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Introduction 

The Human Mortality Database (HMD) is a collaborative project sponsored by the University of 

California at Berkeley (United States) and the Max Planck Institute for Demographic Research (Rostock, 

Germany).2  The purpose of the database is to provide researchers around the world with easy access to 

detailed and comparable national mortality data via the Internet.3  When complete, the database will 

contain original life tables for around 35-40 countries or areas, as well as all raw data used in constructing 

those tables.4  The raw data generally consist of birth and death counts from vital statistics, plus 

population counts from periodic censuses and/or official population estimates.  Both general 

documentation and the individual steps followed in computing mortality rates and life tables are described 

here.  More detailed information – for example, sources of raw data, specific adjustments to raw data, and 

comments about data quality – are covered separately in the documentation for each population. 

We begin by describing certain general principles that are used in constructing and presenting the 

database.  Next, we provide an overview of the steps followed in converting raw data into mortality rates 

and life tables.  The remaining sections (including the Appendices) contain detailed descriptions of all 

necessary calculations. 

                                                      
2 The contribution of UC Berkeley to this project is funded in part by a grant from the U.S. National 
Institute on Aging.  A third team of researchers based at Rockefeller University in New York City is also 
working directly on this project.  In addition, the project depends on the cooperation of national statistical 
offices and academic researchers in many countries. 
3 The HMD is accessible through either of the following addresses:  www.mortality.org and 
www.humanmortality.de. 
4 By design, populations in the HMD are restricted to those with data (both vital statistics and census 
information) that cover the entire population and that are very nearly complete.  We have not established 
precise criteria for inclusion, since we are still learning about the statistical systems of many countries.  
Minimally, the HMD will cover almost all of Europe, plus Australia, Canada, Japan, New Zealand, and 
the United States.  Outside this group, there are only a few countries or areas in the world that may 
possess the kind of data required for the HMD (e.g., Chile, Costa Rica, Taiwan, Singapore).  
Nevertheless, other regions and countries are still being considered, and we do not know yet the exact list 
of populations that will eventually be included in the HMD.  We are concerned, however, about the need 
to improve access to mortality information for countries that do not meet the strict data requirements of 
the HMD.  Therefore, in addition to this project, we are also assembling a large collection of life tables 
constructed by other organizations or individuals.  This collection is known as the Human Lifetable 
Database (HLD), and it will include data for many countries not covered by the HMD.  The HLD is 
available at www.lifetable.de. 
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General principles 

Notation and terminology for age and time 

Both age and time can be either continuous or discrete variables.  In discrete terms, a person “of 

age x” (or “aged x”) has an exact age within the interval [ )1, +xx .  This concept is also known as “age 

last birthday.”  Similarly, an event that occurs “in calendar year t” (or more simply, “in year t”) occurs 

during the time interval [ )1, +tt .  It should always be possible to distinguish between discrete and 

continuous notions of age or time by usage and context.  For example, “the population aged x at time t” 

refers to all persons in the age range [ )1, +xx  at exact time t, or on January 1st of calendar year t.  

Likewise, “the exposure-to-risk at age x in year t” refers to the total person-years lived in the age interval 

[ )1, +xx  during calendar year t. 

Lexis diagram 

The Lexis diagram is a device for depicting the stock and flow of a population and the occurrence 

of demographic events over age and time.  For our purposes, it is useful for describing both the format of 

the raw data and various computational procedures.  Figure 1 shows a small section of a Lexis diagram 

that has been divided into 1x1 cells (i.e., one year of age by one year of time).  Each 45-degree line 

represents an individual lifetime, which may end in death, denoted by ‘x’ (lines c and e), or out-migration, 

denoted by a solid circle (line b).  An individual may also migrate into the population, denoted by an open 

circle (lines d and g).  Other life-lines may merely pass through the section of the Lexis diagram under 

consideration (lines a and f).   

Suppose we want to estimate the death rate for the 1×1 cell that is highlighted in Figure 1 (i.e., for 

age x to 1+x  and time t to 1+t ).  If the exact coordinates of all life-lines are known, then the exposure-

to-risk in person-years can be calculated precisely by adding up the length of each line segment within the 

cell (of course, the actual length of each segment must be divided by 2 , since life-lines are 45° from the 

age or time axes).  Following this procedure, the observed death rate for this cell would be 0.91, which is 

the number of deaths (in this case, one) divided by the person-years of exposure (about 1.1).  This is the 
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best estimate possible for the underlying death rate in that cell (i.e., the death rate that would be observed 

at that age in a very large population subject to the same historical conditions). 

Figure 1.  Example of a Lexis Diagram 
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However, exact life-lines are rarely known in studies of large national populations.  Instead, we 

often have counts of deaths over intervals of age and time, and counts or estimates of the number of 

individuals of a given age who are alive at specific moments of time.  Considering again the highlighted 

cell in Figure 1, the population count at age x is 2 at time t (lines b and c) and 1 at time 1+t  (line e).  

Given only this information, our best estimate of the exposure-to-risk within the cell is merely the average 

of these two numbers (thus, 1.5 person-years).  Using this method, the observed death rate would be 

67.05.11 = , which is lower than the more precise calculation given above because the actual exposure-

to-risk has been overestimated.  The estimation of death rates is inevitably less precise in the absence of 



  Methods Protocol for the HMD 

 - 4 - 

information about individual life-lines, although estimates based on aggregate data using such a procedure 

are generally quite reliable for large populations.   

Death counts are often available by age, year of death (i.e., period), and year of birth (i.e., cohort).  

Such counts can be represented by a Lexis triangle, as illustrated in Figure 2.  Death counts at this level of 

detail are used in many important calculations in the HMD.  One of the most important steps in 

computing the death rates and life tables for the HMD is to estimate death counts by Lexis triangle if 

these are not already available in the raw data. 

Figure 2.  Illustration of Lexis triangles 
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Standard configurations of age and time 

For all data in this collection, age and time are arranged in 1-, 5-, and 10-year intervals.  The 

configuration of a matrix of death rates (or some other quantity) is denoted by 1x1, 5x1, 5x10, etc.  In this 

notation, the first number always refers to the age interval, and the second number refers to the time 
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interval.  For example, 1x10 denotes a configuration with single years of age and 10-year time intervals.  

In the HMD, death rates and life tables are generally presented in six standard configurations:  1x1, 1x5, 

1x10, 5x1, 5x5, and 5x10.  Furthermore, the database includes estimates of death counts by Lexis triangle 

and of population size (on January 1st) by single years of age, making it possible for the sophisticated 

user to compute death rates and life tables in any configuration desired.5 

All ranges of age and time describe inclusive sets of one-year intervals.  For example, the age 

group 10-14 extends from exact age 10 up to (but not including) exact age 15, and the time period 

designated by 1980-84 begins at the first moment of January 1, 1980, and ends at the last moment of 

December 31, 1984.  In addition, the following conventions are used throughout the database for 

organizing information by age and time: 

• 5-year time intervals begin with years ending in ‘0’ or ‘5’ and finish with years ending in ‘4’ or ‘9’; 

• 10-year time intervals begin with years ending in ‘0’ and finish with years ending in ‘9’; 

• incomplete 5- or 10-year time intervals are included in presentations of death rates or life tables if 

data are available for at least 2 years (at either the beginning or the end of the series); 

• for raw data, data in one-year age groups are always provided up to the highest age available 

(followed by an open age interval only if more detailed data are not available); 

• for all data on country pages, one-year age groups stop at age 109, with a final category for ages 110 

and above; 

• for 5-year age groups, the first year of life (age 0) is always separated from the rest of its age group 

(ages 1-4), and the last age category is for ages 110 and above.  Thus, a 5x1 configuration contains 

data for single years of time with (typically) the following age intervals:  0, 1-4, 5-9, 10-14, …, 105-

109, 110+. 

                                                      
5 In future versions of this database, we hope to add an interactive component that would allow a user to 
request death rates or life tables in a wider variety of age-time configurations. 
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It is important to note that the data shown on country pages by single years of age up to 110+ are 

sometimes the product of aggregate data (e.g., five-year age groups, open age intervals), which are split 

into finer age categories using the methods described here.  Although there are some obvious advantages 

to maintaining a uniform format in the presentation of death rates and life tables, it is important not to 

interpret fictitious data literally.  In all cases, the user must take responsibility for understanding the 

sources and limitations of all data provided here. 

Female / male / total 

In this database, life tables and all data used in their construction are available for women and 

men separately and together.  In most cases, a single file contains columns labeled “female,” “male,” and 

“total” (note that this is alphabetical order).  However, in the case of life tables, which already contain 

several columns of data for each group, data for these three groups are stored in separate files. 

Raw data for women and men are always pooled prior to making “total” calculations.  In other 

words, death rates and other quantities are not merely the average of the separate values for females and 

males.  For this reason, all “total” values are affected by the relative size of the two sexes at a given age 

and time. 

Periods and cohorts 

Raw data are usually obtained in a period format (i.e., by the year of occurrence rather than by 

year of birth).  Deaths are sometimes reported by age and year of birth, but the statistics are typically 

collected, published, and tabulated by year of occurrence.  Although raw data are presented here in a 

period format only, death rates and life tables are provided in both formats if the observation period is 

sufficiently long to justify such a presentation.  Death rates are given in a cohort format (i.e., by year of 

birth) if there are at least 30 consecutive calendar years of data for that cohort.  Cohort life tables are 
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presented if there is at least one cohort observed from birth until extinction.6  In that case, life tables are 

provided for all extinct cohorts and for some almost-extinct cohorts as well.7 

Adjustments to raw data 

Most raw data are not totally “clean” and require various adjustments before being used as inputs 

to the calculations described here.  The most common adjustment is to distribute persons of unknown age 

(in either death or census counts) across the age range in proportion to the number of observed individuals 

in each age group.  Another common adjustment is to split aggregate data into finer age categories – in 

the case of death counts, from 5x1 to 1x1 data, and from 1x1 data to Lexis triangles.  These two common 

procedures are described later in this document.   

Format of data files 

Raw data for this database have been assembled from various sources.  However, all raw data 

have been assembled into files conforming to a standardized format.  There are different formats for 

births, deaths, census counts, and population estimates.  The raw data files on the web page are always 

presented in one of these standardized formats.  Output data – such as exposure estimates, death rates, and 

life tables – are also presented in standardized formats.   

Steps for computing mortality rates and life tables 

There are six steps involved in computing mortality rates and life tables for the core section of the 

HMD.  Computational details are provided in later sections of this document, including the appendices.  

Here is just an overview of the process: 

1. Births.  Annual counts of live births by sex are collected for each population over the longest possible 

time period.  At a minimum, a complete series of birth counts is needed for the time period over 

which mortality rates and period life tables are computed.  These counts are used mainly for 

                                                      
6 An extinct cohort is one whose members are assumed to have all died by the end of the observation 
period.  A rule for identifying the most recent extinct cohort is given later. 
7 A simple decision rule is used to determine when it is acceptable to compute life tables for almost-
extinct cohorts.  In such cases, death rates for ages not yet observed are based on the average experience 
of previous cohorts.  A detailed description of these procedures is given in a later section. 
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estimating the size (on January 1st of each year) of individual cohorts from birth until the time of 

their first census, and for other adjustments based on relative cohort size. 

2. Deaths.  Death counts are collected at the finest level of detail available – ideally, by individual 

triangles of the Lexis diagram.  Sometimes, however, death counts are available only for 1x1 Lexis 

squares or 5x1 Lexis rectangles.  Before making subsequent calculations, deaths of unknown age are 

distributed proportionately across the age range, and aggregated deaths are split into finer age 

categories.  Additional adjustments or ad hoc estimations may be necessary, depending on the 

characteristics of the raw data for a particular population (any such adjustments are described in the 

documentation for that population). 

