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ABSTRACT 

Objective.  Mortality estimates for many populations must be derived using model life tables, 

which describe typical age patterns of human mortality.  We propose a new system of model life 

tables as a means of improving both the quality and the transparency of such estimates. 

Methods.  We describe a flexible two-dimensional model of the age pattern of mortality and fit 

the model (separately by sex) to a collection of 616 period life tables from the Human Mortality 

Database (www.mortality.org).  The fitted model can be used to estimate full life tables given 

one or two pieces of information:  for example, child mortality only (

! 

5
q
0
), or child mortality and 

adult mortality (

! 

5
q
0
 and 

! 

45
q
15

).  Using empirical life tables from a variety of sources, we 

compare the performance of new and old methods by computing standard deviations of 

estimation errors for three key mortality indicators (

! 

e
0
, IMR, and 

! 

45
q
15

). 

Findings.  The new model easily outperforms the Coale-Demeny and UN model life tables.  

Estimation errors are similar to those produced by the modified Brass logit procedure.  If desired, 

the model can be applied in a flexible manner to incorporate non-quantitative information about 

the age pattern of mortality (similar to the use of regional families in the Coale-Demeny system). 

Conclusion.  In addition to generally providing smaller estimation errors, the new method offers 

other advantages over existing techniques.  The proposed model is better suited to the practical 

needs of mortality estimation, because the two input parameters are both continuous yet the 

second one is optional.  Also, since model parameters are closely related to measures of child 

and adult mortality, the link between data and estimates is more transparent. 
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Introduction 

Life expectancy and other summary measures of mortality or longevity are key indicators of the 

health and wellbeing of a population.  The Human Development Index of the United Nations, for 

example, lists life expectancy at birth as the first of its three components.
1
   

By definition, a population’s life expectancy at birth is the average age at death that would be 

observed among a (hypothetical) cohort of individuals if their lifetime mortality experience 

matched exactly the risks of dying (as reflected in age-specific death rates) observed for the 

population during a given year or time period.  Thus, the starting point for deriving the value of 

life expectancy at birth is a complete set of age-specific mortality rates; using this information, it 

is possible to calculate life expectancy at birth and other summary indicators of mortality or 

longevity.  Typically, all of these calculations are made separately by sex. 

Currently, three organizations produce regularly-updated estimates of life expectancy at birth by 

sex for all (or nearly all) national populations:  the United Nations Population Division, the 

World Health Organization, and the U.S. Census Bureau.  This task is greatly complicated by the 

fact that different data sources and estimation methods must be employed for different groups of 

countries.  For wealthy countries with complete and reliable systems for collecting population 

statistics, age-specific death rates are derived directly from administrative data (by dividing the 

recorded number of deaths by an appropriate measure of population size). 

For most of the world’s population, however, the usual administrative data sources (death 

registration and census information) are inadequate as a means of deriving reliable estimates of 

age-specific mortality rates and, thus, life expectancy or other synthetic measures.  For these 

populations, mortality estimates are derived using model life tables, which describe typical age 

patterns of human mortality.  Using such models, it is possible to estimate death rates for all ages 

given limited age-specific data. 

For example, in many countries it has been possible to obtain empirical evidence about levels of 

child mortality using survey data and other instruments, even though there is little or no reliable 

data on adult mortality.  For other countries there may also be some means of estimating 

mortality for young and middle-aged adults, but no reliable information at older ages.  In these 

and other cases, model life tables exploit the strong positive correlations between mortality levels 

at different ages (as observed in a large body of historical and cross-cultural data) as a means of 

predicting mortality levels for all ages using the limited information available. 

In this paper we propose a new model of age-specific mortality, which we use to develop a new 

system of model life tables.  In addition to producing smaller estimation errors in most cases, this 

model offers several significant advantages compared to earlier approaches, including its greater 

flexibility and intuitive appeal.  We believe that the new model will be very useful as part of 

ongoing efforts to improve both the quality and the transparency of global mortality estimates. 

We begin the discussion with a brief review of the literature on model life tables, followed by an 

analysis of the data sources available for deriving and testing such models.  We then present the 

two-dimensional mortality model that we are proposing as the basis for a new system of model 

life tables.  After fitting the model to a vast collection of historical mortality data, we illustrate 

how it can be used to derive a wide variety of mortality patterns by age. 

                                                 
1 The other two components are education/literacy and personal income.  All three components have 

equal weight in deriving the index, but life expectancy is typically listed first. 
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The model is two-dimensional in the sense that it requires two input parameters in order to 

produce a complete set of age-specific mortality rates.  However, the second input parameter is 

optional in practice, yielding a flexible one- or two-dimensional model.  Thus, the model can be 

used to estimate mortality at all ages on the basis of child mortality alone (

! 

5
q
0
), or using 

information about the mortality of both children and adults (

! 

5
q
0
 and 

! 

45
q
15

).  In fact, many 

combinations of one or two pieces of information can be used as model inputs. 

Using empirical life tables from a variety of sources, we compare the performance of new and 

old methods by computing standard deviations of estimation errors for three key mortality 

indicators (

! 

e
0
, IMR, and 

! 

45
q
15

).  The new model easily outperforms the Coale-Demeny and UN 

model life tables.  If desired, it is possible to incorporate non-quantitative information about the 

age pattern of mortality, and thus to mimic the use of regional families in these earlier model life 

table systems.  Although estimation errors are similar to those produced by the modified Brass 

logit procedure, we believe that the greater transparency and flexibility of the model proposed 

here offer significant advantages and will facilitate further improvements in estimation 

methodology. 

We close the paper with a discussion of some potential uses of the new model both in the area of 

mortality estimation and beyond. 

 

Use of model life tables for mortality estimation 

Broadly speaking, there are two major categories of models that have been used to depict the age 

pattern of mortality.  On the one hand, there are functional models, which are based on fairly 

simple mathematical functions with a relatively small number of parameters.  The most common 

examples are the models proposed by Gompertz and Makeham in the 19
th

 century (containing 

two and three parameters, respectively).  The two-parameter Weibull model (Weibull, 1951) 

offers an alternative to the Gompertz. 

During the 20
th

 century, different forms of the logistic model (with three or four parameters) 

were advocated by various authors (Perks, 1932; Beard, 1971; Thatcher et al., 1998).  However, 

functional models with two to four parameters are useful for depicting mortality at adult ages 

only.  For a model that is capable of depicting mortality over the full age range, more parameters 

are needed:  examples include the five-parameter Siler model (Siler, 1979) and the eight-

parameter model proposed by Heligman and Pollard (1980).  

On the other hand, a variety of empirical models have also been used for describing the age 

pattern of mortality.  This category includes model life tables as well as the relational models 

proposed by Brass (1971) and others.  All such models are characterized by having a much larger 

number of parameters compared to the functional models.  However, most of the parameters in 

an empirical model are determined through an initial analysis of a large collection of historical 

data and thus become fixed in subsequent applications; after this preliminary analysis, only a 

small number of parameters (typically, from two to four) remain variable.  These remaining 

parameters are sometimes referred to as the “entry parameters,” as they provide the point of entry 

for all subsequent applications of the empirical model.  

Functional models have the virtue of simplicity and are useful for many analytical purposes.  

However, because empirical models are more flexible and typically provide a closer fit to 

observed mortality patterns over the full age range, they are better suited for the task of 
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estimating mortality.  The model proposed here belongs to the class of empirical models.  Others 

in this class that we have examined closely include the Coale-Demeny regional families of model 

life tables (Coale and Demeny, 1966, 1983), the United Nations model life tables for developing 

countries (United Nations, 1982), and a modified version of the Brass logit model proposed by 

Murray and colleagues (2003).  The early model life tables proposed by Ledermann (1969) are 

seldom used today, but it is worth noting that their underlying structure is similar in certain ways 

to the model proposed here. 

