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The Distribution by Age of the Frequency of 
First Marriage in a Female Cohort 

A. J. COALE and D. R. MCNEIL* 

The schedule recording first marriage frequencies has been shown to take the 
same basic form in different populations, with differences only in the origin, 
area, and horizontal scale. It is shown here that a representative schedule is 
very closely approximated by a simple closed form frequency function, which 
is the limiting distribution of the convolution of an infinite number of exponen- 
tially distributed components. The schedule is approximated equally well by 
the convolution of a normal distribution (of age of entry into a marriageable 
state) and as few as three exponentially distributed delays. The latter convolu- 
tion provides a plausible model of nuptiality, a model that receives surprising 
empirical support. 

1. A STANDARD CURVE OF FIRST MARRIAGE 
FREQUENCIES FITTED BY A CLOSED FUNCTION 

In an earlier article [2], evidence was presented for 
the existence of a standard age schedule of rates at 
which women enter first marriage, a schedule taking the 
same basic form in populations characterized by 
markedly different mean ages at marriage, and by 
markedly different proportions remaining celibate. In 
different populations (or more precisely, among different 
cohorts of women) the distribution of the ratio of first 
marriages in each age interval to person-years lived in 
the interval differs only in origin, total area (the propor- 
tion of the cohort ever-marrying by the end of life), 
and horizontal scale. A "standard" distribution of the 
frequency of first marriage so defined was constructed 
by making minor adjustments (to remove evidently 
particular features) to the schedule of first marriage 
frequencies recorded in Sweden from 1865 to 1869. 

Given the existence of a standard curve, it would be 
useful to have a mathematical formula which fits it. 
The proportion of women married by age x (excluding 
those who never marry) can be treated as a probability 
distribution function,' and it is this function, F(x), say, 
which is sought. In fitting a probability distribution, 
one often proceeds by plotting the empirical distribu- 
tion on log- or semi-log-paper and by this means search- 
ing for a straight-line relationship. In this case of the 

* A.J. Coale is director, Office of Population Research and professor, Department 
of Economics, and D.R. McNeil is faculty associate, Office of Population Research 
and associate professor, Department of Statistics, both at Princeton University, 
Princeton, N.J. 08540. The research on which this article is based was made possible 
by financial support of the general program of the Office of Population Research by 
the Ford and Rockefeller Foundations. 

1 In a cohort experiencing TnO mortality, the proportion ever married would be a 
probability distribution function F(x), and F'(x) wotuld be the density of first mar- 
riages. If differential mortality by marital status has a negligible effect on the pro- 
portion ever married (as is in general the case), the relation of F(x) to the frequency 
of first marriage is negligibly different from the relation in the hypothetical absence 
of mortality. 

(standardized) distribution of first marriages, this 
method did not yield a straight-line relationship, but 
when the same procedure was applied to the risk func- 
tion (still excluding those who never marry) 

r(x) = F'(x)/{1 - F(x) } (1. 1) 

an extremely close fit of the empirical risk to the 
"double exponential" function 

r(x) = 0.174e-4.411e.-.309x (1.2) 

was obtained. Accordingly, Coale suggested that (1.2) 
be used as a formula to represent the standardized risk 
of first marriage. 

Unfortunately, neither the distribution function cor- 
responding to (1.2) nor its derivative (the frequency 
function) is expressible in closed form. Nor are the be- 
havioral implications of such a risk function at all evi- 
dent. When this material on nuptiality was presented 
at a conference on mathematical demography held at 
the East-West Population Center in Honolulu in the 
summer of 1971, Griffith Feeney suggested that the 
first marriage distribution curve might be the con- 
volution of a distribution describing the age of entry 
into the marriage market, and a distribution of delays 
between entry and actual marriage. He had not had 
opportunity to make the requisite calculations, and 
conjectured the possibility that the distribution of delay 
might be a simple exponential, and the distribution of 
entry into the marriage market normal. 

This suggestion is in fact a special case of an alterna- 
tive procedure for fitting probability distributions, 
which is based on the assumption that the distribution 
function sought is the convolution of a (possibly infinite) 
number of simple components. In the case when the 
risk function approaches a constant asymptote, r, say, 
the convolution contains at least one exponentially dis- 
tributed component, which may be removed by ap- 
plication of the formula 

Fi(x) = F(x) + F'(x)/r. (1.3) 

In equation (1.3), Fi(x) is the distribution which results 
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after the exponential component has been removed. To 
derive equation (1.3), note that if F(x) is the convolu- 
tion of Fi(x) and the exponential distribution 1 -e 
then by the convolution formula 

rx 

F(x) F Fl(z)re-r(x-z)dz. (1.4) 