3. Population size.  Below age 80, estimates of population size on January 1st of each year are either 

obtained from another source (most commonly, official estimates) or derived using intercensal 

survival.  In most cases, all available census counts are collected for the time period over which 

mortality rates and life tables are computed.  The maximum level of age detail is always retained in 

the raw data and used in subsequent calculations.  When necessary, persons of unknown age are 

distributed proportionately into other age groups before making subsequent calculations.  Above age 

80, population estimates are derived by the method of extinct generations for all cohorts that are 

extinct (see below for extinction rule), and by the survivor ratio method for non-extinct cohorts who 

are older than age 90 at the end of the observation period.  For non-extinct cohorts aged 80 to 90 at 

the end of the observation period, population estimates are obtained either from another source or by 

applying the method of intercensal survival. 

4. Exposure-to-risk.  Estimates of the population exposed to the risk of death during some age-time 

interval are based on annual (January 1st) population estimates, with a small correction that reflects 

the timing of deaths during the interval. 

5. Death rates.  For both periods and cohorts, death rates are simply the ratio of death counts and 

exposure-to-risk estimates in matched intervals of age and time. 
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6. Life tables.  Period death rates are converted to probabilities of death by a standard method.  Cohort 

probabilities of death are computed directly from raw data, but they are related to cohort death rates 

in a consistent way.  These probabilities of death are used to construct life tables. 

Common adjustments to raw data 

In this section, we give formulas for four common adjustments to raw data:  1) redistributing 

deaths of unknown age, 2) splitting 1x1 deaths counts into Lexis triangles, 3) splitting 5x1 deaths counts 

into 1x1 data, and 4) splitting deaths counts in open age intervals into 1x1 data.8 

Distributing deaths of unknown age 

The most common adjustment to raw data involves distributing observations (either deaths or 

census counts) where age is unknown into specific age categories.  In general, such observations are 

distributed proportionally across the age range. 

For example, suppose that death counts are available for individual triangles of the Lexis diagram 

but that age is unknown for some number of deaths.  Formally, let 

),( txDL =  number of lower-triangle deaths recorded among those aged )1,[ +xx in year t ; 

),( txDU =  number of upper-triangle deaths recorded among those age )1,[ +xx in year t ; 

)(tDUNK =  number of deaths of unknown age in year t ; 

and )(tDTOT =  total number of deaths in year t 

=  [ ] )(),(),( tDtxDtxD UNK
x

UL ++∑  . 

 

                                                      
8 In recent years, some national statistical offices have begun reporting deaths by year of occurrence as 
well as by year of registration (which may differ if registration was delayed).  In such cases, we tabulate 
deaths according to the year in which they occurred.  If data are not available by Lexis triangle, we split 
them into triangles using the methods described in this document.  If deaths that were registered late are 
available in the same format as other deaths, we sum the two sets of data first and then split them into 
triangles. 
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Then, the following pair of equations redistributes deaths of unknown age proportionally across upper and 

lower Lexis triangles over the full age range: 

 [ ] 







−

⋅=
+

+=
∑ )()(

)(
),(

),(),(
),(

)(),(),(*

tDtD
tD

txD
txDtxD

txD
tDtxDtxD

UNKTOT

TOT
L

x
UL

L
UNKLL  ( 1 ) 

and [ ] 







−

⋅=
+

+=
∑ )()(

)(
),(

),(),(
),(

)(),(),(*

tDtD
tD

txD
txDtxD

txD
tDtxDtxD

UNKTOT

TOT
U

x
UL

U
UNKUU  ( 2 ) 

for all ages x in year t.9 

Obviously, these calculations typically result in non-integer death “counts” for individual ages 

and Lexis triangles.  In fact, such numbers are no longer true counts but rather estimated counts.  

However, since they are our best estimates of actual death counts, it is appropriate to use them in all 

subsequent calculations.  In all formulas given below, it is assumed that deaths of unknown age have been 

distributed proportionally, if needed, and the superscript * used in this section is suppressed for sake of 

simplicity. 

When raw death counts are available in a 1x1 or 5x1 format, deaths of unknown age (if any) are 

distributed across the existing age groups before splitting the raw counts into Lexis triangles, as described 

below.  Note, however, that the final result of these calculations would not change if aggregate data were 

first split into finer age categories before redistributing deaths of unknown age.  In other words, the 

ordering of these procedures does not matter. 

Like death counts, census tabulations may contain persons of unknown age.  If needed, a similar 

adjustment is made before proceeding with the calculations used for estimating population on January 1st 

as described in a later section. 

                                                      
9 This adjustment reflects an assumption that the probability of age not being reported is independent of 
age itself. 
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Splitting 1x1 death counts into Lexis triangles 

Death counts are often available only in 1x1 Lexis squares and not in Lexis triangles. 10  Since 

many of our subsequent calculations are based on Lexis triangles, it is necessary to devise a method for 

splitting 1x1 death data into triangles, when necessary.  In general, the proportion of deaths in lower and 

upper Lexis triangles varies with age, as shown by the regression model presented later in this section (see 

also Vallin, 1973).  Nevertheless, an adequate procedure in many cases is simply to assign half of each 

1x1 death count to the corresponding lower and upper triangles, since errors of overestimation for one 

triangle (in a lower-upper pair) are typically balanced by errors of underestimation for the other triangle in 

almost all subsequent calculations.  This simple procedure was applied successfully to the analysis of 

mortality above age 80 in the Kannisto-Thatcher database (Andreev, 2001). 

However, for a collection of mortality data in both period and cohort formats covering the entire 

age range, a more complicated procedure is needed for at least two reasons:  (1) deaths in the first year of 

life are heavily concentrated in the lower triangle and should not be split in half, and (2) at any age, the 

distribution of deaths across the two triangles is affected by the relative size of the two cohorts (and 

sometimes by historical events as well).  The second point is especially important in situations where 

there are rapid changes in cohort size due to marked discontinuities in the birth series, as occurs in times 

of rapid social change (for example, at the beginning or end of a major war).  Once the procedure for 

splitting 1x1 deaths is modified to take these matters into account, it is only a small step further toward a 

complete model that adjusts for several factors that are known to affect the distribution of deaths by Lexis 

triangle. 

For these reasons, we have developed a regression equation for use in splitting 1x1 deaths into 

Lexis triangles.  The equation is based on a multiple regression analysis of data for three countries, which 

                                                      
10 Sometimes death counts are available only by period-cohort parallelogram (i.e., holding calendar year 
and birth cohort constant, but covering more than one age year).  Within each single year birth cohort, 
these deaths are simply split in half into the two respective Lexis triangles.  Similarly, deaths counts may 
be available by age-cohort parallelogram (i.e., age and birth cohort are constant, but the parallelogram 
covers more than one calendar year), in which case we also split the deaths in half into Lexis triangles (for 
year t and year t+1). 
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is described more fully in Appendix A.  The equation is expressed in terms of the proportion of deaths 

that occur in the lower triangle.  In general, we denote this proportion as follows: 

 
),(),(

),(),(
txDtxD

txDtx
UL

L
d +

=π  .  ( 3 ) 

When the values of ),( txDL  and ),( txDU  are not known, our task is to derive an estimated proportion in 

the lower triangle, denoted ),(ˆ txdπ .  From this quantity, we compute estimates of lower- and upper-

triangle deaths:  ),(),(ˆ),(ˆ txDtxtxD dL ⋅= π  and [ ] ),(),(ˆ1),(ˆ),(),(ˆ txDtxtxDtxDtxD dLU ⋅−=−= π , 

where ),( txD  is the observed number of deaths in the 1x1 Lexis square. 

The equation for estimating ),( txdπ  differs by sex.  For women, the equation is as follows: 
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In this equation, “log” refers to the natural logarithm.  The indicator function, (.)I , equals one if the 

logical statement within parentheses is true and zero if it is false.  Dummy variables for years 1918 and 

1919 are included to reflect the strong impact of the worldwide Spanish flu epidemic on the distribution 

of deaths within those two years.  The estimated age effects, F
xα̂ , for the female version of the equation, 

are given in Table A-1a (in Appendix A) under the column for Model VI.  Except for ages 0 and 1, the 

same age coefficient is used for more than one single-year age within a broader age group, and the 

coefficient for the age group 100-104 is used for all ages above 100 years.  The birth proportion, ),( txbπ ,  
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is defined formally as follows:11 

 
)1()(

)(),(
−−+−

−
=

xtBxtB
xtBtxbπ  ,  ( 5 ) 

where )(tB  is the number of births (sexes combined) occurring in year t in the same population.12  

Wherever the available birth series is incomplete, we set 5.0),( =txbπ . 

The infant mortality rate (sexes combined) is found using a method proposed by Pressat (1980): 

 
)()1(

),0()(
3
2

3
1 tBtB

tDtIMR
+−

=  .  ( 6 ) 

Note that the infant mortality rate can be computed in this manner before splitting 1x1 deaths into 

triangles.  If )(tB  and ),0( tD  are known but )1( −tB  is unknown, then we set )()1( tBtB =−  to 

calculate )(tIMR .  In general, the historical decline in infant mortality has been associated with a higher 

proportion of deaths in the lower triangle (relative to the upper triangle) across the age range, except at 

age 1.  At age 0, the decline in infant mortality is associated with a rapidly increasing concentration of 

deaths within the lower triangle, until the IMR falls below one percent.  Below that level, the historical 

trend reverses itself, and the proportion of infant deaths in the lower Lexis triangle tends to fall. 

For men, the equation for estimating ),( txdπ  is as follows: 

 

[ ]

[ ] )01.0()0(01.0log)(log1673.0
)1()(log0259.0
)0()(log0745.0

)(log0088.0
)1919(0352.0)1918(0728.0

5.0),(6992.0ˆ4838.0),(ˆ

<⋅=⋅−⋅+
=⋅⋅+
=⋅⋅−

⋅−
=⋅−=⋅+

−π⋅+α+=π

IMRIxItIMR
xItIMR
xItIMR

tIMR
tItI

txtx b
M
xd

 .  ( 7 ) 

                                                      
11 The birth proportion provides information about the relative size of two successive birth cohorts, who 
both pass through the age interval [x, x+1) during calendar year t.  More precisely, it expresses the 
original size of the younger cohort (passing through the lower triangle of a 1x1 Lexis square) as a 
proportion of the total births for the two cohorts.  Although this number measures the relative size of the 
two cohorts at birth, it can also serve as a useful indicator of their relative sizes at later ages. 
12 In the case of a country or area that has undergone territorial changes, it is important to adjust the birth 
series so that it refers always to the same population.  See Appendix D for a general discussion of how we 
deal with changes in population coverage. 
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In this equation, ),( txbπ  and )(tIMR  are the same as in the female equation, since each is based on the 

total population.  However, the age coefficients (as well as all other coefficients) are different and are 

given in Table A-1b (in Appendix A) under Model VI. 

Splitting 5x1 death counts into 1x1 data 

Death counts in a 5x1 configuration are split into 1x1 data using cubic splines fitted to the 

cumulative distribution of deaths within each calendar year.  In principle, the same or a similar method 

could be applied to any configuration of death counts by age.13  The method used here requires only that 

the raw data include death counts for the first year of life and for the first five years of life.  Other than 

these two restrictions, it does not matter whether the raw data are strictly in five-year age groups (after 

age five) or in some other configuration.  Also, there can be an open age interval above 90, 100, or some 

other age.  The spline method is used to split death counts for all ages below the open age interval.  

Details of the computational methods are given in Appendix B. 