A system of model life tables can be used to predict the relationship between child and adult 

mortality.  However, as shown in Figure 1, the Coale-Demeny tables do not reflect this 

relationship accurately, especially at low levels of mortality (see also Coale and Guo, 1989).  A 

similar pattern is observed for the UN model life tables, as documented in the supplemental 

materials for this article (Wilmoth et al., 2009).  These results do not suggest a faulty analysis by 

the creators of earlier systems of model life tables, since the low levels of mortality observed in 

recent decades were not part of the datasets used to create those models.  The bias is most severe 

when child mortality drops below about 50-60 per 1000.  Due to the rapid decline of mortality in 

developing countries, a growing number of populations for which mortality estimates are derived 

using model life tables now have child mortality levels in this range.
2
 

Beyond just updating the models used for mortality estimation by incorporating the full body of 

available data, we have also sought to develop a better underlying model.  Although all model 

life table systems that have found wide use have had two entry parameters, a two-dimensional 

model may not be adequate for all purposes.  At one extreme, it is clear that such a model will 

not describe accurately the age pattern of male mortality in times of warfare.  Nevertheless, as 

we show by means of historical examples later in the paper, for populations affected by certain 

epidemics or less severe civil conflicts, a two-dimensional model appears to provide a useful 

approximation for the true age pattern of mortality. 

It is uncertain whether the model proposed here could provide an adequate depiction of mortality 

in populations heavily affected by the AIDS epidemic.  If not, the model life table system 

proposed here could be used (like earlier systems) as a means of estimating mortality from 

causes other than AIDS, with estimates of AIDS mortality coming from a simulation model (this 

is the current practice for all major data providers).  This issue requires further investigation but 

is beyond the scope of this article. 

 

Data from empirical life tables 

For fitting the new model and testing it against alternatives, we have used life tables from several 

sources.  Table 1 contains a summary of the four sets of life tables that were used for this study.  

Data from the Human Mortality Database (HMD, www.mortality.org) are described in Table 1a.  

This dataset contains 616 period life tables covering (mostly) five-year time intervals and 

represents over 65 billion person-years of exposure-to-risk, spread across parts of five continents 

and four centuries.  All life tables in this collection were computed directly from observed deaths 

                                                 

2 For the 2006 round of estimates from the United Nations, more than 20 countries fell into this category, 

including many small countries but also Indonesia, the Philippines, and Turkey. 
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and population counts, without adjustment except at the oldest ages.
3
  A convenient feature is 

that all data are available up to an open interval of age 110 and above. 

A large collection of life tables was assembled by the World Health Organization a few years 

ago and was subsequently used for creating a modified form of the Brass logit model of human 

survival (Murray et al., 2003).  This data source is summarized in Table 1b.  However, for both 

this and the following collections of life tables, we have omitted data for countries and time 

periods that are covered by the HMD.  The non-overlapping portion of the WHO life table 

collection consists mostly of life tables computed directly from data on deaths and population 

size, which were taken (without adjustment) from the WHO mortality database (the current 

version of this database is available at http://www.who.int/healthinfo/morttables/en/).  Many of 

these life tables are for countries of Latin America or the Caribbean.  A much smaller number of 

tables were taken from two earlier collections of life tables:  those assembled by Preston and his 

collaborators (Preston et al., 1972), and those used for constructing the UN model life tables for 

developing countries (United Nations, 1982).  Many of the life tables in the UN collection and 

were derived using some form of data adjustment and/or modeling, which were performed with 

the intent of correcting known or suspected errors.  While many of the life tables in the Preston 

collection appear to be unadjusted, the accuracy of the underlying data is questionable. All data 

in the WHO collection are available in standard 5-year age categories up to age 85 and above. 

In Table 1c we summarize a collection of 19 life tables from the INDEPTH project, which has 

brought together data from demographic surveillance sites located in Africa and elsewhere 

(INDEPTH network, 2002).  In these surveillance areas, complete demographic data are 

collected for relatively small and well-defined populations.  All except two of these tables refer 

to African sites; the other two refer to the Matlab areas (treatment and control) in Bangladesh.  

The INDEPTH life tables used here are for the time period of 1995-1999 (approximately).  These 

are the only life tables from the INDEPTH project that have been published to date, and in 

principle they were computed directly from observed data without any form of adjustment.
4
 

Data from the Human Life-Table Database (HLD, www.lifetable.de) are summarized in Table 1d 

(after removing all overlap with the HMD or the WHO collection).  These life tables form a 

disparate collection of data from various countries and time periods.  Due to the variety of data 

sources, the format of the data is not highly standardized.  We assembled a uniform set of key 

mortality indicators (

! 

e
0
, 

! 

1
q
0
, 

! 

5
q
0
, 

! 

45
q
15

, and 

! 

20
q
60

) for testing the new mortality model, but those 

are the only data from the HLD that were used for this project. Although we have not checked all 

sources closely, we suspect that many of these tables were constructed using some form of data 

adjustment or model fitting (not only at older ages). 

                                                 
3 HMD data have been corrected for obvious errors in published data sources:  for example, an entry of 

’30,000’ that clearly should have been ‘300’ (such corrections are often confirmed by marginal totals).  

Errors due to misreporting of age have generally not been corrected.  A fitted curve following the 

Kannisto model (Thatcher et al., 1998) assures smoothness (and a more plausible trajectory of old-age 

mortality in some cases), but only for the oldest ages (above age 95 approximately). 
4 We have heard anecdotally that some estimates in the INDEPTH set of life tables were, in fact, derived 

using models and thus do not represent direct estimates in all cases.  Although we have not obtained more 

detailed information on this specific point, these few cases appear to be exceptions to a general practice of 

direct calculation without adjustment or use of models. 
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Two mortality models 

Here, we will consider the following two models:
5
 

Log-linear:   

! 

log m
xi( ) = a

x
+ b

x
h
i
+ v

x
k
i
+ e

xi
 

Log-quadratic:   

! 

log m
xi( ) = a

x
+ b

x
h
i
+ c

x
h
i

2 + v
x
k
i
+ e

xi
 

These models describe variation in log-mortality over age (x) for a given population (i).  For both 

models, 

! 

a
x
, 

! 

b
x
, 

! 

c
x
, and 

! 

v
x
, are age-specific parameters, which can be combined in various ways 

to create plausible mortality curves.
6
  For a given population, the values of h and k are constant 

across the life span and thus determine the shape of the mortality curve for a given set of the four 

age-specific parameters.  Lastly, 

! 

e
xi

 is a random error term. 

For the model life table systems derived from these models, we always define 

! 

h = log 5q0( ) , 

where 

! 

5
q
0
 is the probability of dying before age 5.  Thus, h serves as the first (and primary) entry 

parameter for the system.  This formulation reflects the fact that 

! 

5
q
0
 is the only mortality statistic 

for which some empirical information is available in recent decades for almost all national 

populations.  The second entry parameter is k, which has a typical value of zero.  In fact, most 

empirical observations of k lie between -2 and +2, and it is rarely outside the range of -4 to +4.  

Thus, it is often useful for theoretical or practical reasons to set 

! 

k = 0. 

The form of the models proposed here is motivated by an empirical finding of approximate 

linearity in the relationship between mortality levels for various age groups, when mortality rates 

or probabilities of dying are expressed in a logarithmic scale.  Correlation coefficients between 

! 

log
n
m

x( )  and 

! 

log 5q0( )  are reported in Table 2.  Note that these correlations are much higher at 

younger ages and near zero at the oldest ages. 

Building on this empirical relationship, the first portion of the log-linear model, 

! 

a
x

+ b
x
h , 

describes a linear relationship in a log-log scale.
7
  Although this log-linear relationship explains 

most of the variation in the data, there are two important, non-random deviations from this 

purely log-linear form that should be reflected in the model.  First, as illustrated in Figure 2, 

many of the empirical relationships show a marked curvature, suggesting that a quadratic term 

should be added to the model.
8
  This curvature is well described by the first portion of the 

log-quadratic model, 

! 

a
x

+ b
x
h + c

x
h
2, which achieves a better overall fit to the data by various 

measures (as illustrated below).  For this reason, the remainder of this discussion will emphasize 

the log-quadratic model. 