Differentiating both sides of equation (1.4) with re- 
spect to x, we find 

rx 
F'(x) = Fi(x)r - r Fl(z)re-r(x-z)dz, 

= Fl(x)r - rF(x) 

which yields equation (1.3). 
It is easy to calculate Fl(x) by first choosing the value 

of r as the asymptote of the risk function (0.174 in the 
case of the standardized first marriage distribution) 
and then numerically differentiating the empirical dis- 
tribution function. Such calculation reveals that the 
risk function r1(x) corresponding to the residual dis- 
tribution Fl(x) (hypothetically the distribution of 
entry into the state of readiness for marriage) ap- 
proaches a constant (0.483) as x- oo. If the distribution 
of Fl(x) were normal, as Feeney suggested, then ri(x) 
should be asymptotically linear with positive slope. 

Repeated application of the formula (1.3) confirms 
that the distribution corresponding to the risk function 
(1.2) yields asymptotes r=0.174, r1=0.174+0.309, 
r2=0.174+2(0.309), r3= 0.174+3(0.309), . . . . The re- 
moval of the nth exponential component results in a 
residual distribution F.n (x), where 

Fn(x) = Fn_l(x) + F2_i(x)/rn-1 (1.5) 

It may be noted that when the nth component is taken 
out, the mean of the residual distribution is reduced by 
the amouint 1/rn-1, and the variance by 17r?_1. Since the 
sum E 1/rn, being a harmonic series, diverges (though 
> 1/r2 converges) the procedure cannot be repeated 
indefinitely without reducing the mean of the residual 
to -oo. 

This difficulty is easily remedied by the device of 
adding 'an appropriate constant term to the argument 
of Fn each time another exponential component is re- 
moved. This has the effect of leaving the mean of the 
residual distribution unchanged while reducing the 
variance. The question then arises: can the distribution 
corresponding to the "double exponential" risk (1.2) be 
represented as an infinite convolution of (mean-cor- 
rected) exponential distributions, plus a constant term? 
To answer this question write 

Xn= a + Ei i + (J 1)X)' (1.6) 

where Zj is exponentially distributed with mean 
1/ {at+(j- 1)X }, and the Zj are independent. It is pos- 
sible to write down the distribution of Xn explicitly, and 

the relevant calculations are presented in the appendix. 
It is shown there (Theorem 2) that X. has a limiting 
distribution G(x) as n- oo, with frequency function 

g(x) = -- ea(X-A)-e-X(xM) (1.7) (X 
F(a/X) 

where r indicates the well-known gamma function, 
,= rF/r the digamma function, ,u = a+ (1/X)4o(a/X), 
and a is the mean of g(x). (In the case a= X, g(x) is the 
frequency function of the Gompertz extreme value 
distribution (see [4]).) 

It may be shown (see appendix, Theorem 5) that the 
risk function of the distribution (1.7) possesses the ex- 
pansion 

~(x)= a-' ~;=~ r(1l+ a/X) e _(~'. 1.8 
{ r(j +1 + a/X) 

On the other hand, the analogous expansion for the 
right-hand side of equation (1.2) is, expanding the ex- 
ponential as a series, 

r(x) = 0. 174{ z=0 e-309i(x4803)} . (1.9) 
E*r+ 1)- 

Comparing (1.8) and (1.9), we see that the expres- 
sions within the brackets are identical, if, and only 
if, a =0, X=0.309, and A =4.803. However the asymp- 
totes of r(x) and r(x) as x-* o, given by taking the 
terms with j=0 in (1.8) and (1.9), are a and 0.174, re- 
spectively, so we must have a = 0.174 if the risk func- 
tions are to agree at x = oo. It follows that f(x) and 
r(x) are essentially different, so that the distribution 
given by (1.2) cannot be represented as an infinite con- 
volution of the form (1.6). Since, however, the proce- 
dure of successively removing exponential components 
does not, in practice, distinguish between the two dis- 
tributions, the question arises: does the distribution 
given by equation (1.7) fit the data as well as that 
given by (1.2)? 