Splitting death counts in open age intervals into Lexis triangles 

In some cases the raw data provide no age detail on death counts above a certain age x.  Instead, 

we know only the total number of deaths in this open age interval for some calendar year t, which we 

denote )(tDx∞ .  In these situations we need a method for splitting )(tDx∞  into finer age categories.  One 

possibility would be to split death counts in the open age interval into 1x1 data and then to apply the 

method described earlier for splitting 1x1 death counts into Lexis triangles.  However, the method for 

splitting the open age interval itself is inevitably arbitrary and imprecise, and it seems that little would be 

gained by such a 2-step procedure.  Therefore, our method splits )(tDx∞  immediately into Lexis 

triangles. 

                                                      
13 For some populations, we have death counts by period-cohort parallelograms covering five cohorts 
(e.g., deaths in year t for the t-9 to t-5 birth cohorts who will complete ages 5-9 in year t).  In this case, we 
use the cubic spline method described here to split these deaths into single birth cohorts (see Appendix B 
for more details). 
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In order to distribute deaths in the open age interval, we fit the Kannisto model of old-age 

mortality (Thatcher et al., 1998) to death counts for ages 20* −x  and above, where *x  is the lower 

boundary of the open age group (e.g., 80, 90, 100), thus treating death counts within a period as though 

they pertain to a closed cohort.  We then use the fitted model to extrapolate death rates by Lexis triangle 

within the open age interval and use those rates to derive the number of survivors at each age.  For details, 

see Appendix C. 

Population estimates (January 1st) 

We describe four methods for deriving age-specific estimates of population size on January 1st of 

each year:  1) linear interpolation, 2) intercensal survival, 3) extinct cohorts, and 4) survivor ratios.  For 

most of the age range, we use either linear interpolation of population estimates from other sources14 or 

intercensal survival methods.  At ages 80 and older, we use population estimates computed using the 

methods of extinct cohorts and survivor ratios (except for those cohorts who are younger than age 90 at 

the end of the observation period).  We describe the four methods separately.  In case of territorial 

changes (or other changes in population coverage) during the time period covered by HMD, adjustments 

to these methods are described in Appendix D. 

Linear interpolation 

In some cases, the available population estimates from other sources are for some date other than 

January 1st (e.g., mid-year estimates).  When the period between one population estimate and the next (or 

a population estimate and a census count) is one year or less, we use linear interpolation to derive the 

January 1st population estimate.15  When the period between population counts is greater than one year 

(e.g., census counts), we employ intercensal survival.   

                                                      
14 The main criteria for using population estimates from another source are that they are available and that 
they are believed to be reliable.   
15 We calculate the population as of January 1st of year t as a weighted average of the estimates in years t 
and t-1, where the weights are based on the proportion of the year between January 1st and the date of the 
available estimate.  For example, if we have October 1st estimates, then the January 1st population at age 
x is calculated as:   
 ).10.01,(25.0)1 -.10.01,(75.0).01.01,( YYYYxPYYYYxPYYYYxP ⋅+⋅=  . 
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Intercensal survival methods 

Intercensal survival methods provide a convenient and reliable means of estimating the 

population by age on January 1st of every year during the intercensal period.  There are two cases:   

(1) pre-existing cohorts (i.e., those already alive at the time of the first census), and (2) new cohorts (i.e., 

those born during the intercensal interval).  We develop formulas for these two situations separately by 

first considering the simple case of a country that conducts censuses every five years on January 1st.  We 

then propose a more general method that can be used for censuses occurring at any time of the year and 

for intercensal intervals of any length. 

Specific example 

Suppose that a country conducts censuses every five years, and suppose that each census occurs 

on January 1st.  Therefore, population estimates by single years of age are available at five-year intervals, 

but no comparable estimates are available for intervening years.   

1. Pre-existing cohorts 

The Lexis diagram in Figure 3a depicts a cohort who is already alive at the time of the first 

census.  The cohort aged x at time t is followed through time for 5 years.  Suppose that all deaths in the 

population are recorded with a relatively high level of detail, such that for each year in the intercensal 

period, death counts are available by both age and year of birth.  Thus, it is known with some precision 

how many life-lines ended by death in each of the small triangles shown in this figure. 

                                                                                                                                                                           
At the beginning or end of the data series, we cannot use linear interpolation because there are not two 
data points (e.g., the last population estimate in the series is for July 1st of year t).  In these cases, we use 
“pre-censal” or “post-censal” estimation (see p. 25) to derive the January 1st estimate (i.e., by adding or 
subtracting deaths for each cohort).   
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Figure 3.  Intercensal survival method (example) 

a) pre-existing cohorts 

 
The information represented by Figure 3a can be used to estimate the size of the cohort on 

January 1st of each intercensal year.  The simplest procedure consists merely of subtracting death counts 

from the initial census count to obtain cohort population estimates on January 1st of each succeeding 

year.  Unfortunately, the final step of such a computation usually yields an estimate of cohort size at time 

t+5 that differs from the number given by the corresponding census.  This inconsistency is caused by two 

factors:  migration and error.  Although both of these factors tend to be small relative to cohort size (at 

least for national populations), as a matter of principle they should not be ignored.  The standard method 

consists of distributing implied migration/error uniformly over the parallelogram shown in Figure 3a.  

Then, estimates of cohort size for intercensal years are found by subtracting, from the initial census count, 

both the observed death counts and an estimate of net migration/error. 

Formally, the procedure can be described as follows.  Let )(1 xC  equal the census count for  
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persons aged )1,[ +xx  on January 1st of year t.  Assuming that there is no migration or error, note that 

 [ ]∑
∞

=

++++++=
0

1 ),1(),()(
i

LU itixDitixDxC  .  ( 8 ) 

This formula resembles one that is used for estimating population sizes at older ages (the extinct cohort 

method, see below). 

Using census information about the size of a cohort at time t, we can estimate its size at the time 

of the next census, 5+t , by the following formula: 

 [ ]∑
=

++++++−=+
4

0
12 ),1(),()()5(ˆ

i
LU itixDitixDxCxC  .  ( 9 ) 

However, if there is any migration into or out of this cohort during the intercensal period, or any error in 

the recording of census or death counts, this estimate will differ from the actual count at the time of the 

next census, )5(2 +xC .  By definition, total migration/error is equal to the observed cohort size at the 

second census minus its estimated size, )5(ˆ
2 +xC .  We call this difference x∆ : 

 )5(ˆ)5( 22 +−+=∆ xCxCx  .  ( 10 ) 

Assuming that migration/error is distributed uniformly across the parallelogram shown in Figure 3a, the 

estimated population size on January 1st of each year is as follows: 

 [ ] x

n

i
LU

nitixDitixDxCntnxP ∆+++++++−=++ ∑
−

= 5
),1(),()(),(

1

0
1  ,  ( 11 ) 

for 5,,0 K=n .  By design, when 0=n  or 5 these population estimates match census counts exactly: 

 )(),( 1 xCtxP =  ( 12 ) 

 and  )5()5,5( 2 +=++ xCtxP  .  ( 13 ) 

2. New cohorts 

The above formula applies only to cohorts who are already alive at the time of the first census.  

For cohorts born between the two censuses, intercensal population estimates are obtained by subtracting 

the number of deaths occurring before the second census from the number of births for the cohort.  For a  
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cohort born in year jt +  within the intercensal interval, )5,[ +tt , let 

K =  length of the interval )5,1[ +++ tjt  

=  age (at last birthday) of the cohort born in year jt +  at the time of the second census 

=  j−4  ; 

and jtB + =  number of births in year jt +  . 

An initial estimate of population size for the cohort born in year jt +  at the time of the second census is 

 [ ]∑
=

+ +++++−−+−=
K

i
LULjt ijtiDijtiDjtDBKC

1
2 ),(),1(),0()(ˆ  ,  ( 14 ) 

and the difference between this estimate and the actual population count is  

 )(ˆ)( 22 KCKCjt −=∆′+  .  ( 15 ) 

Thus, the estimated size of the cohort on January 1st of each year from birth until the second census is: 

[ ] jt

k

i
LULjt K

kijtiDijtiDjtDBkjtkP +
=

+ ∆′
+
+

++++++−−+−=+++ ∑ 12
12),(),1(),0()1,(

1

 , ( 16 ) 

for Kk ,,0 K= .  As before, population estimates at time 5+t  match the counts in the second census 

exactly:  )()5,( 2 KCtKP =+ . 

For example, consider the cohort born in year 2+t .  Thus, 2=j , and 24 =−= jK .  In other 

words, the cohort born in year 2+t will be aged 2 at the time of the second census, as illustrated in Figure 

3b.  Population estimates for this cohort on January 1st of each year (until 5+t ) are as follows: 

 22 5
1)2,0()3,0( ++ ∆′++−=+ tLt tDBtP  , ( 17 ) 

 22 5
3)]3,1()3,0([)2,0()4,1( ++ ∆′++++−+−=+ tLULt tDtDtDBtP  , ( 18 ) 

and  [ ] 2

2

1
2 )2,()2,1()2,0()5,2( +

=
+ ∆′++++++−−+−=+ ∑ t

i
LULt itiDitiDtDBtP  . ( 19 ) 
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Figure 3.  Intercensal survival method (example) 

b) new cohorts 
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Generalizing the method 

The arguments above make the explicit assumption that the two censuses bounding the 

intercensal period each occur on January 1st and are exactly five years apart.  However, reality is 

typically more complicated.  In this section, we generalize the method to allow for censuses that occur on 

any date of the year and for intercensal intervals of any length. 

1. Pre-existing cohorts 

Figure 4a depicts an intercensal period bounded by two censuses that occur on arbitrary dates.  

Let t  and Nt +  be the times of the first and the last January 1st within the intercensal interval.  Thus, N  

equals the number of complete calendar years between the two censuses.  Let 1f  be the fraction of 

calendar year 1−t  before the first census, and let 2f  be the fraction of calendar year Nt +  before the 
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second census.  Thus, the two censuses occur at times 11 1 ftt +−=  and 22 fNtt ++= , and the total 

length of the intercensal period is 211 ffN +−+ . 

Figure 4.  Intercensal survival method (in general) 

a) pre-existing cohorts 

 
 
The highlighted cohort in Figure 4a is of age x on January 1st of year t.  This cohort was aged 1−x  or x 

at the time of the first census, and will be aged Nx +  or 1++ Nx  at the time of the second census.  If 

individuals are uniformly distributed across their respective age intervals at each census enumeration, the 

sizes of this cohort at the beginning and end of the intercensal interval are 

 )()1()1( 11111 xCfxCfC ⋅+−⋅−=  ( 20 ) 

 and    )1()()1( 22222 ++⋅++⋅−= NxCfNxCfC  ,  ( 21 ) 
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respectively.  Although the assumption of a uniform distribution across age intervals is obviously 

incorrect, errors of exaggeration will tend to be balanced by those of understatement, yielding sufficiently 

accurate estimates in most cases. 

Similarly, assuming a uniform distribution of deaths within Lexis triangles, deaths to this cohort 

in year 1−t  after the first census enumeration will be composed of two components: 

 )1,()1( 2
1 −⋅−= txDfD La  ( 22 ) 

and )1,1()1( 2
1 −−⋅−= txDfD Ub  .  ( 23 ) 

Likewise, under the same assumption, deaths to this cohort in year Nt +  before the second census 

enumeration will be 

 ),1(2
2 NtNxDfD Lc +++⋅=  ( 24 ) 

 and    ),()2( 2
22 NtNxDffD Ud ++⋅−=  .  ( 25 ) 

Using these numbers along with death counts during complete calendar years of the intercensal 

interval, we estimate the size of the highlighted cohort at the time of the second census as follows: 

 [ ] )(),1(),()(ˆ
1

0
12 dc

N

i
LUba DDitixDitixDDDCC +−++++++−+−= ∑

−

=

 .  ( 26 ) 

The difference between the actual census count and this estimate, 22 ĈCx −=∆ , represents the total 

intercensal migration/error for this cohort.  Finally, the size of the cohort on each January 1st of the 

intercensal interval is estimated as follows: 
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n

i
xLUba ffN
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for Nn ,,0 K= . 