Second, deviations from exactly linear or quadratic relationships tend to occur simultaneously 

and in a similar fashion across age groups for the same population.  In the models proposed here, 

such deviations are captured by adding another term, 

! 

v
x
k , to the model.  When k differs from 

                                                 
5 The models are modifications of an earlier proposal by Wilmoth, Andreev, and Sawyer (forthcoming). 
6 In theory, the age groups used with these models could have any width.  Although x, as written here, 

refers to single-year age groups, actual calculations involve mostly 5-year age groups (i.e., 0, 1-4, 5-9, 

10-14, …, 105-109, 110+). 
7 A similar log-linear relationship forms the basis of the Lee-Carter mortality model, which has been 

widely used for mortality forecasting (Lee and Carter, 1992). 
8 Note that the quadratic curves in Figure 2 tend to bend upward at younger ages (except age 0) and 

downward at older ages 
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zero, this term depicts the typical pattern of co-variation across age in deviations from an exactly 

linear or quadratic form.  Thus, a one-parameter model (when 

! 

k = 0) is exactly log-linear or 

log-quadratic.  By contrast, a two-parameter model implies an approximate log-linear or 

log-quadratic relationship. 

Fitting the models to observed data 

Both models have been fitted separately by sex using various methods applied to a collection of 

616 sex-specific life tables from the Human Mortality Database (see Table 1).  All of these life 

tables have the same configuration of age groups (0, 1-4, 5-9, 10-14, …, 105-109, 110+), and 

almost all of them refer to 5-year time periods.  The motivation for using this particular dataset 

will be discussed in a later section of this article. 

The fitting procedure using ordinary least squares (OLS) is quite simple.  It consists of fitting a 

series of linear or quadratic regressions of 

! 

log
n
m

x( )  as a function of 

! 

log 5q0( ) , in order to obtain 

the estimated coefficients, 

! 

ˆ a 
x
, 

! 

ˆ b 
x
, and 

! 

ˆ c 
x
.  Each of these separate regressions results in a 

predicted line or curve describing the relationship between 

! 

log 5q0( )  and 

! 

log
n
m

x( )  for each age 

group, as depicted in Figure 2 for broad age groups.
9
  In a second step, the last set of estimated 

coefficients, 

! 

ˆ v 
x
, are obtained from the first term of a singular value decomposition computed 

from the matrix of regression residuals.  This term captures the common tendency toward 

positive co-variation (of unusually high or low mortality rates) for adjacent age groups, 

especially in the prime adult years. 

Both the OLS method and our preferred fitting procedure are described fully in the Appendix of 

this article.  A discussion of alternative means of fitting the model and a justification of our 

preferred method are available in a supplemental report (Wilmoth et al., 2009).  In short, our 

preferred fitting procedure involves a form of weighted least squares, in which we assign 

progressively less weight to observations with larger residual values.  Compared to ordinary least 

squares, the difference in fitted values by our preferred method is negligible except for ages 

15-59 among males and ages 15-29 among females.  The estimated coefficients based on our 

preferred fitting method are reported here in Table 3 for the log-linear and log-quadratic models. 

Mortality estimation using the fitted models 

As an estimation tool, the models can be used to derive a full life table given either one or two 

pieces of information.  In the first case, one assumes that the only reliable data that are available 

refer to child mortality, expressed in the form of 

! 

5
q
0
.  Lacking independent information about 

adult mortality, we assume that 

! 

k = 0.  In the two-parameter case, one assumes that information 

is also available about adult mortality, in the form of 

! 

45
q
15

.
10

  Thus, for a given set of age-specific 

coefficients and a known value of 

! 

5
q
0
, we choose a value of k in order to reproduce the observed 

value of 

! 

45
q
15

 exactly.
11

 

                                                 
9 Graphs similar to Figure 2 but with greater age detail are available in a supplemental report (Wilmoth 

et al., 2009).   
10 Although another summary measure of adult mortality could be used, for the present discussion we 

always use 

! 

45
q
15

. 
11 Calculation of k in this situation is fairly simple but requires an iterative procedure. 
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Using 

! 

h = log 5q0( )  and k derived in this manner, the two models can be used to estimate 

age-specific mortality rates across the life span by application of the following formulas: 

Log-linear:   

! 

ˆ m 
x

= e
ˆ a 

x
+ ˆ b 

x
h + ˆ v 

x
k  

Log-quadratic:   

! 

ˆ m 
x

= e
ˆ a 

x
+ ˆ b 

x
h + ˆ c 

x
h

2
+ ˆ v 

x
k  

These rates can then be transformed into a life table, from which it is easy to derive all of the 

usual summary measures of mortality, including life expectancy at birth.  The errors of 

estimation that result directly from this procedure (i.e., assuming the input values are correct) 

will be discussed in a later section of this article. 

Age patterns of mortality implied by the models 

Changes in the age pattern of mortality are illustrated in Figure 3, which shows the effect of 

changes in h and k on the shape of the mortality curve as a function of age for the log-quadratic 

model.
12

  The first parameter, 

! 

h = log 5q0( ) , controls the overall level of mortality.  As the level 

moves up or down, there are progressive changes in the tilt and shape of the curve.  The second 

parameter, k, alters the shape of the mortality curve, especially for young and middle adult ages 

(roughly, from the teens to the 60s).  Thus, when k is greater/less than zero, adult mortality is 

relatively high/low given the associated value of 

! 

5
q
0
. 

The model can be specified using various combinations of one or two pieces of information, 

from which we derive associated values of h and k by some computational procedure.  Our 

computer programs permit calculation of the full model using various combinations of the 

following five inputs: 

! 

1
qo, 

! 

5
q
0
, k, 

! 

45
q
15

, and 

! 

e
0
.  Any pairing of two out these five quantities is 

sufficient to specify the model except the pairing of 

! 

1
qo and 

! 

5
q
0
, which provides no direct 

information about adult mortality.  Any pairing that involves k can be specified by assuming that 

! 

k = 0; thus, in the absence of convincing evidence about relative levels of child and adult 

mortality (compared to historical averages), the model can be fully specified given only one of 

the other four inputs. 

Figure 4 illustrates three of these possible pairings, for females on the left and males on the 

right.
13

  In each case, these graphs show changes in the age pattern of mortality as we hold one of 

the two quantities constant while varying the other one.  For this figure only, the age patterns 

have been smoothed by fitting spline functions to the predicted values of death rates in 5-year 

age intervals; the smoothing helps to clarify the underlying shape.  This exercise demonstrates 

that the model is capable of reproducing a wide variety of mortality curves, but also that these 

curves have entirely plausible shapes so long as k stays roughly within +/- 4.  In particular, the 

following three features of these curves are consistent with a large body of cross-cultural and 

historical evidence: 

1. A minimum occurs regularly around ages 10-11; 

2. Above age 30 each curve is fairly straight (in a log scale) but with a slight S-shape; and 

3. Holding k constant (see middle row panels), the “accident hump” at young adult ages is 

more prominent at lower levels of mortality and for men.  For women, it is possible to 

observe a gradual transition from a “maternal mortality hump” (roughly, ages 15-45) at 

                                                 
12 Age patterns produced by the log-linear model are very similar. 
13 Similar graphs with all possible pairings are provided in a supplemental report (Wilmoth et al., 2009). 
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the highest levels of mortality, to an attenuated male-type accident hump (roughly, ages 

15-25) at lower levels. 

For larger values of k (beyond +/- 4, approximately), the mortality curves tend to become 

distorted (see examples in Wilmoth et al., 2009).  For k around +/- 4, these distortion are fairly 

minor:  they may have aesthetic but no practical importance, in the sense that they would have no 

noticeable effect on calculated values of major summary indicators (such as life expectancy at 

birth).  For more extreme values of k (say, +/- 8), the curves become more severely distorted.  

For example, with very large negative values, the accident hump tends to disappear, and the 

minimum value can move to much higher ages (around age 30).  Because historical values of k 

lie in a fairly narrow range, this parameter can serve as an important plausibility check on the 

estimation procedure described previously. 

Relationship of the models to historical evidence 

Figure 5 illustrates the relationship between the two entry parameters of the log-quadratic model, 

! 

5
q
0
 and k, and the level of adult mortality as measured by 

! 