It was found that if a = 0.174, X = 0.288 and a = 11.36, 
the answer is in the affirmative. (These values were 
chosen as follows: 11.36 is the mean of the empirically 
based "standard" fertility schedule; 0.174 is the 
asymptotic value of the empirically calculated risk 
function; and 0.288 is the value of X that ensures agree- 
ment of g(x) with the "standard" curve in the neighbor- 
hood of the mode.) In fact, the frequency distribution 
implied by (1.2), and that expressed in (1.7), with these 
parameter values, differ by less than 0.001 over the 
whole range, so that there is no visible difference be- 
tween the two when plotted on a fairly large scale. Thus 
we may effectively replace the "standard" frequency 
distribution of first marriage rates by g(x), given by 
equation (1.7) with the above values of a, X and a. 
This expression has the advantage of being a simple, 
closed form, frequency function. The fit of this distribu- 
tion to the standard first marriage frequencies is shown 
in Figure A. (The "standard" curve has its originl at 
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A. COMPARISON OF FIRST MARRIAGE FREQUENCIES, 
FROM SWEDISH DATA AND CALCULATED FROM 

EQUATION (1.7) 
FREQ. 
0.8 R* 0.8 

~~~~~~~~~~~~~~~-:2881i(x- 606) 
3 * ?o ix)o1946o i74(x-6.06)-e 

x Empirical "standard" first marriage 
0.6 - frequencies,based on data for 

2 Swedish women, 1865 -1869 

_ f 

0.4 - 

U~~~~~~ 

0.2 _ 
6 aZ 

0o i I J8 1 1 1 1 , I l f 6 
e b 1-1 A'X 

0 10 20 30 40 

about the earliest age at which a consequential number 
of first marriages occur.) 

2. THE STANDARD CURVE AS THE CONVOLUTION OF A 
NORMAL CURVE AND m EXPONENTIALLY 

DISTRIBUTED DELAYS 

We turn now to possible behavioral implications of 
this model. The representation (1.6), when taken to the 
limit as n-> oo, may be written as 

X= a + =1 ( Zj + 1 ) (2.1) 

Z- Zi Z1+ Ym 

where 

Ym Zm 1 
a + (aj -1)X 

+ Z=m (Z- + (j 1) (2.2) 

In other words, X is the convolution of m exponentially 
distributed components together with an additional 
component Ym. Denoting the frequency distributions 
of Ym and 1Zj by gm(x) and hm(x), respectively, it 
may be shown (see appendix, Theorems 1 and 3) that 

gm/(x) = -+ e-(a+i) (x-u)-e(X(-) (2.3) 

Xr(m + al/\) 

hm(x) = -F(-/ (1 - e) e-ax. (2.4) 
r(a/X)(m - 1)! 

The quantity Ym may be regarded as the residual 
term after the removal of m exponentially distributed 
components. When its frequency distribution gmn(x) is 
plotted for increasing values of m (see Figure B) an 

interesting pattern emerges: the residual distribution 
becomes less and less skewed as each component is re- 
moved, and seems to be approaching the shape of a 
normal distribution. This apparent convergence may 
indeed be proved mathematically. In the appendix 
(Theorem 4) it is shown that 

Vm {Ym- (a-z1 a+ (j. 

has a limiting distribution as m-> co which is normal 
with mean zero and variance 1/X2. 

B. THE RESIDUAL FUNCTION gm(x) 

FREQ. 
.24 - 4(X) 

.20 0 93(x) 

g(x) 
.16- 

91(x) 
.12 

.08 g(x) 

.04 

0 X 

-4 0 4 8 12 16 20 24 28 32 36 

This fact suggests that the theoretical distribution 
G(x) (and thus, in view of the closeness of fit as evi- 
denced by Figure A, the empirical first marriage dis- 
tribution) could be approximated closely by the con- 
volution of (a) a normal distribution and (b) a moderate 
number of exponential components with mean values in 
harmonic progression. In Table 1, g(x), calculated from 
equation (1.7) is compared with the convolution of a 
normal distribution (with appropriate mean and 
variance) and m exponentially distributed delays, for 
m= 1, 2 and 3. The values of a, X and a in each case are 
the same as those calculated in the previous fitting 
procedure, i.e., a=0.174, X=0.288, a=11.36. The fit 
with three delays is quite close; in fact, the fit of this 
convolution to the standard schedule of first marriages 
is essentially as good as the fit of g(x) itself. The ab- 
solute value of the area between the standard curve and 
g(x) is only 1.6 percent; between the standard curve 
and the convolution containing three exponentials, 