2. Infant cohort 

The above formulas are applicable for cohorts that are aged 1 or more on the first January 1st of 

the intercensal interval.  For the cohort aged 0 on this date (Figure 4b), and for new cohorts born during 



  Methods Protocol for the HMD 

 - 23 - 

the intercensal interval (Figure 4c), different formulas are needed.  For the infant cohort, the following 

modifications to the above formulas are necessary: 

 )0()1( 11111 CfBfC t ⋅+⋅−= −  , ( 28 ) 
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for Nn ,,0 K= , where 220 ĈC −=∆ .  Note the following four differences between these formulas and 

those given earlier:  (1) x disappears from the latter two equations since 0=x ; (2) in the first formula, 

)1(1 −xC  is replaced by 1−tB , the number of births during the calendar year of the first census; (3) in the 

latter two formulas, bD  is absent as it is undefined; and (4) in the last term of the third equation, 11 f−  is 

replaced by ( )2
12

1 1 f−  in both numerator and denominator.  The formulas for aD , cD , dD , and 2C  are 

unaltered. 
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Figure 4.  Intercensal survival method (in general) 

b) infant cohort 

 
3. New cohorts 

Lastly, we consider the case of a cohort born during complete calendar years of the intercensal 

interval.  A cohort born in year jt +  will be aged 1−−= jNK  on the last January 1st before the second 

census.  Defining 2f , cD , and dD  as before, the following equations are used to estimate the size of new 

cohorts on January 1st of each year (from birth until just before the second census): 
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for Kk ,,0 K= , where 22 ĈCjt −=∆′+ . 
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Figure 4.  Intercensal survival method (in general) 

c) new cohorts 
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Pre- and postcensal survival method 

For a short period before the first census or after the last census, population estimates can be 

derived simply by adding or subtracting deaths from population counts in a census (or, for new cohorts, 

from birth counts).  The formulas are similar to those presented earlier, although they lack a correction for 

migration/error.  Therefore, population estimates for recent years that are derived in this manner must be 

considered provisional.  They will be replaced by final estimates once another census is available to close 

the intercensal interval.  The purpose of such estimates is to allow mortality estimation during recent 

years or for a short period before an early census, when appropriate death counts are available during an 

open census interval. 

Examples of pre- and postcensal survival estimation are shown in Figure 5.  The size of the 

cohort born in year 1−− xt  on January 1st of years 1−t  and 2−t  is estimated as follows: 

 ba DDCtxP ′+′+=−− 1)1,1(  ( 33 ) 

 and    )2,2()2,1()2,2( 1 −−+−−+′+′+=−− txDtxDDDCtxP ULba  .  ( 34 ) 
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To estimate the size of the same cohort on January 1st of years 1++ Nt  and 2++ Nt , we have: 

 dc DDCNtNxP ′−′−=++++ 2)1,1(  ( 35 ) 

and   

 )1,2()1,1()2,2( 2 ++++−++++−′−′−=++++ NtNxDNtNxDDDCNtNxP LUdc . ( 36 ) 

In this notation, aD′ , bD′ , cD′ , and dD′ , are the complements of aD , bD , cD , and dD , respectively.  That 

is, the sum of each pair of death counts equals the number of deaths in a Lexis triangle.  For example, 

comparing Figures 4a and 5, we see that )1,( −=+′ txDDD Laa . 

Figure 5.  Pre- and postcensal survival method 

 
Intercensal survival with census data in n-year age groups 

The above discussion assumes that census data are available in single-year age groups.  However, 

for many historical censuses the available counts refer to n-year age groups, where n is often 5.  In these 

cases, we must first split the data into one-year age groups before computing population estimates using 
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the method of intercensal survival.  We employ a simple method for this purpose.  We assume that a more 

recent census is available, which contains population counts by single years of age.  Using the age 

distribution at the time of the later census, plus death counts in the intercensal interval, we estimate the 

age distribution of the earlier census by the method of reverse survival.  However, these estimates may 

not sum to the total (or sub-totals) given in the earlier census.  Therefore, we use only the estimated 

distribution of the population by age at the time of the earlier census, which is applied to the observed 

counts within n-year age intervals as a means of creating finer age categories.  Thus, all counts contained 

in the earlier census are preserved in the process of making these calculations. 

Extinct cohorts methods 

The method of extinct generations can be used to obtain population estimates for cohorts with no 

surviving members at the end of the observation period.  With this method, the population size for a 

cohort at age x is estimated by summing all future deaths for the cohort, which can be written as follows: 

 [ ]∑
∞

=

++++++=
0

),1(),(),(
i

LU itixDitixDtxP  . ( 37 ) 

This method assumes that there is no international migration after age x for the cohort in question, which 

is a reasonable assumption only for advanced ages.  We use the method of extinct generations to estimate 

population sizes for ages 80 and above only, as illustrated in Figure 6. 

Prior to applying the method of extinct cohorts, it is necessary to determine which cohorts are 

extinct.  For this purpose, we adopt a method proposed by Väinö Kannisto and used already in the 

Kannisto-Thatcher oldest-old mortality database (Andreev, 2001).  We say that a cohort is extinct if it has 

attained age ω by end of the observation period (assumed to occur on January 1st of year nt ).  Thus, we 

need to find ω or, equivalently, ω-1, the age of the oldest non-extinct cohort. 
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Figure 6.  Methods used for population estimates 

 
Consider a cohort aged x at the end of the observation period, where x is some very high age (like 

120).  We examine the most recent l  cohorts from a similar point in their life histories.  Specifically, we 

consider the observed deaths for these cohorts from January 1st of the year when they were aged x until 

the end of the observation period (see illustration in Figure 7, where 5=l  and 1−= ωx ).  For these 

cohorts over the specified intervals of age and time, we compute the average number of deaths: 
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with 5=l .  For very high ages, ),,(~
lntxD  will be close to zero.  We define ω to be the lowest age x such 

that 5.0),,(~
≤lntxD .  Equivalently, ω-1 is the highest age x for which 5.0),,(~

>lntxD . 
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Figure 7.  Illustration of extinction rule (with l  = 5 and x = ω - 1) 
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Survivor ratio 

The survivor ratio method is used to estimate population sizes above age 80 for almost-extinct 

cohorts (see Figure 6).  The method is applied to cohorts that are at least age 90 at the end of the 

observation period but not yet extinct (according to the rule given above).16  Various versions of this 

method have been proposed and studied previously (see discussion in Andreev, 1999).  We use the 

version that proved most reliable in an earlier comparative study (Thatcher et al., 2002).   

Define a “survivor ratio” to be the ratio of survivors alive at age x on January 1st of year t to  

                                                      
16 We make an exception for the small number of countries that have reliable January 1st population 
estimates by single year of age to the maximum age ω for the last year of observation (i.e., Sweden, 
Denmark, Norway, Finland, and Iceland).  For these countries, we use the official population estimates 
for ages 90 and older on January 1st of year nt  and derive population estimates in earlier years (for each 
cohort) by adding observed death counts back to age 80 (like for the extinct cohort method). 
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those in the same cohort who were alive k years earlier: 
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Assuming that there is no migration in the cohort over the interval, this ratio can also be written: 
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The survivor ratio for the oldest non-extinct cohort (aged ω-1 at time nt ) is illustrated in Figure 8.  

This survivor ratio is unknown, since we do not know the size of the cohort, ),1( ntP −ω , at the end of the 

observation period.  However, comparable survivor ratios (i.e., with age ω-1 in the numerator) for all 

previous cohorts are available, since population size can be estimated using the method of extinct cohorts. 

Suppose that a survivor ratio has approximately the same value for the cohort in question and for 

the previous m cohorts.  That is, suppose that 
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Then, we can estimate R by computing the pooled survivor ratio for the m previous cohorts: 
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If both *R  and 
•

D  are available for a given cohort, we can estimate ),( txP  as follows: 

 
•

−
= D

R
RtxP *

*

1
),(~  . ( 44 ) 

 



  Methods Protocol for the HMD 

 - 31 - 

Figure 8.  Survivor ratio method (at age x = ω - 1, with k = m = 5) 

 

In the simplest version of the survivor ratio method, this procedure is used to obtain ),1( ntP −ω , 

and then the size of this cohort in previous years is estimated by adding observed death counts back to age 

80 (in a fashion similar to the extinct cohort method).  It is then possible to apply the same method 

recursively to obtain ),2( ntP −ω , ),3( ntP −ω , etc., down to some lower age limit (e.g., 90 years).  This 

method works well if its fundamental assumption is not violated, that is, if the survivor ratios for 

successive cohorts are nearly equal.  A common occurrence, however, is that these survivor ratios 

increase over time as a result of mortality decline.  Therefore, *R  tends to underestimate R, and P~  tends 

to underestimate P. 

These considerations motivate a modified version of the survivor ratio estimate: 
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where c is a constant that must be estimated.  When mortality is declining/increasing/constant, c should be 

greater than/less than/equal to one.  The problem, obviously, is how to choose the proper value of c. 

 Following Thatcher et al. (2002), we choose a value of c such that 

 ),90(),(ˆ
1

90
n

x
n tPtxP +=∑

−

=

ω

 ,  ( 46 ) 

where ),90( ntP +  is an official estimate of the population size in the open interval aged 90 and above at 

the end of the observation period.  This version of the survival ratio method is known as SR(90+) and is 

used for the HMD (with 5== mk ) in all cases where )90( +P  is available and is believed to be 

reliable.17  Otherwise, we use the simpler version of the survival ratio method (i.e., with 1=c ). 

Death rates 

Death rates consist of death counts divided by the exposure-to-risk.  In the case of a one-year age 

group and a single calendar year (i.e., a 1x1 period death rate), we have the following formula: 

 p
xt

p
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xt E
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where 

 ),(),( txDtxDD UL
p
xt +=  ( 48 ) 

and p
xtE  is the exposure-to-risk in the age interval [ )1, +xx  during calendar year t.  The exposure-to-risk 

is always measured in terms of person-years and, for periods, is computed by the following formula (see 

Appendix E for a derivation): 
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p
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The data used for computing these quantities are illustrated in Figure 9. 

                                                      
17 For some populations, official population estimates are available only for age 85+.  In such cases, we 
use SR(85+) and note this modification in the general comments (see country-specific documentation for 
details). 
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Figure 9.  Data for period death rates and probabilities 

t t+1 Time

x

x+1

Age

DU(x,t)

DL(x,t)
P(x,t+1)P(x,t)

N(x+1, t)

N(x,t)

 
 

Cohort formulas are only slightly different.  A 1x1 cohort death rate is 

 c
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where death counts and exposure estimates (except at age 0) are defined as follows: 
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The data used for computing these quantities are illustrated in Figure 10.  The exposure estimate at age 0 

is an exception.  Because the cohort life table death rate c
tm0  is derived differently at age 0 than at other 

ages (see p.40), we define c
t

c
tc

t m
DE
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0
0 =  in order to ensure that c

t
c
t mM 00 = . 
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Figure 10.  Data for cohort death rates and probabilities 
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For broader intervals of age and/or time (whether time is defined by periods or cohorts), death 

rates are always found by pooling deaths and exposures first and then dividing the former by the latter.  

Throughout the rest of this discussion, we will refer either to one-year or five-year death rates (i.e., xM  

or xM5 ).  For simplicity of notation, we will not specify a particular time interval, because the formulas 

for computing probabilities of death and/or life tables are the same for any interval of time.  Also, we will 

not use a ‘p’ or ‘c’ superscript to distinguish between period and cohort death rates, since the difference 

should always be apparent from the context. 

Life tables 

Life table calculations do not depend on the organization of the data over time.  For any time 

interval, the same methods are used for computing life tables from a set of age-specific death rates.  