45
q
15

.  Five curves trace the predicted 

relationship between 

! 

5
q
0
 and 

! 

45
q
15

 corresponding to k equal to  -2, -1, 0, 1, or 2.  These curves 

overlie a scatter plot of the observed values of 

! 

5
q
0
 and 

! 

45
q
15

 from the dataset that was used for 

estimating the model. 

In order to use the fitted model as a tool for estimating a complete age pattern of mortality, we 

have proposed choosing k to match exactly the value of 

! 

45
q
15

 if the latter is available.  Following 

this approach, the model is capable of reproducing any combination of 

! 

5
q
0
 and 

! 

45
q
15

 through an 

appropriate choice of k.  Likewise, any combination of 

! 

5
q
0
 and 

! 

45
q
15

 implies a unique value of k.  

It is notable in this regard that the values of k implied by this diverse dataset (see Table 1) lie 

within a fairly narrow range, only rarely exceeding the interval from -2 to +2.  However, there 

are three important exceptions.   

First, in the left-hand portion of each graph, there is a cluster of points lying above the curve 

representing 

! 

k = 2.  These points correspond to certain countries of the former Soviet Union and 

Eastern Europe, which have experienced usually high adult mortality in recent decades, 

especially among men, in the wake of massive social and political changes.  Second, a sole data 

point lies well above the same curve on the right-hand side of the graph for men only.  This point 

corresponds to Finland during 1940-44 and reflects excess mortality among young men fighting 

in wars against the Soviet Union.
14

   

Third, on the right-hand side of the graph there are a few points lying below the curve 

representing 

! 

k = "2 , especially for women.  The data points in this area of the graph (both 

slightly above and below 

! 

k = "2) correspond to countries of Southern Europe during the 1950s 

and early 1960s,
15

 and reflect a situation of unusually low adult mortality relative to child 

mortality (or, put differently, unusually high child mortality relative to adult mortality).  As 

                                                 
14 In the dataset used here for estimating the models, the Finnish case of 1940-44 is the only example of a 

male mortality pattern that is substantially affected by war mortality.  It was left in the dataset in order to 

emphasize this important point:  for other countries with substantial war losses during the period covered 

by the data set, the series that we have used here reflect exclusively or primarily the mortality experience 

of the civilian population in times of war.  The age pattern of male mortality in these situations is clearly 

atypical and requires a special treatment. 
15 Portugal and Bulgaria are the most extreme cases. 



Wilmoth, Canudas-Romo, Zureick, Inoue, and Sawyer Two-Dimensional Mortality Model 

- 9 - 

illustrated in Figure 1, the South family of the Coale-Demeny model life table system depicted 

accurately the mortality experience of this region during those decades; but afterward, it has 

deviated from the historical record as mortality fell to lower levels in these countries. 

Figure 6 shows results very similar to those in Figure 5 but broken down by smaller age groups.  

These graphs demonstrate that the relative impact of the k parameter on predicted levels of 

mortality differs for the various age groups and by sex.  For both men and women, this parameter 

helps to distinguish between high or low levels of adult mortality (relative to child levels) 

throughout the age range from 15 to 59.  However, in the age group of 60-79, the importance of 

the k parameter remains for men but diminishes substantially for women.  For women at ages 

60-79 and for both sexes at ages 80-99, the variability in the data vastly exceeds the variability 

implied by choices of k within a plausible range. 

These results reflect the fact that the positive co-variation in levels of adult mortality relative to 

child mortality is limited to a particular age range.  The variability in relative levels of mortality 

at older ages is not highly correlated with the variability observed at younger adult ages and is 

thus random variation from the perspective of the model.  Moreover, the age range where the k 

parameter has a substantial impact on mortality estimates is somewhat narrower for women than 

for men.  In times of social and political instability, when adults of both sexes are exposed to 

elevated risks of dying, this excess vulnerability tends to affect men both more intensely and 

over a broader age range compared to women. 

Figure 7 presents six historical examples for the purpose of demonstrating the capabilities of the 

log-quadratic model as well as its limitations.  These examples are not typical of the vast 

majority of historical observations; rather, they are exceptional in one manner or another.  Thus, 

this illustration is intended to explore the limits of the model as a means of depicting historically 

well-documented age patterns of mortality.  Each graph in Figure 7 shows observed data in 

comparison to estimates derived from the log-quadratic model.  There are two sets of estimates, 

obtained by inserting observed values of either 

! 

5
q
0
 alone, or 

! 

5
q
0
 and 

! 

45
q
15

 together, as inputs to 

the model.  The implied values of k are reported in the graph for each set of estimates (in the 

one-parameter case, 

! 

k = 0 by definition). 

The top row of Figure 7 compares the age pattern of mortality for two groups of men in England 

and Wales during 1940-44.  On the left, the total population (including active military personnel) 

has an age pattern that is severely distorted compared to typical mortality curves.  In this case the 

model is clearly incapable of mimicking the underlying pattern even with two input parameters.  

On the right, however, the civilian population (excluding the military population) has a highly 

typical age profile, with a very small implicit value of k in the two-parameter case. 

Although the model may do poorly in representing the age pattern of war mortality, the other 

four examples in Figure 7 depict relatively extreme cases where the model performs reasonably 

well when both inputs are supplied.  The graphs in the middle row document the excess adult 

mortality due to the Spanish flu (for women in Denmark) and to the Spanish civil war (for men 

in Spain).  The graphs in the bottom row illustrate extreme cases of relatively low or high adult 

mortality in peacetime (for, respectively, Portuguese women in the 1960s and Russian men in 

recent years).  In all four cases, the two-parameter version of the log-quadratic model provides 

an imperfect yet, for most purposes, adequate depiction of the age pattern of mortality.  By 

contrast, the one-parameter version of the model yields rather large errors both in the shape of 

the age pattern and in the resulting value of life expectancy at birth. 
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Choice of dataset used for fitting the models 

The estimated coefficients for the log-linear and log-quadratic models shown in Table 3 were 

derived using data drawn exclusively from the Human Mortality Database (HMD).  After 

weighing various options, we chose to fit the models using only these data, but to test it using 

data from all available sources.  The first choice is somewhat controversial, since the HMD 

dataset includes life tables for only two developing countries (Taiwan and Chile), whose 

mortality experience is not typical of most developing countries, and because there is only one 

large country (Japan) with a majority population of non-European origin.  This feature of our 

analysis raises the question of the whether the fitted model is appropriate for use in estimating 

the mortality patterns of developing countries. 

We begin our argument by noting the choice of a dataset in this context is inherently difficult and 

may have no perfect solution.  On the one hand, it seems very important to derive the model 

using accurate information about the age pattern of mortality. On the other hand, it seems equally 

important to derive the model using data that are representative of the full range of true mortality 

patterns occurring throughout the world.  Since the quality of available information tends to be 

much lower in developing countries (in terms of the completeness and reliability of data 

collected through vital registration and periodic censuses), a tradeoff between the accuracy and 

representativeness of the data used for fitting the model is unavoidable. 

The choice to fit the new model using only the HMD dataset was made for several reasons.  

Three of these reasons are properties of the HMD dataset itself.  First, the dataset is well 

documented, which helps to assure that the empirical basis of the model will be, if not fully 

transparent, at least readily accessible.  Second, to minimize transcription errors, HMD life tables 

are derived using data obtained directly from national statistical offices or their regular 

publications (not through an intermediary like the WHO); data preparation includes procedures 

designed to detect gross errors and other anomalies.  Third, age-specific mortality rates are 

computed directly from official data, without major adjustment or use of fitted models except for 

the oldest ages.  One consequence of this approach is that countries and time periods included in 

the HMD have in principle been filtered according to the quality of the available statistical 

information. 

By these criteria, the additional life tables from the other large collections considered here 

(WHO and HLD; see Tables 1b and 1d) would be less desirable than the HMD data but not 

necessarily without value.  Thus, our choice not to include the other life table collections when 

fitting the model was also motivated by certain features of those datasets that we considered less 

desirable.  As a practical matter, the differing age formats of the various life tables presented a 

minor or a serious obstacle, depending on the case.  In order to combine the various life table 

collections to enable a joint analysis, a common age format was needed.  However, to avoid 

sacrificing the age detail available in the HMD, it was necessary to extend the age groupings of 

other tables so that they, too, would end with an age category of 110+.  For the HLD tables, the 

variety of age formats would have necessitated a considerable effort in order to create tables with 

uniform age categories. 