only 1.9 percent. 

The similarity of these curves can be anticipated from 
comparison of the cumulants of g(x) with those of the 
convolution of h3(x) and a normal curve (with the same 
mean and variance as g3(x)). The cumulants of a normal 
curve beyond the second are zero; in addition, the 
cumulant (of any order) of a convolution is the sum of 
the corresponding cumulants of the components. Since 
the rth cumulant of an exponential distribution se-8X is 
(r- 1) !(1/s)r, it follows that the rth cumulant of 
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1. FIRST MARRIAGE FREQUENCIES, OBSERVED IN 
SWEDEN AND FITTED BY FOUR FUNCTIONS 

Conv., of normal and n exponentials Standard 
x n = 1 n = 2 n = 3 g(x) schedule 

0 .0055 .0034 .0026 .0018 .0 
1 .0102 .0078 .0064 .0064 .0073 
2 .0173 .0157 .0153 .0158 .0159 
3 .0270 .0274 .0280 .0296 .0291 
4 .0388 .0419 .0436 .0456 .0447 
5 .0515 .0568 .0589 .0603 .0591 
6 .0633 .0692 .0709 .0711 .0706 
7 .0724 .0771 .0779 .0771 .0765 
8 .0776 .0798 .0796 .0784 .0783 
9 .0784 .0780 .0772 .0760 .0767 

10 .0753 .0730 .0721 .0711 .0720 

11 .0693 .0663 .0654 .0648 .0653 
12 .0618 .0588 .0582 .0578 .0576 
13 .0539 .0514 .0510 .0508 .0505 
14 .0462 .0444 .0442 .0442 .0439 
15 .0392 .0381 .0380 .0381 .0379 
16 .0331 .0325 .0325 .0326 .0327 
17 .0279 .0277 .0277 .0278 .0278 
18 .0234 .0234 .0235 .0236 .0237 
19 .0197 .0198 .0199 .0200 .0204 
20 .0166 .0167 .0168 .0169 .0173 

21 .0139 .0140 .0142 .0143 .0147 
22 .0117 .0119 .0119 .0120 .0124 
23 .0098 .0100 .0101 .0101 .0104 
24 .0083 .0084 .0085 .0085 .0085 
25 .0069 .0071 .0071 .0072 .0071 
26 .0058 .0060 .0060 .0060 .0061 
27 .0049 .0050 .0050 .0051 .0053 
28 .0041 .0042 .0042 .0043 .0047 
29 .0035 .0035 .0036 .0036 .0043 
30 .0029 .0030 .0030 .0030 .0037 

hm(x) is (r-1)! E {la+(j-1)X}-r. The rth cumulant 
of g(x) is (r-1)! a {(+(j-1)X}-r. Thus the convolu- 
tion of h3(x) and a normal curve (with the same mean 
and variance as g3(x)) has exactly the same mean and 
variance as g(x), but the third and higher cumulants 
are (r-1)!E' {a+(J-1)XVI instead of (r-1)! 
E1 {Ja+(j-i1)xVr, for r=3, 4, I . v . It turns out 

that the third cumulants of h2(x) and h3(x) are 399.02 
and 404.65, while that of 9(x) is 408.96; for higher 
cumulants the relative differences are even less. Hence 
replacing h3(x) by a normal curve with the same mean 
and variance yields a distribution not significantly dif- 
ferent from g(x). 

It may be noted that if h1(x) were sufficiently close to 
a normal distribution, it would be possible to replace 
g(x) by the convolution of a normal distribution and 
just one exponential delay-the model suggested by 
Feeney. The normal component in this more exact 
model may still be regarded as the time to reach a mar- 
riageable age, while the exponential terms may be in- 
terpreted as the further delays before the state of mar- 
riage is finally reached. 

We come, then, to an interpretation of the "standard" 
schedule of first marriage frequencies as the combina- 
tion of (1) a normal distribution of attainment of 
marriageable age with a mean of ao (the origin of the 
"standard" curve or of G(x)) plus 2.12 years, and a 
standard deviation of 2.0 years, and (2) three expo- 
nentially distributed delays with average durations of 
1.33 years, 2.16 years and 5.75 ye-ars (1/(0.174+0.576), 
17(0.174+0.288), and 1/(0.174), respectively; the mean 
of the normal curve occurs at 11.36 less the sum of these 
three "delays," and the variance of the normal curve is 

the variance of g(x) less the sum of the variances of the 
three delays). 

3. IMPLICATIONS FOR THE INTERPRETATION OF 
NUPTIALITY IN A SPECIFIC POPULATION 

In any population (or more strictly speaking, any 
cohort) other than Swedish females of the 1860's, the 
distribution of first marriages is also approximated by 
the convolution of a normal distribution of the age at 
which women become marriageable and three ex- 
ponentially distributed delays. The mean of the normal 
distribution differs from population to population, and 
the standard deviation of this distribution and the mean 