However, the methods used here are slightly different for period and cohort life tables.  Period tables are 

computed by converting death rates to probabilities of death.  Before this conversion, death rates at older 

ages are smoothed by fitting a logistic function.  For cohort life tables, we compute probabilities of death 

directly from the data and perform no smoothing at older ages.  As discussed in Appendix E, cohort 
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probabilities of death computed in this manner are fully consistent with the cohort death rates described in 

the previous section. 

For both periods and cohorts, we begin by computing “complete” life tables (i.e., single-year age 

groups) using our final estimates of death counts by Lexis triangle and population size (on January 1st) by 

single years of age.  Then, “abridged” tables (i.e., five-year age groups) are extracted from the complete 

tables.  Deriving abridged tables from complete ones (rather than computing them directly from data in 

five-year age intervals) ensures that both sets of tables contain identical values of life expectancy and 

other quantities. 

Period life tables 

Whereas a cohort life table depicts the life history of a specific group of individuals, a period life 

table is supposed to represent the mortality conditions at a specific moment in time.  However, observed 

period death rates are only one result of a random process for which other outcomes are possible as well.  

At older ages where this inherent randomness is most noticeable, it is well justified to smooth the 

observed values in order to obtain an improved representation of the underlying mortality conditions.  

Thus, for period life tables by single years of age, we begin by smoothing observed death rates at older 

ages by fitting a logistic function to observed death rates for ages 80 and above, separately for males and 

females.18   

Suppose that we have deaths xD  and exposure xE  for ages 80=x , 81, … , 110+ (for 

convenience, we define x=110 for the open category above age 110).  We smooth observed death rates 

x

x
x E

DM =  by fitting the Kannisto model of old-age mortality (Thatcher et al., 1998), with an asymptote 

                                                      
18 It is a common actuarial practice to fit a curve to death rates at older ages in the process of computing a 
life table.  We use the logistic function because a recent study concluded that such a curve fits the 
mortality pattern at old ages at least as well as, and usually better than, any other mortality model 
(Thatcher et al., 1998).  Fixing the value of the asymptote at one simplifies these calculations and avoids 
certain anomalies that may occur as a result of random fluctuations.  In any event, estimates of this 
asymptote have been around one in most previous studies. 
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equal to one, to estimate the underlying hazards function xµ :19 
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where we require 0≥a  and 0≥b .20  Assuming that ( )),(~ 5.0 baEPoissonD xxx +µ , we derive parameter 

estimates â  and b̂  by maximizing the following log-likelihood function: 
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Substituting â  and b̂  into equation (53) yields smoothed death rates xM̂ , where 

)ˆ,ˆ(ˆˆ
5.05.0 baM xxx ++ == µµ .  In this model specification â  and b̂  are constrained to be positive so that 

smoothed death rates cannot decline above age 80.  For the rest of the calculations described here, fitted 

death rates replace observed death rates for all ages at or above Y, where Y is defined as the lowest age 

where there are fewer than 100 deaths, but is constrained to 9580 ≤≤ Y .21  Thus, complete period life 

tables for males and females are constructed based on the following vector of death rates:  0M , 1M , … , 

1−YM , YM̂ , … , 109M̂ , 110M̂∞ . 

After obtaining smoothed death rates for males and females, we calculate the smoothed rates for 

the total population as a weighted average of those for males and females:   

 M
x

F
x

F
x

F
x

T
x MwMwM ˆ)1(ˆˆ −+=  , ( 55 ) 

                                                      
19 This smoothing procedure is used only if there are at least two 0>xM  at ages 80 and older.  If there 
are fewer than two non-zero observed death rates, then we assume the death rate is constant for ages 
[ ϖx ,110], where ϖx  is the oldest age where 0>xM . 
20 In order to satisfy the constraints on the parameters a and b, we fit the model in terms of a* and b*, 
where *aea =  and *beb = . 
21 In other words, we used the fitted death rates for all ages at or above the greater of 80 or the lowest age 
where there are fewer than 100 male deaths (because at older ages there are typically fewer male deaths 
than female deaths), and for all ages at or above age 95 regardless of the number of deaths.   We begin 
using fitted death rates at the same age for both males and females. 
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where superscripts T, F, and M represent total, female, and male, respectively, and F
xw  represents the 

weight for females aged x, but these must still be determined. 

For observed death rates, the analogous weights equal the observed the proportion of female 

exposure: 
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F
xF

x E
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EE
E

=
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=π  . ( 56 ) 

For smoothed rates as well, such weights could be calculated from observed exposures, but due to random 

fluctuations in such values at older ages, the resulting series of death rates for the total population would 

not be as smooth as those for males and females.  Consequently, we smooth F
xπ  itself by fitting the 

following model by the method of weighted least squares: 
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We drop observations where F
xE , M

xE , or both equal 0 (in such cases, F
xπ =0 or 1 and thus the logit is 

undefined), and for fitting equation 57, use weights equal to T
xE .22  The fitted values are obtained as 

follows: 
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Finally, the smoothed total death rates are calculated as: 
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T
x MMM ˆ)ˆ1(ˆˆˆ π−+π=  . ( 59 ) 

We then assume that death rates in the life table equal death rates in the population (i.e., that 

xx Mm =  for ages 0=x , 1, …, Y-1, that xx Mm ˆ=  for x = Y, Y+1, …, 109, and that 110110 M̂m ∞∞ =  for the 

                                                      
22 For fitting the model in equation 57, theoretically, the correct weights would be T

x
F
x

F
x E⋅π−π )ˆ1(ˆ , but 

would require an iterative procedure because the weights depend on the fitted values themselves.  Since 
there is relatively little variability in )ˆ1(ˆ F

x
F
x π−π  compared to T

xE  over the observed range, using T
xE  as 

the weights should provide reasonable accuracy and is much more convenient. 
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open age interval above 110).  This assumption is correct only when the age structure of the actual 

population is identical to the age structure of a stationary (i.e., life table) population within each age 

interval (for more explanation, see Keyfitz, 1985, or Preston et al., 2001).  In most situations, however, 

deviations from this assumption are likely to be small and unimportant for one-year age intervals. 

Next, we convert the life table death rates, xm , into probabilities of death, xq .  Let xa  be the 

average number of years lived within the age interval [ )1, +xx  for people dying at that age.  We assume 

that 2
1=xa  for all single-year ages except age 0 (see below).  We then compute xq  from xm  and xa  

according to the formula, 

 ( ) xx

x
x ma

m
q

⋅−+
=

11
 ,  ( 60 ) 

for 0=x , 1, 2, …, 109.  For the open age interval, we set 
110

110
1
m

a
∞

∞ =  and 1110 =∞ q . 

For infants, we adopt the formulas for 0a  suggested by Preston et al. (2001: 48), which are 

adapted from the Coale-Demeny model life tables (Coale and Demeny, 1983).  Thus, if 107.00 ≥m : 
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On the other hand, if 107.00 <m : 
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For a life table with sexes combined, we compute 0a  as follows: 

 MF

MMFF
T

DD
DaDaa

00

0000
0 +

+
=  ,  ( 63 ) 

where the superscripts F, M, and T denote values for the female, male, and total populations, respectively, 

and where iD0  refers to all deaths at age zero (both lower and upper triangles) for population i. 
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To complete the life table calculation, let xp  be the probability of surviving from age x to 1+x .  

Therefore, 

 xx qp −= 1  ,  ( 64 ) 

for all ages x.  Let the radix of the life table be 000,1000 =l .  Then, the number of survivors (out of 

100,000) at age x is 
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x

i
ix pll  .  ( 65 ) 

The distribution of deaths by age in the life-table population is 

 xxx qld ⋅=  ,  ( 66 ) 

for 0=x , 1, …, 109.  For the open age category, 110110 ld =∞  . 

The person-years lived by the life-table population in the age interval [ )1, +xx  are 

 xxxx dalL ⋅−−= )1(  ,  ( 67 ) 

for 0=x , 1, …, 109.  For the open age category, 110110110 alL ⋅=∞  .  The person-years remaining for 

individuals of age x equal 
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for 0=x , 1, …, 109.  For the open age category, 110110 LT ∞=  .  Remaining life expectancy at age x is 

 
x

x
x

l
T

eo =  ,  ( 69 ) 

for 0=x , 1, …, 110. 

Cohort life tables 

We now describe the method used to compute xq , xa , and xm  for cohorts.  These are found 

using death counts in Lexis triangles (whether observed in this format or estimated from 1x1 or 5x1 data, 

as described above) and population estimates by single years of age and time.  Once these values are 

available, a complete cohort life table is calculated using the same formulas as in the case of period tables.  
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The method for multi-year cohorts is similar, as described below. 

The probability of dying within a year for the cohort who turns age x one year and age 1+x  the  

following year is 
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where )1,( += txPP  is the size of the cohort in between the two calendar years (i.e., on January 1st of the 

latter year), ),( txDD LL =  refers to lower triangle deaths for the year the cohort turns age x , and 

)1,( += txDD UU  refers to upper triangle deaths in the following year (see Figure 10).  This formula is 

exact in the absence of migration, and it is a reasonable approximation in most situations, assuming that 

the direction and magnitude of migration are similar in both upper and lower triangles (see Pressat, 1980). 

If we assume once again that deaths are distributed uniformly within Lexis triangles, the number  

of years lived in the age interval [ )1, +xx  by someone dying at that age is 
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 ,  ( 71 ) 

as shown in Appendix E.  A formula for the cohort death rate was given earlier, and in this case xx Mm =  

automatically (since the actual population is the same as the life table population).  From these three 

formulas, it is easy to verify that xq , xm , and xa  are related as shown in equation (60).  Thus, an 

advantage of the method used here is that xq , xm , and xa  obey this classic formula even though the three 

quantities are derived independently from death counts and population estimates. 

Although this method works well in general, it should not be used at age 0, since the assumption 

of a uniform distribution of deaths is not true even approximately at this age.  However, this assumption 

underlies the above method for computing xa  and xm , but not xq .  Therefore, a special procedure is used 

for computing 0a  and 0m  from 0q , which is found by the same method used at other ages.  Given 0q , 0a  

and 0m  are derived by an iterative procedure that uses both the relationship implied by equation (60) and 

the Coale-Demeny formulas used for computing period life tables (see equations 61 and 62).  Iteration is 
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required because the value of 0a  is specified in terms of 0m , not 0q .  Thus, we assign starting values for 

the iterative procedure by setting 0
)0(

0 qm =  and then computing )0(
0a  from )0(

0m  according to the Coale-

Demeny equations.  On subsequent iterations, )(
0
nm  is derived from 0q  and )1(

0
−na  (which requires solving 

equation 60 for xm ), and then )(
0
na  is computed from )(

0
nm  based on the Coale-Demeny formulas.  This 

procedure converges quickly, usually after 3 or 4 iterations.  Given the resulting estimate of 0m , we 

assume that 00 Mm =  and define 0E  so that equation 50 holds true.  

If some members of a cohort are still alive at age 110, the above formulas are used for ages 

0=x , 1, … , 109 only.  In this situation, for the open interval above age 110, we set 1110 =∞ q , 

110

110
110110 E

D
Mm

∞

∞
∞∞ == , and 

110
110

1
m

a
∞

∞ = .  On the other hand, if the cohort dies out before age 110, 

the earlier definitions of xq , xm , and xa  are used up to and including the age of extinction (note that 

1=xq  in the final age group) and all values are marked as “missing” at higher ages. 

Multi-year cohorts 

In the earlier section on death rates, we noted that death rates for multi-year intervals (either 

periods or cohorts) are found by pooling deaths and exposures first and then dividing the former by the 

latter.  We now describe methods for computing cohort probabilities of death for time periods longer than 

one year using a similar principle (see Pressat, 1980). 