By contrast, the life tables of the WHO and INDEPTH collections have uniform age groupings 

up to age 85, and thus we were able to extend the age range to 110+ with only a modest amount 
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of work.
16

  These life tables were combined with the HMD data to produce an alternative fitting 

of the log-quadratic model.  This exercise revealed that adding the life tables from these two 

collections to the HMD dataset has almost no impact on the fitted model (Wilmoth et al., 2009).  

Moreover, the only noticeable change induced by adding the WHO and INDEPTH life tables 

when fitting the model was that predicted values of old-age mortality (especially above age 80) 

moved slightly downward.  However, this change seems undesirable for two reasons.  First, the 

impact of the additional life tables on the estimated model occurs mostly above age 80, yet the 

additional data points above age 85 are not observed values but rather the product of an 

extrapolative procedure.  Second, the slight reduction in fitted values may reflect nothing more 

than common flaws affecting unadjusted mortality data at older ages, especially in countries with 

less reliable statistical systems. 

Age misreporting is a well-known problem in mortality estimation, especially at older ages, 

where the resulting bias is always downward (Coale & Kisker, 1990; Preston et al., 1999).  

Figure 8 is informative in this regard, as it illustrates the relationship between our preferred 

estimates of the log-quadratic model and data from the WHO and INDEPTH collections for ages 

15-59 and 60-79.  In the younger age group, the observations from the two latter datasets lie 

within a plausible range and demonstrate no obvious bias.  In the older age groups, however, 

there is a clear downward bias in the observations from the WHO and INDEPTH datasets 

relative to the model derived using the HMD data alone.  We believe that the first result is a 

strong confirmation of the general applicability of the model for a wide variety of human 

populations.  At the same time, we believe that the second result is more likely due to 

imperfections in mortality data at older ages than to some limitation of the estimated model. 

For these reasons we conclude that it is better to estimate the new model using a more restricted 

dataset, but to test the resulting model life table system using data from a wide variety of 

populations.  In all cases we must keep in mind that a failed test may indicate problems with the 

data or with the model. 

 

Accuracy of estimation 

We evaluate the performance of the log-quadratic and log-linear models in this section along two 

dimensions.  First, we compare the performance of the estimation procedure proposed here to 

methods that are currently used by various international agencies and national statistical offices.  

Such methods are used for creating internationally comparable mortality estimates.  We are 

interested in whether our new method can produce more accurate estimates than existing 

methods.  Secondly, we examine the internal and external validity of the model.  We want to 

ensure that the estimation procedure can be applied confidently in contexts outside of the areas 

represented in the HMD.    

We have tested the new method against three existing procedures:  estimation based on the 

Coale-Demeny model life tables, the UN model life tables for developing countries, and the 

modified logit model.  We use four data sets to make comparisons among the different methods: 

the HMD, the INDEPTH collection, and both the WHO and HLD collections excluding life 

tables that overlap with the HMD.  For the new model, the tests using the HMD dataset provide 

estimates of internal validity because they are based on the same dataset used for fitting the 

                                                 
16 By fitting a Kannisto model (i.e., logistic with upper asymptote of one). 
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model. Since life tables included in the HMD are excluded from the other data sets outlined 

above, these data provide an opportunity to examine the external validity of the log-quadratic 

model.  

In order to compare the log-quadratic model to the Coale-Demeny and UN model life tables, 

which have discrete regional families, we create families of the log-quadratic model based on 5 

values of the parameter k (-2, -1, 0, 1, and 2).  In our tests, we employ two methods for choosing 

the “best” family from each model life table system given both 

! 

5
q
0
 and .  For each family 

included in the model life table system, we choose the “best” level based on either 

! 

5
q
0
 or .  

For the Coale-Demeny and UN model life tables, we interpolate between the discrete levels to 

produce a life table which accurately matches 

! 

5
q
0
 or .  Then, we choose the “best” family 

from a given group of life tables based on which one best reproduces the life table quantity not 

used to choose level, either 

! 

5
q
0
 or . It is obvious from examination of Figure 1 that one will 

most likely underestimate adult mortality, , when choosing the best level based on 

! 

5
q
0
 

within the Coale-Demeny model system, especially at low levels of 

! 

5
q
0
.  Where child mortality 

is low,  is more sensitive to variation in adult mortality.  Thus, choosing the level based on 

 should produce more accurate estimates in these cases.   

In order to make a valid comparison of the models themselves, rather than the datasets that they 

are fitted to, we have re-estimated the modified logit model using the same HMD dataset used 

for fitting the log-linear and log-quadratic models.  We use this re-estimated model in addition to 

the original model to compare estimation accuracy in two distinct cases:  assuming that either 

one or two pieces of information are available (either 

! 

5
q
0
 alone, or 

! 

5
q
0
 and  together). 

The accuracy of an estimation procedure has been defined in terms of the standard deviation of 

estimation errors for three key mortality indicators: , , and .  The results of comparison 

tests using the HMD dataset are given in Table 4. The log-quadratic model with 5 k-families 

produces much better estimates of  than the Coale-Demeny model life tables, the UN model 

life tables, and a combination of the two regardless of whether 

! 

5
q
0
 or  is used to choose 

level.  For the Coale-Demeny and UN model life tables, using  to choose level and then 

! 

5
q
0
 

to choose “best” family produces more accurate estimates than the inverse procedure as 

expected.   

In the comparison tests using the HMD dataset, the log-quadratic model performs competitively 

in comparison to the re-estimated modified logit model given either 

! 

5
q
0
 only or both 

! 

5
q
0
 and 

.  As would be expected, the log-quadratic model performs better than the log-linear model 

and the re-estimated modified logit model has an advantage over the original modified logit 

model.  

The results of the external tests using the HLD, INDEPTH, and WHO collections of life tables 

are similar to the results of the internal tests using the HMD dataset in that the log-quadratic 

performs similarly to the modified logit in both its original and re-estimated forms. These results 

are given in Table 5.  The results of tests using the WHO datasets indicate a slight advantage for 

the original modified logit with regards to estimating male and female  given either 

! 

5
q
0
 or 

both 

! 

5
q
0
 and , but this advantage is likely due to the model being fit to the data with which 
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it is being tested.   The results of the performance tests using the HLD and INDEPTH data sets 

indicate a slight advantage for the original modified logit in estimating female  given both 

! 

5
q
0
 

and . The estimation accuracy for male  among the three models is quite similar in the 

tests using either the HLD or INDEPTH datasets given either 

! 

5
q
0
 or 

! 

5
q
0
 and . The results of 

the INDEPTH tests are unusual in that estimation errors for female  are higher than for male 

.  We will return to issue below when we discuss the external applicability of the model.   

Satisfied that the log-quadratic model performs competitively or better than other methods 

currently in use, we now want to address the internal and external validity of the model. Internal 

estimation errors for  based on the HMD dataset are plotted in Figure 9.  The second and third 

panels in each column also show error bands, which reflect either one or two times the standard 

deviation of the corresponding set of errors.  Note that the bands are rather narrow when two data 

inputs are used.  Given both 

! 

5
q
0
 and , most of the estimates of are within about a year of 

the actual value of . When 

! 

5
q
0
 is the only input, the error bands are much wider (especially for 

males).  Most of the estimated values of  for females fall within about three years of the actual 

values while for men the range most of the estimates are within about five years of the actual 

values.   

The results of the external tests using the HLD and WHO collections indicate that the log-

quadratic model is applicable in a variety of contexts.  The estimation errors for males given only 

! 

5
q
0
 using either of these external datasets are similar to the estimation errors obtained when 

using the HMD data (e.g. the standard deviation of the estimation error for  is 2.57 using the 

HMD data, 2.59 using the HLD data, and 2.57 using the Murray et al. data).  For males given 

both inputs and for females given either one or two inputs, the external tests using HLD and 

WHO indicate slightly higher estimation errors in comparison to the internal test.  Still, the levels 

are comparable.   