length of each of the three delays are the same multiple 
of the "standard" values given previously. In a cohort 
characterized by more rapid entry into marriage once 
the earliest age of marriage is attained, the standard 
deviation and the three delays are reduced. In the 
United States in the 1960's we have estimated a mean 
age of entry into marriageability of 15.6 years, and 
standard deviation of 1.52 years, and delays of average 
duration of 10.5, 17, and 45.5 months-a total of 73 
months. 

Since the distribution of first marriages is closely ap- 
proximated by the convolution of a normal curve and 
three exponential distributions, it is natural to ask 
whether there is an identifiable action or event that 
corresponds to the normally distributed age of entry 
into a state of marriageability, and whether there are 
observable counterparts to the three stages that sup- 
posedlv intervene between such entry and marriage 
itself. If so, despite the very similar form of the dis- 
tribution of first marriage frequencies in different 
societies, the specific actions or events corresponding to 
becoming marriageable and to the subsequent pre- 
nuptial stages must not be the same from population to 
population because the arrangements preceding mar- 
riage are far from uniform. In contemporary popula- 
tions of Western European origin, in which marriage is 
typically a ceremony that unites a couple who select 
each other on the basis of mutual preference, we may 
conjecture that the age of becoming marriageable is the 
age at which serious dating, or going steady begins; 
that the longest delay is the time between becoming 
marriageable and meeting (or starting to keep frequent 
company with) the eventual husband; and that the two 
shorter delays are the period between beginning to date 
the future husband and engagement, and between en- 
gagement and marriage. 

The identifications of events prior to marriage with 
the components of g(x) are of course wholly conjec- 
tural until tested by empirical data. We have been able 
to make one such test using information on "The Choice 
of Spouse" from a sample survey of married couples in 
France conducted in 1959 [3]. One of the questions 
asked of the sample of currently married couples was 
how long before marriage the couple had known each 
other and gone together. The distribution of the dura- 
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tion of acquaintance is tabulated [3, p. 113] at intervals 
of less than six months to one year, one to two years, 
three to six years, and more than six years. 

According to our model of nuptiality, this distribution 
of duration of acquaintance should be the convolution 
of two exponential distributions, (a+X)e-(a+?)x and 
(a+2X)e-(a+2X)x. The convolution of these exponentials 
leads to the distribution 

/a +X1\\ (+2X\ F (x) = I1 a )e- (a+2)x- 
a + 

2)e- (a+x x 

When g(x) is fitted to the "standard" schedule of first 
marriage frequencies based on data from Sweden, 1865- 
69, the value of ca is 0.174, and the value of X is 0.2881. 
For any other nuptiality experience a and X must each 
be adjusted by a factor expressing the pace at which 
first marriages occur in the given population relative to 
the pace in Sweden in the 1860's. The age of the bride 
is tabulated by single years of age for the couples inter- 
viewed in the French survey [3, p. 52]. First marriage 
frequency is defined as the ratio of the number of first 
marriages in an interval relative to the number of woman- 
years lived in the interval. We calculated the schedule of 
frequencies by dividing the number of marriages reported 
at age x to x+ 1 by the number of women in the sample 
at age x and above. The standard deviation of this dis- 
tribution is 4.60 years; the standard deviation of g(x) 
fitted to the Swedish data is 6.82 years; and the ratio is 
0.698. In other words, nuptiality experience occurring in 
one year in Sweden of the 1860's occurred in about 0.7 
years for couples covered by the French survey. Thus 
xx =0.174/0.698 or 0.249, and X = 0.2881/0.698, or 0.413, 
