholds' approach. This is based on the fact that under 
standard assumptions the behaviour of the ages at death above a sufficiently high threshold u can be 
described by the generalized Pareto distribution (GPD). On fitting the GPD to the data for 1980-1982 
in Table 1, they find that their results support (though not conclusively) a finite end point for the age at 
death. However, this finding needs to be examined critically, because we know that the same data can 
also be fitted by the logistic model, which points to exactly the opposite conclusion. There is a logical 
contradiction here. It arises, I think, because the thresholds used by Ledford and Robinson are not 
sufficiently high for the GPD approximation to be valid. If ,-tu denotes the force of mortality at the 
threshold age u, and if mortality truly follows the logistic model (3), then at all ages x > u we shall have 
pu < p, < 1 + y. If u is sufficiently large for pu to be close to 1 + 'y, then p,u, will be almost constant when 
x > u, whence the distribution of ages at death will be almost exponential and so will be close to the 
GPD with ( = 0. Thus the extreme value theory will work perfectly, but only when u is sufficiently high 
for pu to be close to 1 + y. Unfortunately, the force of mortality does not reach this level until beyond 
the range of ages which we can observe. 

In Thatcher et al. (1998), my colleagues and I applied a battery of tests which would have detected any 
serious departures from the logistic model below age 120 years, but we did not find them. Of course, the 
model may break down somewhere above this age, but it would still need a threshold above age 120 years 
to detect this. Although I can see the theoretical attractions of the peaks-over-thresholds approach, as 
advocated by Smith, I think that he will find it difficult to apply this method to the data on human 
mortality, because the required threshold is so high. The methods which I used in the paper may look old 
fashioned, but at least they can be applied to the data which are available in this particular problem. 

I now turn to the comments on the historical highest ages. I am delighted that Wilmoth finds that my 
calculations are generally consistent with his own. He is quite right to stress that my Tables 1-4 are 
confined to England and Wales. He and I are in good agreement from the Middle Ages to the present, 
and it is a very minor difference that we seem to take different views about the indefinite future! In my 
case, I simply thought it unlikely that mortality rates will fall as far as 0, when our evolutionary past 
dictates that the human body will deteriorate after the age of reproduction. 

I also very much welcome the informed comments of Jeune. Of course, I accept that the close 
agreement between Halley's and Wrigley's life-tables may be partly coincidental, but it is a happy 
coincidence. The only clear difference between Jeune and me is really rather slight, about whether there 
were any centenarians before the year 1800. Both Wilmoth's and my statistical calculations suggest that 
there were probably a few, though very rare indeed. Also, Desjardins has now identified a person born 
in Quebec in 1648 who definitely reached 99 years of age. The population of England in 1648 was much 
larger than the population of Quebec, so it is reasonable to suppose that there may have been a 
centenarian in England before 1800, let alone somewhere in the rest of the world. However, I accept that 
this remains an open question until a definite case has been identified. The last point raised by Jeune is 
based on a misunderstanding. The 'observed' data in Table 1 are truncated, for the reason stated in the 
paragraph below Table 1. This does not mean that there were no observed deaths above age 95 years in 
1841. 

I was also very pleased to see the comments of Horiuchi. His excellent summary of my paper is far 
more concise than my own and I was glad to receive his endorsement of my decision to assume the fixed 
value rc = 1 for the historical periods, in the absence of more reliable data. Material that is relevant to 
some of his questions will be found in Thatcher et al. (1998). For example, the coefficients 3 are indeed 
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found to be lower for cohorts than for periods, as they are bound to be when mortality is falling. Both, 
however, can be affected to some extent by changes in circumstances, so neither is a completely pure 
measure of an underlying pattern. 

Rosenbaum, in his inimitable and entertaining way, has applied extreme value theory to the ages of 
Fellows in our own Society. His example is instructive and also strikes home! 

Tan and Vaupel have produced some extraordinary and completely unexpected data on ages in early 
China. Perhaps one should not take the results for the Tang dynasty too literally, but the other results 
show mediaeval levels of mortality in the middle range of ages and modern levels at very high ages. This 
is similar to data from Roman tombstones (see Section 3.1). There is food for thought here. It is good to 
know that these data exist and that the model can fit them. 

I am glad that Charlton showed us his figures and I have already commented on his valuable Fig. 11. 
Fig. 12 must be interpreted with care because there are time lags. For example, the people who were 75 
years of age in 1991 (with the expectation of life represented by the last points on the period curves) 
were members of the cohort born in 1916, not the cohort born in 1941. 

Ecob asks about applying the model to study the long-standing differentials in mortality between 
regions and between social classes. This is an important question and we need to proceed in stages, the 
first priority being to discover whether the model will be useful for this purpose. My suggestion would 
be to start very simply indeed, by taking regional data for a modern (post-1950) period. For these we 
would expect y to be negligible, so that use can be made of equation (6). If plots of logit (w,) against x 
show that the lines are reasonably straight at ages over 30 years, for individual regions (or social 
classes), then the model will be useful and we can start to consider the implications of the levels and 
slopes of the lines. On Ecob's final question, although the relative error for these groups is in one case 
13.8%, the corresponding absolute error in the force of mortality is only 0.0007 and it is not clear 
whether this is a matter for concern. 

I am grateful to Yashin for his further references and to Longford for his comment, though he will 
find that high percentiles are not easy to measure in historical cohorts. 

Several contributors were keen to have more data. The position is that the full historical life-tables 
can be found in the references cited in Section 3.1. The pooled modern data for 13 industrialized 
countries have now also been published, in Thatcher et al. (1998). Thus there is already plenty of 
material for those who wish to make a start. The full disaggregated data for up to 31 individual 
countries are expected to be available shortly, on application. 

I would like to thank all the contributors to the discussion, and particularly those who travelled from 
overseas to attend the meeting. 
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