The estimation errors observed in the external tests using the INDEPTH data are much higher in 

comparison to the results obtained using the HMD, HLD, or WHO data.  Given the INDEPTH 

data includes several life tables from African countries with high HIV prevalence, these results 

would seem to suggest that the log-quadratic model fit to the HMD data does not fully capture 

the age-pattern of mortality in the context of AIDS.  This seems especially true for females since 

the results indicate higher estimation errors for female  in comparison to male.  As suggested 

earlier, in areas heavily affected by AIDS, the log-quadratic model might be useful in estimating 

mortality from all other causes.  These estimates could be combined with estimates of AIDS 

mortality derived separately from simulation models. 

 

Discussion 

In addition to showing much promise as an estimation tool, the models proposed here can also 

help to sharpen our understanding of the history of mortality change.  Figure 10 illustrates the 

trajectory of vs 

! 

5
q
0
 for various collections of countries. 

As illustrated in Figure 10, most of the countries have followed a fairly regular path over time, in 

the sense that child and adult mortality did not deviate much from the typical relationship, which 
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is approximately linear in the chosen scale.  This group includes the Nordic countries, Western 

Europe, and all HMD populations from outside Europe (New Zealand, Australia, Taiwan, Japan, 

Canada, USA).
17

 

The bottom panels of Figure 10 show the more unusual historical trajectories of Southern and 

Eastern Europe, plus the countries of the former Soviet Union.  Southern Europe had a somewhat 

peculiar pattern back in the 1950s or 1960s, especially among women.  Bulgarian men (at the 

southern end of Eastern Europe) also showed a pronounced “South” pattern, as defined by Coale 

and Demeny (i.e., relatively low adult mortality or, put differently, relatively high child 

mortality). 

However, the dramatic historical pattern traced in recent decades by the former Soviet countries 

has no comparison (of the East European countries, only Hungary comes close).  Russia is the 

most extreme case, with levels of adult mortality (for both men and women) that far exceed those 

that would be predicted on the basis of child mortality. 

It is clear that the log-quadratic model does not fit all known age patterns of human mortality.  It 

may be possible to improve its precision by adding third-order adjustments (i.e., highly tailored 

special  profiles for certain cases, e.g., war, AIDS).  However, those are beyond the scope of 

this paper.  As illustrated here, both the log-linear and the log-quadratic models provide useful 

first- or second- order approximations in a wide variety of situations. 

 

Conclusion 

In addition to generally providing smaller estimation errors, the new method offers other 

advantages over existing techniques.  The proposed model is better suited to the practical needs 

of mortality estimation, because the two input parameters are both continuous yet the second one 

is optional.  Also, since model parameters are closely related to measures of child and adult 

mortality, the link between data and estimates is more transparent. 

 

                                                 
17 Clearly, this remark pertains only to the period covered for each country by the HMD dataset, which is 

quite short in some cases. 
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Appendix 

In order to describe the fitting procedure used for the log-linear and log-quadratic models, it is 

useful to write the two models as follows: 

                                           (X) 

  (X) 

In this notation, i is an index for a population or an individual life table.  In general , 

and here  (see Table 1).  Thus, , , , and  are age-specific parameters that are 

fixed across populations.  Only the values of  and  across time and space, and in all cases 

! 

hi = log Q5( )
i
.  Given  and , the model predicts the value of the log death rate with an error 

of . 

The two models were fitted to the collection of 616 HMD life tables using a two-step procedure.  

First, the linear or quadratic portion was fitted by means of OLS regression applied separately to 

each age group.  Second, the  term was obtained by computing a singular-value 

decomposition (SVD) of the resulting residual matrix.  In the case of the log-linear model, this 

can be written as follows: 

  (X) 

where , , and D is a diagonal matrix with elements , , etc.  

Only the first term of the SVD, , is used for fitting model (2).  The typical age pattern of 

deviations from the exact log-linear model is depicted by the first left-singular vector; thus, the 

values of  are set equal to the elements of . 

In some sense the best estimate for  in this situation would be derived by multiplying  times 

the appropriate element of the first right-singular vector, .  However, as a tool for estimation, 

we choose  to match  for population i. 

[Footnote:  After fitting,  was set to zero for certain age groups:  0, 1-4, and above 90.  It was 

also set to zero in a few cases (only at older ages) where it was (slightly) negative.  See Table 3.] 
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Table 1 

Life tables from various sources used for this analysis 

a) Human Mortality Database 

Country or Area Year 
Number 

of tables 

Exposure-to-risk 

(millions of 

person-years) 

Australia 1921-2004 17 971  

Austria 1947-2004 12 433  

Belarus 1960-2004 9 430  

Belgium 1841-1913, 1920-2004 32 1,155  

Bulgaria 1947-2004 12 478  

Canada 1921-2004 17 1,599  

Chile XX XX XX 

Czech Republic 1950-2004 11 546  

Denmark 1835-2006 35 562  

England and Wales 1841-2003 33 5,884  

Estonia 1960-2004 9  64  

Finland 1878-2006 27 486  

France 1900-2004 21 4,783  

Germany, East 1956-2004 10 807  

Germany, West 1956-2004 10 3,023  

Hungary 1950-2004 11 563  

Iceland 1838-2004 34  21  

Ireland XX XX XX 

Italy 1872-2004 27 5,737  

Japan 1947-2006 13 6,496  

Latvia 1960-2004 9 110  

Lithuania 1960-2004 9 151  

Luxembourg 1960-2004 9  17  

Netherlands 1850-2006 32 1,339  

New Zealand 1876-2003 12 166  

Norway 1846-2006 33 458  

Poland XX XX XX 

Portugal 1940-2004 13 599  

Russia 1960-2006 10 6,503  

Slovakia 1950-2006 12 270  

Slovenia 1983-2006 6  48  

Spain 1908-2004 20 2,936  

Sweden 1751-2006 52 1,218  

Switzerland 1876-2006 27 626  

Taiwan 1970-2004 7 672  

Ukraine 1960-2006 10 2,288  

United States 1933-2004 15 14,424  

Total  616 65,863  

Notes: 

(1) Life tables by sex are counted only once.  Throughout Table 1, we count a maximum of 

one life table per country-period. 

(2) If the death counts used to construct the life table come from more than one year, we 

count exposure-to-risk over the full period. 

(3) Data for New Zealand refer to the non-Maori population prior to 1950 and to the full 

national population after 1950. 
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b) WHO life table collection 

Country or Area Year(s) 
Number of 

tables 

Exposure-to-

risk (millions of 

person-years) 
Argentina 1966-1970, 1977-1979, 1982-1997 24 715 
Australia 1911 1 5 
Chile 1909, 1920, 1930, 1940, 1950, 1955-1982, 1984-

1989, 1990-1998 48 477 
Colombia 1960, 1964 2 23 
Costa Rica 1956-1983, 1985-1998 42 92 
Croatia 1982-1998 17 79 
Cuba 1970-1998 29 290 
Czechoslovakia 1934 1 15 
El Salvador 1950, 1971 2 13 
Georgia 1981-1992, 1994-1996 15 77 
Greece 1928, 1956-1998 44 404 
Guatemala 1961, 1964 2 8 
Honduras 1961, 1974 2 15 
India 1971 1 1,685 
Iran (Islamic Republic of) 1974 1 131 
Ireland 1950-1998 49 157 
Israel 1975-1998 24 108 
Matlab (site in Bangladesh) 1975 1 1 
Mauritius 1990-1998 9 10 
Mexico 1958-1959, 1969-1973, 1981-1983, 1985-1998 24 1,763 
Moldova 1981-1998 18 76 
New Zealand 1901, 1911 2 2 
Panama 1960 1 1 
Peru 1970 1 40 
Philippines 1964, 1970 2 141 
Poland 1959-1998 40 1,396 
Portugal 1920, 1930 2 13 
Republic of Korea 1973 1 170 
Romania 1963, 1969-1978, 1980-1998 30 660 
Singapore 1955-1998 44 100 
Slovenia 1982 1 2 
South Africa (colored 
population) 

1941, 1951, 1960 
3 3 

Sri Lanka 1946, 1953 2 45 
Taiwan, Province of China 1920, 1930, 1936 3 29 
Thailand 1970 1 112 
The former Yugoslav 
Republic of Macedonia 

1982-1997 
16 32 

Trinidad and Tobago 1990-1995, 1997 7 9 
Tunisia 1968 1 10 
United States of America 1900-1916, 1920-1932 30 2,039 
Yugoslavia 1982-1997 16 166 

Sub-total WHO 1802 only  --   559  11,114  
 Overlap with HMD  --   1243  41,422  

 Total    --   1802  52,535  

(1) Life tables in this collection that overlap with the HMD (Table 1a) are not listed here 

individually. 