Consider the example of an n-year birth cohort in the age interval from x to 1+x .  Let 
•

P  denote 

the sum of the January 1st population estimates for the n individual birth cohorts when they are aged x.  

Likewise, let LD
•

 and UD
•

 denote the sums of lower and upper triangle deaths within the same age 

interval for the same group of cohorts (see Figure 11 for an illustration in the case where 5=n ).  

Therefore, the probability of death for this n-year cohort is 
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Figure 11.  Illustration of five-year cohort (assuming no migration) 

 
Using this notation, the death rate for this n-year cohort is 
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and the average age at death in the interval is 
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In this case it is easy to confirm that the relationship between these three quantities obeys the classical 

formula exactly.  As with single-year cohorts, however, we compute 0a  and 0m  by the special iterative 

procedure described in the last section. 

Almost-extinct cohorts 

The above description assumes that all members of a cohort have died before we compute its life 

table.  However, it is often desirable to compute life tables for cohorts that are almost extinct.  Suppose 

that nt  denotes the last moment of the observation period and that the age of a cohort is *x  at time nt .  In 

order to compute a life table for this cohort, it is necessary to make some assumption about mortality at 

ages *xx ≥ .  A simple solution is to assume that the cohort’s deaths and exposures at these ages will 
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equal the average of those quantities for the most recent five-year cohort for whom such values are 

observed, as depicted schematically in Figure 12.  Thus, the values of xm , xa , and xq  for an almost 

extinct cohort at ages *xx ≥  are identical to those of a five-year cohort of comparable age observed just 

before time nt . 

Figure 12.  Life table calculations for almost-extinct cohorts 

tn tn+ω-x* Time

x*

Age

tn-6

..

.
ω

co
ho

rt b
orn

 in
 ye

ar 
t n
-x*

-1

 
It is important to define some minimal value of *x  that is acceptable when making such 

calculations.  For life tables that begin at age 0, we require that the total fictitious exposure (for ages 

*xx ≥ ) be no more than one percent of the total lifetime exposure (in person-years lived) for the cohort.  

For life tables that begin at some age above 0, the fictitious exposure should be no more than one percent 

of the total exposure above the starting age.  Figure 13 depicts life table calculations for five birth cohorts 

aged *x  to 4* +x  at time nt . 

A small problem is that this method may produce 1=xq  at some high age, even though there are 

some non-zero death and exposure counts at higher ages still.  This is possible because the data at 
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different ages refer to different groups of cohorts.  In this situation, we have chosen to terminate the life 

table for an almost-extinct cohort at the lowest age where 1=xq . 

Figure 13.  Life table calculations for almost-extinct cohorts aged *x  to 4* +x  in year nt  
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Abridged life tables 

For all life tables computed as part of this project, abridged tables are always extracted directly 

from complete tables.  This process can be described in just two steps:  1) extract values of xl , xT , xe  for 

the abridged table directly from the complete table; and 2) compute nxxxn TTL +−= , nxxxn lld +−= , and 

x

xn
xn l

d
q = .  For such calculations, 0=x , 1, 5, 10, 15, … , 110.  Of course, 5=n  except at both 

extremes of the age range.  For the open interval, ∞=n  and 0== ∞∞ Tl .
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Appendix A 

Linear model for splitting 1x1 death counts 

Two equations are given in the main text for use in splitting death counts into Lexis triangles 

based on deaths counts in 1x1 Lexis squares (see equations 4 and 7).  These equations were derived from 

a multiple regression analysis, as summarized in Table A-1.  In this appendix, we give more detail about 

the regression analysis, but without repeating formulas already presented in the main text. 

The regression analysis was performed separately for men and women.  The dependent variable 

was the proportion of deaths occurring in the lower triangle out of the total in a 1x1 Lexis square, or 

),( txdπ  (see equation 3).  The analysis included data for ages 0-104 from Sweden (1901-1999), Japan 

(1950-1998), and France (1907-1997).  During these time periods, death counts in Lexis triangles are 

available across the age range in the raw data with only minor exceptions.23  A series of regression models 

was fitted by weighted least squares. 

The weight associated with each observed value of ),( txdπ  was defined as follows: 
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Thus, the total weight for a given country in a given year was one.  Alternatively, we might have used 

),(),( txDtxw = , motivated by the knowledge that the variability of ),( txdπ  is inversely related to 

),( txD .  However, such a choice also has the effect of giving much more weight to the most populous 

country, Japan, which then dominates the analysis.  The weights used here accord an equal importance to 

                                                      
23 The available French data are not classified by Lexis triangle above age 100 for some years (1934-35, 
1947, 1949, 1954, and 1956-67).  In these cases, the data used as an input to the regression analysis had 
already been split into triangles by some method (in the data file provided by Jacques Vallin and France 
Meslé).  Ideally, such data should have been excluded from this regression analysis.  However, given the 
small number of observations involved and their small weight in the total analysis, their exclusion would 
have had only a minor effect on the estimated coefficients, and then only for the age group 100-104.  On 
the other hand, the computer programming was simplified by leaving these observations in the analysis, 
and so they were included. 
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each country-year included in the analysis, while at the same time giving more weight within each 

country-year to observations derived from larger numbers of deaths. 

The variables included in the models were chosen after an extensive exploratory analysis.   

Model I includes only age effects, which reflect the changing level of ),( txdπ  across the age range and 

explain around 70 percent of the variability in the dependent variable.  The proportion of births associated 

with the lower triangle, ),( txbπ  (see footnote 11 and equation 5), improves the fit further, as seen in 

Model II.  The Spanish flu epidemic during the winter of 1918-1919 had the effect of increasing the 

proportions of lower-triangle deaths in 1918 (which includes more deaths from the second half of the 

calendar year) and of upper-triangle deaths in 1919 (for the opposite reason).  Since this was a global 

epidemic, it seems reasonable to extrapolate the experience of Sweden and France (Japanese data begin 

later) onto the rest of the populations in the HMD. 

For most age groups, the dependent variable, ),( txdπ , has tended to increase over time, 

presumably in relation to changing levels and patterns of mortality.  Partly as a matter of convenience, the 

infant mortality rate (IMR) was chosen to serve as a proxy variable for these sorts of temporal changes 

(Model IV).  The IMR is convenient for this purpose because it can be estimated using only birth and 

infant death counts by calendar year.  As explained in the main text, we used a simple method proposed 

by Pressat (1980) for computing the IMR.  In this method, the denominator of the IMR is composed of 

two-thirds of the births from the current year plus one-third of the births from the previous year, since 

infant deaths in the current year are derived from both of these cohorts (although more were born in the 

current year than in the previous one). 

The logarithmic transformation was used because it makes the relationship between the IMR and 

),( txdπ  more nearly linear across a broader range of observations.  Even with this transformation, 

however, two other adjustments were needed to obtain a model that reflects well the patterns in the raw 

data.  First, in Model VII (not shown here), we tested for possible interactions between IMRlog  and each 

age group.  These interaction terms were statistically and practically significant for ages zero and one 
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only (Model V).  Second, at age zero the relationship between IMRlog  and ),( txdπ  seems to turn around 

at very low values of the IMR.  Therefore, we added an interaction term (for this age only) between 

IMRlog  and a dummy variable to indicate when the IMR is below 0.01 (Model VI).  This cut-off level 

was chosen to maximize the R-squared statistic.  For both males and females, R-squared obtained a 

maximum value (with four decimal points of precision) for a cut-off value in the range of 0.009 to 0.011, 

approximately.  Therefore, the value of 0.01 was used for both sexes. 

The color graphs on the following pages show actual values of ),( txdπ  at ages 0 and 80 for the 

three countries, along with predictions from the model.  For each age, two graphs are shown, depicting 

the changes in ),( txdπ  as a function of both time and IMRlog .  In the graphs organized by time, we also 

show the predicted trend in ),( txdπ  for Sweden prior to the observation period, since the infant mortality 

rate was available back to 1751 and a birth series back to 1749.  As illustrated by these graphs, the 

average value of ),( txdπ  stabilizes at high values of IMR (due to the logarithmic transformation), so 

there should be no problem with applying this model to historical periods.  In the backwards extrapolation 

for age 80, the lack of a birth series prior to 1749 is immediately apparent.  For earlier cohorts, it was 

necessary to assume a constant cohort size, resulting in a loss of variability in predicted ),( txdπ . 



Wilmoth et al.  Methods Protocol – Appendix A 

 - 48 - 

 

Figure A-1.  Proportion of male infant deaths in lower triangle 
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Figure A-2.  Proportion of male age 80 deaths in lower triangle 
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Table A-1.  Linear models of the proportion of lower-triangle deaths a 

a) Women (n = 25,017) b 
 

 Null I II III IV V VI 

Intercept 0.5104 0.5170 0.5172 0.5163 0.4712 0.4724 0.4710 

Age groups c         
0  0.2285 0.2295 0.2299 0.2368 0.0697 0.0392 
1  0.0462 0.0480 0.0479 0.0570 0.1351 0.1365 

2-4  -0.0003 0.0011 0.0006 0.0084 0.0116 0.0130 
5-9  -0.0101 -0.0092 -0.0100 -0.0029 0.0004 0.0018 

10-14  -0.0254 -0.0246 -0.0258 -0.0186 -0.0154 -0.0140 
15-19  -0.0242 -0.0235 -0.0249 -0.0181 -0.0149 -0.0135 
20-24  -0.0162 -0.0159 -0.0171 -0.0108 -0.0074 -0.0061 
25-29  -0.0141 -0.0137 -0.0151 -0.0093 -0.0059 -0.0046 
30-34  -0.0127 -0.0126 -0.0137 -0.0090 -0.0055 -0.0041 
35-39  -0.0153 -0.0152 -0.0157 -0.0123 -0.0086 -0.0072 
40-44  -0.0142 -0.0142 -0.0142 -0.0123 -0.0084 -0.0070 
45-49  -0.0131 -0.0134 -0.0131 -0.0126 -0.0085 -0.0071 
50-54  -0.0136 -0.0142 -0.0138 -0.0140 -0.0098 -0.0084 
55-59  -0.0140 -0.0145 -0.0140 -0.0148 -0.0105 -0.0091 
60-64  -0.0180 -0.0185 -0.0179 -0.0191 -0.0148 -0.0134 
65-69  -0.0215 -0.0221 -0.0215 -0.0233 -0.0189 -0.0175 
70-74  -0.0233 -0.0240 -0.0234 -0.0260 -0.0215 -0.0201 
75-79  -0.0251 -0.0258 -0.0251 -0.0291 -0.0244 -0.0230 
80-84  -0.0235 -0.0240 -0.0233 -0.0294 -0.0245 -0.0231 
85-89  -0.0165 -0.0173 -0.0165 -0.0253 -0.0201 -0.0187 
90-94  -0.0066 -0.0073 -0.0065 -0.0181 -0.0125 -0.0112 
95-99  0.0055 0.0047 0.0055 -0.0086 -0.0027 -0.0014 

100-104  0.0274 0.0267 0.0275 0.0114 0.0176 0.0190 

Birth proportion  – 0.5 d   0.7255 0.7220 0.7357 0.7377 0.7372 

Year = 1918    0.0887 0.1019 0.1023 0.1025 
Year = 1919    -0.0379 -0.0243 -0.0239 -0.0237 

log IMR     -0.0127 -0.0111 -0.0112 

(log IMR) x (Age = 0)      -0.0571 -0.0688 
(log IMR) x (Age = 1)      0.0268 0.0268 

(log IMR – log 0.01) x 
   (Age = 0) x (IMR < 0.01) 