and the convolution of (ae+X)e-(a+X)x and (a+2X)e(a+2X)x 
is 

F(x) -1 + 1.6042e-l 0748x - 2.6042e-06619x 

Table 2 shows the recorded values of the percent of 
couples with a duration of acquaintance berfore marriage 
of less than six months, one year, two years, three years, 
and six years, together with the values calculated for 
F(x) at the same durations. The only substantial dis- 
agreement is in the residual (longer than six years); and 

2. PERCENT OF COUPLES WHO MET NO MORE THAN 
X YEARS BEFORE MARRYING 

x Observed Calculated 
percent percent 

0.5 6 6.7 

1.0 21 20.4 

2.0 50 49.4 

3.0 69 70.6 

6.0 90 95.3 

Source: (3, p. 113] 

in the survey those beyond six years consist of couples 
who had "always" known each other, a response that 
makes the genuinely relevant period of going together 
before marriage hard to infer. 

The agreement of the two columns in Table 2 can only 
be viewed as remarkable, given the wholly independent 
and largely theoretical basis of the second column. The 
figures in this column were calculated without any ref- 
erence whatever to the responses given with regard to 
length of acquaintance. The rationale for the figures in 
the second column is: 

a. the existence of a common pattern of first marriage fre- 
quencies in a wide variety of populations; 

b. the construction of a "standard" schedule of first marriage 
frequencies by minor smoothing of data for Sweden, 
1865-69; 

c. the fitting of a curve g(x) to the standard schedule, and 
the recognition that g(x) differs trivially from the con- 
volution of a normal curve and three exponentially dis- 
tributed delays; 

d. the estimation of the time scale of nuptiality for the 
French sample by calculation of the standard deviation 
of French first marriage frequencies; and 

e. the convolution of the two shorter of the three postulated 
delays employing the parameters derived from Swedish 
data modified by the estimated scale factor. 

The surprising agreement of theoretical and ob- 
served values gives some reason for supposing that there 
is, in fact, a behavioral basis for considering g(x) the con- 
volution of a normal curve and a few exponentially dis- 
tributed delays. We may calculate the mean age at first 
marriage of the French couples covered by the survey 
as 23.1 years and the standard deviation of age at first 
marriage as 4.60 years. If we accept the theoretical model, 
at least for this population, we may further infer that the 
mean interval from acquaintance to marriage was 2.45 
years (with two component intervals of 1.52 and 0.93 
years), that the mean age of entry into a state of mar- 
riageability was 16.6 years (standard deviation 1.89 
years), and that the mean interval between attaining 
marriageability and meeting the future husband was 4.02 
years. 

APPENDIX 
Theorem 1: If Z,, j = 1, 2, * * . , n are independent random 

variables, exponentially distributed with 
E[Z,] { + X(j -1)}-1 

the frequency distribution of the convolution J-,1 Z, is 

h,() xr(n + a/x) eXXnlax 
hn()- = (a /X) (n - 1)! (1 - 

Proof: (Induction). The theorem is obviously true for n = 1, 
for using the identity rJ(1 + a/X) =(a/X) rP(a/X), 

hi(x) = ae-x. 

Suppose now that the theorem is true for some particular value 
of n, say p. Then by the convolution formula 

h.,i (x) = LJ h. (z) (a + Xp)e-(a+xP) (z-z)dz, 

-(,+Xp)C XF(p + a/X)(a + xp) (1X -e1z)P'ePdz 
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Since r(p +a/X) (p +a/X) = r(p + 1 +a/X), this becomes 

hp+i(x) = e-(a+XP)x P(- /X)(p_ 1)! Jo exz(eXz -1P1 

h x -(a+p)x 2r(p + 1 + a/X) 1 ( -1)P 
r (a/X)(p - 1)! (e 

r(aXp) x aX2)( /) ex-JP 
XP(p + 1 + aIX) (1 - 6-XX)Pe-az 

r(a /X)p! 

=hp+,(x). 

Theorem 2: The limiting distribution of 

Xn = a + 
-=1 a Z a + X(j - 1) 

as n-* oo has frequency function 

x() g(X) = ~ ~e-a(Z-'U)-e-X(x-A) 
rP(a/A) 

where , =a+ (1 /X),k(a /X) . 
Proof: Using Theorem 1, we have 

n~~~~~~ 
Pr [ E,1 Zj < x] = 1 - f hn(z)dz 

xr(n + a/X) r X 
= 1 - I (1 - ~~~e-Xz)n-le-azZd r (a /X) (n - )!J 
-1- P(n + a/X) 

P (a /X) (n- 1)! 
rexp(-x) (1 -t)n-lv(a/X)-ldv, 