(2) This collection of life tables was used by Murray et al. (2003) in creating the modified 

logit model and life table system. 
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c) INDEPTH life tables 

Population aggregate Year(s) 
Number 

of tables 

Exposure-to-risk 

(millions of 

person-years) 

Africa, low HIV 1995-1999 8 1.7 

Africa, high HIV 1995-1999 9 2.3 

Bangladesh (Matlab) 1995-1999 2 0.2 

Total -- 19 4.2 

Source:  INDEPTH life tables 

 

d) Human Life-Table Database 

Country or Area Year(s) 
Number of 

tables 

Exposure-to-

risk (millions of 

person-years) 

Austria 1865-1882,1889-1892,1899-1912,1930-1933 10 221.7 

Bahrain 1998 1 0.6 

Bangladesh 1974, 1976-1989,1991-1994,1996 22 2,014.2 

Brazil 1998-2004 7 1,236.9 

Bulgaria 1900-1905 1 23.3 

China 1981 29 1,012.0 

Czech Republic 1920-1933, 1935-1949 29 391.0 

Egypt 1944-1946 1 54.9 

Estonia 1897,1922-1923,1932-1934,1958-1959 4 8.9 

Gaza Strip 1998 1 1.1 

Germany 1871-1911,1924-1926,1932-1934 8 2,481.2 

Germany, former Dem. Rep. 1952-1955 3 72.2 

Germany, former Fed. Rep. 1949-1951 1 208.0 

Greece 1926-1930,1940 2 72.2 

Greenland 1971-2003 9 1.8 

India 1901-1999 46 45,646.4 

Iraq 1998 1 23.7 

Ireland 
1925-1927,1935-1937,1940-1942,1945-1947, 

2001-2003 
5 47.4 

Israel 1997-2005 20 55.8 

Jordan 1998 1 4.6 

Kuwait 1998 1 2.0 

Lebanon 1998 1 3.7 

Luxembourg 1901-1959 59 16.5 

Malta 2001,2003-2005 4 1.6 

Mexico 1980 1 69.3 

New Zealand 1934-1938 1 7.9 

Oman 1998 1 2.3 

Poland 1922,1927,1948,1952-1953, 1999-2005 11 402.4 

Qatar 1998 1 0.6 

Republic of Korea 1970,1978-1979,1983,1985-1987,1989,1991 8 355.8 

Russia 1956-1959 4 463.1 

Saudi Arabia 1998 1 19.7 

Slovenia 
1930-1933,1948-1954,1960-1962,1970-1972, 

1980-1982 
6 30.2 

South Africa 1925-1927,1969-1971 3 90.7 
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Country or Area Year(s) 
Number of 

tables 

Exposure-to-

risk (millions of 

person-years) 

Spain 1900 1 18.6 

Sri Lanka 1963,1971,1980-1982 3 68.6 

Syria 1998 1 15.7 

Taiwan 1926-1930,1936-1940,1956-1958,1966-1967 4 104.8 

USSR 1926,1927,1938,1939,1958,1959 3 1,047.1 

United Kingdom, N. Ireland 1980-2003 22 38.8 

United Kingdom, Scotland 
1930-1932,1950-1952,1960-1962,1970-1972,  

1980-2003 
24 183.5 

United States of America 1917-1919 3 309.3 

Unites Arab Emirates 1998 1 2.9 

Uruguay 2005 1 3.3 

Venezuela 1941-1942,1950-1951 2 18.1 

West Bank 1998 1 1.6 

Yemen 1998 1 17.1 

Total -- 370 56,837.1 

Notes: 

(1) Person-year estimates are based on historical population data for each area.  If the death 

counts used to construct the life table come from more than one year, we count exposure-

to-risk over the full period. 

(2) For some areas, life tables represent subpopulations. 

(3) Life tables from the HLD that overlap with those in the HMD or the WHO collection (see 

Tables 1a and 1b) are not listed here. 
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Table 2 

Correlation coefficients, age-specific death rates vs. probability of dying under age 5 (both in 

logarithmic scale), Human Mortality Database life tables ( ) 

Age group Female Male 

0 0.983 0.984 

1-4 0.967 0.960 

5-9 0.941 0.931 

10-14 0.937 0.934 

15-19 0.929 0.902 

20-24 0.934 0.798 

25-29 0.946 0.836 

30-34 0.955 0.866 

35-39 0.960 0.874 

40-44 0.960 0.865 

45-49 0.945 0.837 

50-54 0.941 0.808 

55-59 0.929 0.772 

60-64 0.941 0.773 

65-69 0.927 0.774 

70-74 0.911 0.798 

75-79 0.873 0.782 

80-84 0.802 0.745 

85-89 0.706 0.666 

90-94 0.581 0.510 

95-99 0.396 0.400 

100-104 0.189 0.266 

105-109 -0.002 0.146 

110+ -0.129 0.058 

Note:  Table shows correlations between  and . 
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Table 3 

Coefficients for two mortality models, estimated using HMD life tables ( ) 

a) Log-linear model 

  Female   Male  

Age       

0 -0.4168 0.9504 0.0000 -0.3089 0.9720 0.0000 

1-4 -- -- -- -- -- -- 

5-9 -3.5376 1.0838 0.3188 -3.7189 1.0127 0.1959 

10-14 -4.1467 0.9686 0.3684 -4.4690 0.8404 0.1904 

15-19 -4.0938 0.8365 0.4127 -4.5015 0.5813 0.2338 

20-24 -3.8240 0.8543 0.4002 -4.1088 0.5863 0.3176 

25-29 -3.7146 0.8440 0.3655 -4.1047 0.5781 0.3704 

30-34 -3.7149 0.7764 0.3294 -4.0907 0.5438 0.3848 

35-39 -3.7412 0.6844 0.2766 -4.0110 0.4936 0.3749 

40-44 -3.7923 0.5750 0.2280 -3.9010 0.4256 0.3458 

45-49 -3.8408 0.4616 0.1649 -3.7671 0.3519 0.2938 

50-54 -3.6326 0.4124 0.1302 -3.5543 0.2949 0.2423 

55-59 -3.3746 0.3762 0.0997 -3.3321 0.2406 0.1847 

60-64 -2.9408 0.3719 0.0617 -2.9883 0.2158 0.1465 

65-69 -2.5365 0.3508 0.0286 -2.6456 0.1917 0.1093 

70-74 -2.0962 0.3260 0.0000 -2.2371 0.1816 0.0778 

75-79 -1.7233 0.2816 0.0000 -1.8473 0.1651 0.0456 

80-84 -1.4421 0.2167 0.0000 -1.4878 0.1421 0.0252 

85-89 -1.1701 0.1588 0.0000 -1.1578 0.1162 0.0015 

90-94 -0.9296 0.1098 0.0000 -0.8909 0.0854 0.0000 

95-99 -0.7258 0.0651 0.0000 -0.6576 0.0615 0.0000 

100-104 -0.5600 0.0294 0.0000 -0.4796 0.0389 0.0000 

105-109 -0.4264 0.0045 0.0000 -0.3462 0.0208 0.0000 

110+ -0.3349 0.0000 0.0000 -0.2608 0.0000 0.0000 

Note:  There are no estimated coefficients for ages 1-4 by design.  Since  is an input to the 

model, ages 1-4 are excluded:  it is sufficient to estimate mortality for age 0 and then to derive 

mortality for ages 1-4 as a residual component of . 
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Table 3 (cont.) 