      0.1526 

R-squared e 0.0000 0.7113 0.7362 0.7558 0.7941 0.8170 0.8192 
a All models were fit by weighted least squares, with weights equal to the number of deaths in a 1x1 Lexis square 
divided by the total deaths for that country in that year.  Thus, the total weight for each country-year combination is 
one (see main text of Appendix A for discussion). 
b All models were fit to data for ages 0-104 for Sweden (1901-1999), Japan (1950-1998), and France (1907-1997), 
after eliminating 78 observations with zero deaths in the 1x1 Lexis square. 
c Since coefficients for age groups are constrained to sum to zero, there is no omitted category. 
d The birth proportion equals the number of births in the younger cohort (born in t) divided by the total for the 
younger and older cohort (born in t-1).  Data are centered about 0.5 (i.e., 0.5 is subtracted from the birth proportion 
for each observation). 
e R-squared here is the proportion of weighted variance (about the weighted mean) explained by the model. 
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Table A-1.  Linear models of the proportion of lower-triangle deaths a 

b) Men (n = 24,872) b 
 

 Null I II III IV V VI 

Intercept 0.5176 0.5226 0.5226 0.5223 0.4831 0.4853 0.4838 

Age groups c        
0  0.2294 0.2300 0.2304 0.2371 0.0555 0.0230 
1  0.0370 0.0382 0.0385 0.0469 0.1234 0.1249 

2-4  -0.0044 -0.0034 -0.0033 0.0035 0.0071 0.0086 
5-9  -0.0088 -0.0080 -0.0080 -0.0021 0.0016 0.0031 

10-14  -0.0200 -0.0193 -0.0194 -0.0139 -0.0101 -0.0086 
15-19  -0.0274 -0.0269 -0.0274 -0.0230 -0.0190 -0.0175 
20-24  -0.0056 -0.0057 -0.0069 -0.0019 0.0020 0.0035 
25-29  -0.0014 -0.0006 -0.0019 0.0027 0.0066 0.0081 
30-34  -0.0056 -0.0053 -0.0062 -0.0025 0.0016 0.0031 
35-39  -0.0145 -0.0143 -0.0148 -0.0124 -0.0080 -0.0065 
40-44  -0.0189 -0.0188 -0.0188 -0.0179 -0.0132 -0.0117 
45-49  -0.0210 -0.0212 -0.0210 -0.0212 -0.0163 -0.0148 
50-54  -0.0201 -0.0204 -0.0202 -0.0211 -0.0160 -0.0145 
55-59  -0.0195 -0.0197 -0.0194 -0.0209 -0.0157 -0.0142 
60-64  -0.0206 -0.0208 -0.0205 -0.0225 -0.0172 -0.0157 
65-69  -0.0221 -0.0225 -0.0222 -0.0247 -0.0193 -0.0179 
70-74  -0.0236 -0.0241 -0.0238 -0.0268 -0.0213 -0.0198 
75-79  -0.0255 -0.0260 -0.0257 -0.0294 -0.0238 -0.0223 
80-84  -0.0240 -0.0244 -0.0241 -0.0289 -0.0231 -0.0216 
85-89  -0.0169 -0.0176 -0.0173 -0.0236 -0.0175 -0.0160 
90-94  -0.0077 -0.0085 -0.0081 -0.0162 -0.0098 -0.0083 
95-99  0.0063 0.0054 0.0057 -0.0043 0.0024 0.0039 

100-104  0.0348 0.0339 0.0343 0.0229 0.0299 0.0313 

Birth proportion – 0.5 d   0.6798 0.6778 0.6929 0.6992 0.6992 

Year = 1918    0.0611 0.0725 0.0725 0.0728 
Year = 1919    -0.0481 -0.0362 -0.0355 -0.0352 

log IMR     -0.0108 -0.0088 -0.0088 

(log IMR) x (Age = 0)      -0.0620 -0.0745 
(log IMR) x (Age = 1)      0.0259 0.0259 

(log IMR – log 0.01) x 
   (Age = 0) x (IMR < 0.01) 

      0.1673 

R-squared e 0.0000 0.6963 0.7163 0.7264 0.7492 0.7743 0.7768 

See notes for Table A-1a.
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Appendix B 

Computational methods for fitting cubic splines 

Splitting nx1 data into 1x1 format 

Aggregated death counts are split into a 1x1 format using cubic splines fitted to the cumulative 

distribution of deaths within each calendar year.  Let ∑
−

=

=
1

0

)(
x

u
uDxY  be the cumulative number of deaths 

up to age x, and assume that )(xY  is known for a limited collection of ages always including 1=x  and 

5=x .  Following McNeil et al. (1977), we fit a cubic spline to )(xY  in the form of the following 

equation: 

 )()()()()( 3
1

3
11

3
3

2
210 nnn kxIkxkxIkxxxxxY >−++>−++++= ββαααα L  ,  ( B1 ) 

where 0α , … , 3α , 1β , … , nβ  are coefficients that must be estimated.  The indicator function, (.)I , 

equals one if the logical statement within parentheses is true and zero if it is false.  Along the x-axis, there 

are n “knots” denoted by ik , 1=i , … , n, and lower and upper boundaries denoted by a and b, 

respectively.  In general, the knots are those values of x for which )(xY  is known from the data, except 

for the lowest and highest such values. 

We require that 11 =k , and nk  equals the lower limit of the open age interval.  We always have 

0=a  and ω=b , where ω is set arbitrarily to the maximum of 105 or 5+nk .24   Thus, we know 2+n  

values of )(xY , for 0=x , 1, … , nk , and ω, but the above equation contains 4+n  unknown parameters.  

Therefore, two additional constraints are needed in order to compute the coefficients.  Typical solutions 

usually involve constraining the slope of the function at the boundaries.  At the upper boundary, for 

example, we constrain the slope to be zero.  Thus, 0)( =′ ωY .  This choice is consistent with the usual 

tapering of the distribution of deaths at the oldest ages.  However, a similar constraint at the lower 

                                                      
24 Note that this choice makes no difference, since we do not use the fitted spline curve to split death 
counts in the open age interval anyway. 
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boundary would not be appropriate, since deaths are highly concentrated at age 0.  Instead, we constrain 

the slope of the function at age 1 to equal one half the increment (in cumulative deaths) between ages 1 

and 5.  Thus, 
2

)1()5()1( YYY −
=′ .  Since )1()1( DY ≈′ , this formula is based on the observation that about 

half of all deaths between ages 1 and 5 tend to occur during the second year of life (at all levels of 

mortality).  The first derivative of )(xY  is as follows: 

 )()(3)()(332)( 2
1

2
11

2
321 nnn kxIkxkxIkxxxxY >−++>−+++=′ ββααα L  . ( B2 ) 

Fitting the cubic spline function consists of solving a system of 4+n  linear equations.  These 

equations can be written as follows: 
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 . ( B3 ) 

Writing this equation as dAc = , the vector of coefficients can be found by computing dAc 1−= .  Once 

the coefficients are computed by this method, the estimated equation is used to find fitted values, )(ˆ xY , 

for 0=x , 1, 2, … , nk .  For all ages below the open age interval, deaths by single years of age are 

estimated by differencing: 

 )(ˆ)1(ˆˆ xYxYDx −+=  ,  ( B4 ) 

for 0=x , 1, 2, … , 1−nk . 

The choice of constraints is very important.  One drawback of the spline method is that the fitted 

curve may not be monotonically increasing over all ages.  Since the curve depicts the cumulative deaths 

over age, a decreasing function between ages x and x+1 implies negative death counts at age x.  We have 

tried to choose constraints that minimize the possibility of such an occurrence.  Nevertheless, there seems 
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to be no reliable solution at the oldest ages, and the spline function often starts to decline within the open 

age group.  For this reason, we use a different method for splitting deaths from an open age interval into 

finer categories.  Fortunately, the constraint applied to the slope at age 1 seems to work in all cases, 

yielding a curve that is always monotonically increasing at younger ages. 

Splitting period-cohort data covering multiple cohorts 

With minor modifications, the method described above can be used to split period-cohort data 

covering multiple cohorts (usually in the shape of a parallelogram) into data for single-year birth cohorts.  

For example, suppose we know the values of )5.99(,),5.9(),5.4(),1( YYYY K , where by definition 

)()]()([)(
1

0
2
1 xDjDjDxY LU

x

j
L ++=+ ∑

−

=

 is the cumulative number of deaths up to and including the lower 

triangle of age x.  Then, we can fit a cubic spline with knots at those values.  Because )5.4(Y  is known 

instead of )5(Y , we use a modified constraint:  
83.1

)1()5.4()1( YYY −
=′ .25 

From the fitted values, )(ˆ
2
1+xY , we obtain estimates of deaths for single-year cohorts by 

computing first differences.  Then, following our usual practice (see footnote 10), the resulting period-

cohort death counts are split 50/50 to obtain estimated death counts by Lexis triangle.  These two steps 

can be summarized as follows: 

 )](ˆ)(ˆ[
2
1)1(ˆ)(ˆ

2
1

2
3 +−+=+= xYxYxDxD LU  , for 1≥x  . ( B5 ) 

Finally, we derive )0()5.1(ˆ)1(ˆ DYDL −= .

                                                      
25 This modification derives from assuming that the deaths between exact ages 2 and 5 are uniformly 
distributed.  Following our earlier logic, these deaths comprise half of all deaths between ages 1 and 5.  If 
they are uniformly distributed, losing the upper triangle at age 4 means we are missing 12

1
6
1

2
1 =⋅  of all 

deaths between ages 1 and 5.  Thus, we have: 
 [ ]

83.1
)1()5.4(

2
)1()5.4(

2
)1()5()1( 11

12 YYYYYYY −
=

−
=

−
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Appendix C 

Method for splitting deaths in an open age interval 
 

Our method for splitting deaths in an open age interval treats deaths above age 20* −x  as 

though they come from a stationary population (where *x  is the lower boundary of the open age interval).  

Accumulating deaths backwards from the open age interval within a given calendar year, we divide by all 

deaths at ages 20* −x  and older to get the observed cumulative proportion of deaths in that range that lie 

above age ix −* : 

 
20*

** )(
−∞

−∞=−
x

ix

D
DixS  ,  for i = 0, 1,…20 , ( C1 ) 

where ixD −∞ *  is the number of deaths in the age interval from age ix −*  and above (including the open 

age interval).  This procedure yields a fictitious survival function (conditional on survival to age 

20* −x ), corresponding to a kind of “synthetic extinct cohort” (i.e., an extinct cohort based on period 

death counts).   

We fit the Kannisto model of old-age mortality (Thatcher et al., 1998) to this fictitious survival 

function.  The Kannisto model has the following form: 

 )(

)(

0

0

1
)( xxb

xxb

ae
aex −

−

+
=µ  ,  ( C2 ) 

where 20*0 −= xx , and a and b are unknown parameters.  The corresponding survival function is given 

by: 

 
b

xxbae
axs

/1

)( 01
1)( 





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

+
+

= −  .  ( C3 ) 

 
To summarize, we treat deaths within the calendar year as though they occurred in a stationary 

population with an age-specific pattern of mortality following the Kannisto model.  Therefore, by  
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assumption, the predicted proportion of deaths in the population above age x  is:   

 )(ˆ)(ˆ xsxS =  ,  for x = 0x , 10 +x , …ω. ( C4 ) 

We fit the model in order to estimate parameters a and b.26  Using equation (C3) and these 

estimates of â  and b̂ , we predict: 

 )5.0(ˆ)(ˆ)( +−= xsxsxd  ,  for x = *x , 5.0* +x , 1* +x , 5.1* +x ,…ω. ( C5 ) 

Then, we apply these d(x) to *xD∞  (and divide by the proportion surviving to age *x ) in order to derive 

the distribution of deaths by Lexis triangle within the open age interval beginning at age *x :   

 
)(ˆ
)()(ˆ

** xs
xdDxD xL ⋅=∞   and  

)(ˆ
)5.0()(ˆ

** xs
xdDxD xU

+
⋅=∞  , for x = *x , 1* +x , …ω. ( C6 ) 

If the estimated number of deaths in a given Lexis triangle is less than 0.25, we assume there are no 

deaths in that triangle or above.  The estimated deaths at ages below that triangle (within the open age 

interval) are then adjusted proportionally (i.e., multiplied by a constant) so that their sum is equal to *xD∞ .  