making the change of variable v =exp( -Xz). It follows that 

Pr[Xn < x] = Pr[ z =1 a j < x + 1) - a] 
r(n + a/X) NX) 

(I - 
F (a/X) (n - 1)! o 

where t(x) =exp[-X(x-a)-E(j-1+a/X)-']. The following 
asymptotic formulas for the gamma and digamma function are 
now needed (see, [1 pp. 257-9 ]): 

r(n + z)/(n - 1)! = nz + O(n-1); 

57= (j - 1 + z)-1 = AV(n + z) -(z); 
4&(n + z) - In n + O(n-1). 

Using these formulas, the expression for Pr[Xn<x] becomes, 
asymptotically 

na/x (/n) e -X (x -'U) 

Pr[Xn < x] - 1 - (/X) (IF (l -)n-lV(a)-ldv( 

where , =a+ (1/X)AV(a/X). Making the change of variable 
z =nv, and using the result 

(1-z/n)n-1 e-z 

we derive 

1e -X (x -. ) 

Pr[Xn < X] -1 - (Z (alJ)-le-zdz. 

The limiting frequency function of Xn is now obtained, by differ- 
entiation, as 

g(x) _e-a(X-U) -e- -# 
r( P(a /X) 

Theorem 3: The frequency distribution g(x) may be written 
as the convolution of gm(x) and hn (x), where 

X ~~~~~~~-X (z -A) Um(X) = P(m + a/X) -(a+m) (x-i)-e 

Proof: Using formula (1.3), if an exponentially distributed 
component with mean ae is removed, the residual frequency is 

g (x) = g(x) + g'(x) /a 

= P(a/X) e 1 - (1 -Xex(x-e)) -(x-A)-e-tx 
-#) 

=- ) e- (a+) 
P(1 + a/X) 

Thus the theorem is true when n = 1, and by induction, in 
general. 

Theorem 4: Suppose X is a random variable with frequency 
distribution given by g(x). Then X may be written as the convo- 
lution of Xm and Wm, where Xm is defined in equation (1.6) and 
v/m Wm is asymptotically normally distributed as m-* oo with 
mean 0 and variance 1/X2. 

Proof: We may write W. as the infinite convolution 

Wm = ,O.=+, z ,t-1) 

The cumulant generating function of r/m Wm is thus 

log E [e"'+ mWwm] = log E[etOevm ?'m+1(Zj-[.+(i-1)Xj-'] 

1100~~~~~~ 
= log I|j?m+l E[ei8Vm zi- [a+(j-1);'llJ 

= Ej?A+l log) 1 - iVM [a + (i - 1)XV-1 

io.\m 
a + (j - 1)X 

since if Z is exponentially distributed with mean ,A, E [ei?Z ] 
= 1/(1 - iO). Expanding the logarithm in a Taylor series we find 

log E[et6em wm] 

= r7=m+i [ /rnm 02m _ v . _ _ 
a + (j- 1)X 2{a + (j- 1)X}2 

ioI3/32 iO Vm 

3{a + (j-1)X}I3 a + -)X 
If 1 2i0 

02 J=M ~ + _M3/2>.31 
2 

m 
(a +-jX) 2 3 

Jm 
(a +jX)3 

Now 

Eoo 

1 ( ) 

~~ml-k as m - oo 
m (a + jX)k k- 

( 
X 

so 

log E[eieVm Wm] - 02X-' + O(m-J) - 02X-2 as m -o. 

It follows that \/m W. is asymptotically normal with mean zero 
and variance X-2. 

Theorem 5: The risk function associated with the frequency 
function g(x) possesses the expansion 

r(x) = al j (( /X) e-i(X-U) 

Proof: By definition 

1/r(x) = f g(z)dz/g(x), 

- j' X(e-ax-ezdzxe-a(x-x)--X(z-pu) 
0-A 

using Theorem 2. Integrating by parts in the numerator, this 
becomes 

1 -Xz 
0 0X 

- eaz-e + e-(a+X)z-e-dz 
a x_y a z- l/r(x) =e-(-)e)z-) 

= ! { 1 + Xe-X(-M)/?i(x) }, 
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where PI(x) is the risk function of the frequency distribution 
hi(x), defined in Theorem 3. Similarly 

1/fr(x) = + {1 + Xe-x(zxP)/F2(X)} 
a 

where 12(X) is the risk function corresponding to h2(x), and in 
general 

1/Fn(x) = {1 + Xe-X(-A) )/F.+,(x)}, 
a + nlX 

where fn(x) goes with hn(X). Thus we obtain the expansion 

1/Fn (X) 11 + e-x(xTL) + 
2 e-2X(X-A) 

a a + X (a + X) (a + 2X) 

+ (a + X) e(3X(zI2) 
+ 

+ 
* e 

(at +XA)(a + 2X)(ca + 3X) 

=1 c 0 I(1 +a/X) . 

a 1 E jr + 1 + a/X) 
. 

[Received December 1971. Revised March 1972.] 

REFERENCES 

[1] Abramowitz, M. and Stegun, I.A., eds., Handbook of Mathe- 
matical Functions, U.S. Department of Commerce, National 
Bureau of Standards, Washington, D.C., 1964. 

[2] Coale, A.J., "Age Patterns of Marriage," Population Studies, 
25, No. 2 (July 1971), 193-214. 

[3] Girard, A., "Le Choix du Conjoint," Institut National 
d'Etudes Demographiques, Travaux et Documents, Presses 
Universitaires de France, 1964. 

[4] Kimball, B.F., "Sufficient Statistical Estimation Functions 
for the Parameters of the Distribution of Maximum Values," 
Annals of Mathematical Statistics, 17 (1946), 299-317. 


	Article Contents
	p. 743
	p. 744
	p. 745
	p. 746
	p. 747
	p. 748
	p. 749

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 67, No. 340 (Dec., 1972), pp. 732-976