b) Log-quadratic model 

 Female Male 

Age         

0 -0.5982 0.8127 -0.0215 0.0000 -0.4568 0.8538 -0.0194 0.0000 

1-4 -- -- -- -- -- -- -- -- 

5-9 -2.6123 1.7860 0.1096 0.2787 -3.0942 1.5116 0.0817 0.1728 

10-14 -3.3080 1.6051 0.0994 0.3497 -3.9972 1.2172 0.0617 0.1740 

15-19 -3.2574 1.4712 0.0991 0.4069 -4.0148 0.9700 0.0637 0.2184 

20-24 -3.1569 1.3606 0.0790 0.4115 -3.5456 1.0362 0.0737 0.3029 

25-29 -3.1401 1.2800 0.0681 0.3810 -3.5779 0.9989 0.0689 0.3612 

30-34 -3.1169 1.2302 0.0708 0.3353 -3.6489 0.8967 0.0578 0.3822 

35-39 -3.2069 1.0899 0.0633 0.2796 -3.6270 0.8002 0.0502 0.3765 

40-44 -3.3000 0.9487 0.0583 0.2261 -3.5791 0.6827 0.0421 0.3506 

45-49 -3.5730 0.6647 0.0317 0.1765 -3.5974 0.4875 0.0222 0.3042 

50-54 -3.4177 0.5755 0.0255 0.1411 -3.5128 0.3280 0.0054 0.2567 

55-59 -3.2650 0.4594 0.0130 0.1168 -3.4377 0.1562 -0.0138 0.2033 

60-64 -2.8998 0.4030 0.0049 0.0784 -3.1300 0.1026 -0.0185 0.1648 

65-69 -2.6538 0.2617 -0.0139 0.0574 -2.8222 0.0506 -0.0231 0.1269 

70-74 -2.3185 0.1573 -0.0263 0.0299 -2.3838 0.0644 -0.0192 0.0921 

75-79 -2.0374 0.0432 -0.0372 0.0115 -2.0055 0.0388 -0.0207 0.0582 

80-84 -1.7794 -0.0394 -0.0400 0.0088 -1.6506 0.0121 -0.0213 0.0364 

85-89 -1.4708 -0.0694 -0.0356 0.0111 -1.3162 -0.0103 -0.0207 0.0108 

90-94 -1.1234 -0.0373 -0.0230 0.0000 -1.0018 -0.0032 -0.0145 0.0000 

95-99 -0.8759 -0.0488 -0.0178 0.0000 -0.7424 -0.0062 -0.0111 0.0000 

100-104 -0.6566 -0.0438 -0.0114 0.0000 -0.5383 -0.0081 -0.0077 0.0000 

105-109 -0.4842 -0.0394 -0.0069 0.0000 -0.3843 -0.0097 -0.0050 0.0000 

110+ -0.3728 -0.0376 -0.0045 0.0000 -0.2869 -0.0113 -0.0034 0.0000 
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Table 4 

Standard deviations of estimation errors for , , and  by sex,  

various model life table methods, Human Mortality Database life tables ( ) 

 Female Male 

       

Given  only:       

Log-quadratic 1.63 0.010 0.032 2.57 0.011 0.062 

Log-linear 1.67 0.010 0.033 2.64 0.011 0.063 

Modified logit (re-est.) 1.67 0.010 0.032 2.49 0.011 0.061 

Modified logit (orig.) 1.78 0.013 0.033 2.57 0.017 0.033 

Given  and :       

Log-quadratic 0.69 0.010 0 0.55 0.011 0 

Log-linear 0.77 0.010 0 0.59 0.011 0 

Modified logit (re-est.) 0.69 0.010 0 0.57 0.011 0 

Modified logit (orig.) 0.87 0.013 0 0.88 0.018 0 

Best family given :       

Log-quadratic (5 families) 0.94 0.010 0.013 1.09 0.011 0.025 

Coale-Demeny (4 families) 1.96 0.010 0.021 2.90 0.014 0.061 

UN tables (5 families) 2.10 0.013 0.026 2.62 0.012 0.057 

C-D or UN (9 families) 1.90 0.012 0.021 2.61 0.013 0.055 

Best family given :       

Log-quadratic (5 families)       

Coale-Demeny (4 families) 1.24 0.013 0 2.64 0.029 0 

UN tables (5 families) 1.29 0.016 0 1.86 0.018 0 

C-D or UN (9 families) 1.33 0.013 0 1.67 0.019 0 
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Table 5 

Standard deviations of estimation errors for , , and  by sex,  

various model life table methods, other (non-HMD) life tables 

 Female Male 

       

WHO-1802 life tables 

Given  only: 

      

Log-quadratic 2.31 0.007 0.038 2.57 0.007 0.052 

Modified logit (re-est.) 2.36 0.006 0.038 2.48 0.006 0.052 

Modified logit (orig.) 2.22 0.007 0.038 2.47 0.008 0.052 

Given  and :       

Log-quadratic 1.03 0.007 0 0.86 0.007 0 

Modified logit (re-est.) 1.02 0.006 0 0.84 0.006 0 

Modified logit (orig.) 0.88 0.007 0 0.77 0.008 0 

INDEPTH life tables 

Given  only: 

      

Log-quadratic 4.06 0.023 0.112 3.80 0.022 0.113 

Modified logit (re-est.) 3.99 0.023 0.112 3.86 0.023 0.114 

Modified logit (orig.) 4.04 0.024 0.113 3.84 0.026 0.114 

Given  and :       

Log-quadratic 1.95 0.023 0.000 1.42 0.022 0.000 

Modified logit (re-est.) 1.57 0.025 0.000 1.40 0.023 0.000 

Modified logit (orig.) 1.55 0.025 0.000 1.45 0.027 0.000 

Human Life-table Database 

Given  only: 

      

Log-quadratic 2.25 0.011 0.054 2.59 0.011 0.060 

Modified logit (re-est.) 2.27 0.011 0.053 2.55 0.010 0.060 

Modified logit (orig.) 2.21 0.012 0.055 2.61 0.012 0.063 

Given  and :       

Log-quadratic 0.86 0.011 0 0.78 0.011 0 

Modified logit (re-est.) 0.74 0.013 0 0.78 0.010 0 

Modified logit (orig.) 0.68 0.013 0 0.83 0.012 0 
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Figure 1 

Relationship between child and adult mortality levels (

! 

5
q
0
 and ),  

observed data ( ) and Coale-Demeny model life tables (4 regional families) 
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Figure 2 

Age-specific death rates ( ) vs. child mortality (

! 

5
q
0
),  

log-linear vs. log-quadratic models, total population (sexes combined) 
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Figure 3 

Typical age patterns of mortality implied by the log-quadratic model 
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Figure 4 

Age patterns of mortality implied by various selections of two input parameters 
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Figure 5 

Adult mortality ( ) vs. child mortality (

! 

5
q
0
), by sex, 

observed data ( ) and log-quadratic model (for 5 values of k) 
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Figure 6 

Age-specific death rates ( ) vs. child mortality (

! 

5
q
0
) for 6 age groups, 

observed data ( ) and log-quadratic model (for 5 values of k) 
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Figure 6 (cont.) 
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Figure 7 

Six examples of mortality curves derived using  

the log-quadratic model (given 

! 

5
q
0
 only, or 

! 

5
q
0
 and ) 
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Figure 8 

Adult and old-age mortality ( and 

! 

20
q
60

) vs. child mortality (

! 

5
q
0
) for various  

developing country populations, compared to predictions of the log-quadratic model 

 

 



 

-25-  

Figure 9 

Estimation errors for life expectancy at birth (estimated minus observed),  

with error bands (plus/minus 1 or 2 standard deviations),  

for 1- and 2-dimensional log-quadratic model 
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Figure 10 

Adult mortality ( ) vs. child mortality (

! 

5
q
0
), 

country patterns plus log-quadratic model (for 5 values of k) 

 