	Volume Information [pp. 966-971]
	Front Matter [pp. ]
	Forthcoming Articles [pp. ]
	Applications
	Statistics and Political Science [pp. 735-742]
	The Distribution by Age of the Frequency of First Marriage in a Female Cohort [pp. 743-749]
	Stochastic Simulation of Monetary Rules in Two Macroeconomic Models [pp. 750-760]
	Inference for Markov Chains Having Stochastic Entry and Exit [pp. 761-767]
	A Modal Search Technique for Predictibe Nominal Scale Multivariate Analys [pp. 768-772]
	The American Jury: A Critique [pp. 773-779]
	The American Jury: A Critique: Rejoinder [pp. 779]
	An Application of Multivariate Analysis to Complex Sample Survey Data [pp. 780-782]
	A Linear Models Approach to the Analysis of Survival and Extent of Disease in Multidimensional Contingency Tables [pp. 783-796]
	The Keynesian Aggregate Supply Function for Labor [pp. 797-802]
	Note on Owner's Estimate of Housing Value [pp. 803-806]
	The Distribution of Stock Returns [pp. 807-812]
	Asymmetric Stable Distributions of Stock Price Changes [pp. 813-814]

	Theory and Methods
	Linear Dynamic Recursive Estimation from the Viewpoint of Regresion Analysis [pp. 815-821]
	Dependence and Aging Aspects of Multivariate Survival [pp. 822-830]
	Interrelated Bernoulli Processes [pp. 831-841]
	Estimation in Univariate and Multivariate Stable Distributions [pp. 842-846]
	Asymptotically Optimal Group Rank Tests for Location [pp. 847-849]
	Asymptotic Behavior of Two-Sample Tests Based on Powers of Ranks for Detecting Scale and Location Alternatives [pp. 850-854]
	A Distribution-Free Normal Scores Test for Ordered Alternatives in the Randomized Block Design [pp. 855-857]
	More on Concepts of Statistical Evidence [pp. 858-861]
	An Analysis of a Two-Way Model with Interaction and No Replication [pp. 862-868]
	Optimal Designs for Estimating the Slope of a Polynomial Regression [pp. 869-873]
	Test Data for Statistical Algorithms: Least Squares and ANOVA [pp. 874-879]
	Elicitation of Subjective Probabilities by Sequential Choices [pp. 880-883]
	Upper and Lower Probability Inferences from Ordered Multinomial Data [pp. 884-890]
	The Fitting of Straight Lines When Both Variables are Subject to Error and the Ranks of the Means are Known [pp. 891-897]
	A Gaussian Approximation to the Distribution of a Definite Quadratic Fo [pp. 898-902]
	Properties of the Bivariate Normal Cumulative Distribution [pp. 903-905]
	Two Distributions Involving a Bessel Function [pp. 906-909]
	Products of Independent Beta Variables with Applications to Connor and Mosimann's Generalized Dirichlet Distribution [pp. 910-912]
	Estimation for Domains in Multistage Sampling [pp. 913-916]
	On the Asymptotic Power of Tests for Independence in Contingency Tables from Stratified Samples [pp. 917-920]
	Continuous Sequential Testing of a Poisson Process to Minimize the Bayes Risk [pp. 921-926]
	Estimation and Hypothesis Testing for the Parameters of a Bivariate Exponential Distribution [pp. 927-929]
	Estimation of the Slope and Analysis of Covariance when the Concomitant Variable is Measured with Error [pp. 930-937]
	Simultaneous Prediction Intervals to Contain the Standard Deviations or Ranges of Future Samples from a Normal Distribution [pp. 938-942]
	A Probabilistic Model for Identifying Errors in Data Editing [pp. 943-950]

	Book Reviews
	Review: untitled [pp. 951-952]
	Review: untitled [pp. 953]
	Review: untitled [pp. 953-954]
	Review: untitled [pp. 954]
	Review: untitled [pp. 954-955]
	Review: untitled [pp. 955-956]
	Review: untitled [pp. 956]
	Review: untitled [pp. 956]
	Review: untitled [pp. 957-958]
	Review: untitled [pp. 958-959]
	Review: untitled [pp. 959]
	Review: untitled [pp. 959]
	Review: untitled [pp. 960]
	Review: untitled [pp. 960]
	Review: untitled [pp. 960-961]
	Review: untitled [pp. 961-962]
	Review: untitled [pp. 962-963]
	Review: untitled [pp. 963]

	Brief Reviews
	Review: untitled [pp. 963]
	Review: untitled [pp. 963-964]
	Review: untitled [pp. 964]
	Review: untitled [pp. 964]

	Publications Received [pp. 964-965]
	Technical Reports Available [pp. 972-974]
	Back Matter [pp. ]