This entire procedure is applied separately to male and female death counts and then total death counts 

are obtained by summing. 

Correction for Unusual Fluctuations in Deaths 

In some cases, there may be an unusual fluctuation in death counts within the age range (from 

20* −x  to *x ) used to fit the Kannisto model.  For example, a cohort in this age range may be 

particularly small relative to nearby cohorts because of some historical event (e.g., a war) and thus, 

experience fewer deaths.  In such cases, we may want to exclude that outlier before fitting the model, or 

else we are likely to under-estimate the number of deaths at the start of the open age interval.  In order to 

                                                      
26 To fit the model, we minimize the squared differences between the logarithms of observed and 
predicted cumulative proportions: 

∑
=

−−−
19

0

2** )](ˆln)([ln
i

ixSixS  

stopping at i = 19 because )20( *−xS  and )20(ˆ *−xS  equal 1.0 by definition. 
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avoid this problem, we introduce a correction to the method described above.  Prior to fitting the model, 

we first apply a procedure to identify any outliers, and if found, exclude the age range associated with the 

period of unusual fluctuations before fitting the model.  The procedure for identifying outliers proceeds as 

follows: 

1. We calculate first differences in deaths )(xD∆ : 
  

 )()1()( xDxDxD −+=∆  ,  for x = 30* −x , 29* −x , … 2* −x  .  ( C7 ) 

Figure C-1 shows an example where )80(D∆  has a large negative value (i.e., there was a large 

decrease in deaths between ages 80 and 81) and )84(D∆  has a large positive value (i.e., there 

was a large increase in deaths between ages 84 and 85). 

Figure C-1.  First differences in deaths, West German females, 1999 
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2. We identify the trend in )(xD∆  by fitting a cubic smoothing spline that minimizes the following 

function:  
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xx
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where p is the smoothing parameter and f(x) is a standard cubic spline function (e.g., see McNeil 

et al., 1977 and equation B1).  As p tends toward 0, the result approaches the least-squares linear 

fit (i.e., a straight line), whereas for p = 1, the result is the natural cubic spline.  As p varies from 

0 to 1, the result moves from one extreme to the other.  We use p = 0.0005 because it provides a 

suitable compromise between a trend that would identify too many fluctuations as outliers (e.g., 

linear fit) and one that requires the trend to pass through each of the observed data points (i.e., no 

outliers are identified).  Figure C-1 shows the trend f(x) plotted against observed values of 

)(xD∆ . 

3. We define )(xD∆  to be an outlier if: 
 σ>−∆ 8.1)()( xfxD  ,  ( C9 ) 

where σ represents the standard deviation of the difference between )(xD∆  and f(x).   Figure C-1 

shows σ8.1)( ±xf .  Any )(xD∆  that falls outside the range of plus or minus 1.8 standard 

deviations is defined as an outlier (e.g., )80(D∆  and )84(D∆  in this example).27 

4. The age range associated with each period of unusual fluctuations will be identified by two 

outliers on )(xD∆ :  one at the age where the fluctuation begins minx , and one at the age where it 

ends maxx .  We then substitute the interpolated values, based on a cubic smoothing spline similar 

to equation C8), for all observations from ages minx  to maxx  before fitting the model.28  So, in 

                                                      
27 We tested this procedure using data for France, Sweden, and Czech Republic.  Based on visual 
inspection of the data, we identified observations that appeared to be outliers.  Then, we set the 
parameters (p = 0.0005 and +1.8σ) for the procedure such that we detected all “real” outliers (based on 
our subjective evaluation), but minimized the number of false positives.  Nonetheless, in most cases, 
treating “false positives” as outliers did not change the mortality estimates, whereas excluding “real” 
outliers had a substantial effect on the estimates. 
28 All outliers identified by the procedure described here are also checked by the country specialist to 
ensure that we are not treating observations as outliers that should not be treated as such (i.e., we do not 
exclude detected outliers if doing so produces implausible results). 
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this example, we substitute the estimated proportion of survivors for the observed proportion of 

survivors )80(S , )81(S ,… )84(S  (see equation C1) before fitting the model, using 

)85(~),...82(~),81(~ DDD  instead of )85(),...82(),81( DDD , where )(~ xD  is derived by 

minimizing the following function: 

 ( ) ( )∫∑
−

−

−

−=

′′−+−
1

30

2
1*

30*

2
*

*

)()1()()(
x

x

x

xx

dxxfpxfxDp . ( C10 ) 

Correction for Cohort Size 

Another potential problem with the basic method for splitting the open age interval is that 

sometimes deaths for a particular cohort within the open age interval may be under- or over-estimated by 

the model as a result of variations in cohort size.  For example, a cohort may be unusually small (e.g., 

those born in time of war) relative to other cohorts in that same period; if that cohort falls within the open 

age interval, then the model may over-estimate deaths for that cohort.  To address this problem, we make 

a final correction for cohort size after splitting deaths in the open age interval as described above.  This 

correction essentially redistributes deaths to take account of the size of each respective cohort relative to 

other nearby cohorts within the open age interval. 

For each cohort born in year xt − , where x  is the age at last-birthday on December 31st of year t 

for *xx ≥ , we perform the following steps: 

1. We compare deaths for that cohort in the year in which they would attain age 1* −x  relative to 

the average of deaths at the same age among nearby cohorts.  For example, for 3* += xx  (the 

cohort represented by the period-cohort parallelogram in yellow in Figure C-2), we compute the 

ratio of deaths for that same cohort in year 4−t  (in the uppermost red parallelogram) to the 

average of deaths at the same age for the two previous cohorts and two later cohorts (shown in 

blue).  If all five cohorts had the same number of deaths in the years they would attain age 

1* −x , then the resulting ratio would be 1.0.   
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2. We calculate similar ratios for ages 5* −x  through 2* −x  (as depicted in Figure C-2).   

3. Then, we take the average of the ratios across these five age years ( 5* −x  to 1* −x ) as an 

estimate of the size of this cohort relative to nearby cohorts.  

4. Next, we multiply the original estimate of deaths in the open age interval (derived using methods 

described in previous sections) by this adjustment ratio.  Following the earlier example, the 

adjustment ratio based on the deaths shown in red in Figure C-2 is applied to the original 

estimates of ),2( * txDU +  and ),3( * txDL +  shown in yellow. 

5. Finally, we make one last minor adjustment to ensure that the estimates add up to the original 

sum in the open age interval.   

Of course, this procedure requires that the data are available to make these calculations.  For the 

example shown in Figure C-2), we could not complete the calculations described above if the data series 

began in year 4−t .  Therefore, given the estimate of ),1( txDU −  where *1 xx ≥− , or ),( txDL  where 

*xx ≥ , we make no correction for cohort size if )( *
min xxtt −−≥ , where tmin is the first year of the 

data series.  Furthermore, if the original raw death counts for the period used to make these calculations 

are not available by (at least) one-year age groups, we make no correction for cohort size. 

Given that )( *
min xxtt −−< , following the five steps listed above, we adjust the original 

estimates of ),1( txDU −  and ),( txDL  as follows in order to correct for fluctuations in cohort size: 

 ),1()(),1(ˆ txDxrtxD UU −⋅=−  ,    for ω++= ,...2,1 ** xxx ,     and ( C11 ) 

 ),()(),(ˆ txDxrtxD LL ⋅=  ,     for ω++= ,...2,1, *** xxxx  ,  ( C12 ) 

where 

 ∑
=

=
n

j
jxr

n
xr

1
)(1)(  , ( C 13 ) 

 ]5)),(min[( *
min xxttn −−−=  , ( C14 ) 
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 ]2)),(min[( *
min xxjttl −−−−=  , ( C 16 ) 

 and     ]2),min[( *xxm −=  . ( C17 ) 

 

Figure C-2.  Example depicting the procedure to correct for cohort size 
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Then, we calculate the final estimates ),1(~ txDU −  and ),(~ txDL  using the following adjustment 

to ensure that they sum to the original death count in the open age interval: 

 

∑
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∞
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Appendix D 

Adjustments for changes in population coverage 

Some of the countries included in the HMD have experienced changes in their territorial 

boundaries.  These changes must be taken into account when computing death rates and life tables (unless 

the changes are very small in relation to population size).  In general, death counts must always refer to 

the same territory as the exposure-to-risk when calculating death rates.  Likewise, when using birth counts 

as a measure of relative cohort size (in splitting 1x1 death counts into Lexis triangles), the birth series 

must refer to the same territory.  With these principles in mind, we make some special calculations for 

countries with changing territories during the time period covered by the HMD. 

Before describing these calculations, let us consider the format of the relevant data.  Although 

territorial changes may occur at any time during a calendar year, administrative data (i.e., birth and death 

counts) typically reflect such changes on January 1st.  Therefore, throughout this discussion we assume 

that the territorial change occurs on January 1st and that birth and death counts within an individual 

calendar year always refer to an unchanging territory. 

Birth counts used in splitting 1x1 deaths 

As described earlier, we use a birth series as a measure of relative cohort size as part of our 

method for splitting 1x1 death data into triangles.  Suppose that this birth series is based on a changing 

territory.  Then, the size of two successive cohorts may appear to change merely as a result of past 

territorial changes.  If we use such a series in our calculations, we will introduce “artificial cohort effects” 

into our estimated death counts.  Therefore, we adjust the birth series so that it refers to the same territory. 

Suppose that a territorial change occurs on January 1st of year t.  Define −

+

=
B
BtRb )(  to be the 

ratio of births in the new territory, +B , to births in the old territory, −B , either in year t or t-1 (see below).  

Therefore, in order to calculate ( )tRb  for the period covered by the birth series, we need birth data for the 

territory gained or lost during each territorial change.  If territory was gained in year t , then we base the 
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calculation on the number of births in year t .  −B  is calculated as the total births minus the births in the 

territory added, while +B  is simply the total births in year t .  On the other hand, if territory was lost in 

year t , then we base the calculation on the number of births in year 1−t .  −B  is simply the total births 

(including the area lost) in year 1−t , while +B  is calculated as the total births in year 1−t  minus the 

births for the territory lost.29  Thus, in either case, the data for both the numerator and the denominator 

come from the same year (either t or t-1).  For example, in 1954, the territory of Trieste was added to the 

Italian territory.  Therefore, we calculate ( )1954bR  as the ratio of the births (in 1954) for the entire 

territory (including Trieste), +B , to the births (in 1954) for the territory excluding Trieste, −B , resulting 

in ( ) 003.11954 =bR .  If there was no territorial change in year t , then ( ) 0.1=tRb  by default. 

The formulas shown in equations 5 and 6 (p. 13) are then modified as follows:30 

 
)()1()(

)(),(
xtRxtBxtB

xtBtx
b

b −⋅−−+−
−

=π  , ( D1 ) 

and 

 
)()()1(

),0()(
3
2

3
1 tBtRtB

tDtIMR
b +⋅−

=  . ( D2 ) 

Note that if there is no territorial change in year xt − , then ( ) 0.1=− xtRb  by default and thus, drops out 

of equation D1 leaving it exactly as shown in equation 5.  Similarly, if there is no territorial change in 

year t , then ( )tRb  drops out of equation D2 and the result is identical to equation 6. 

Ideally, we would like to have a birth series back to the earliest cohort for which we have death 

data (≈ 100 years prior to the earliest calendar year of deaths).  In that case, we need ( )tRb  factors back to 

                                                      
29 In some cases, the necessary birth data may not be available.  In such cases, we simply use the 
population adjustment factor at age 0 (see p. 65):  ),0()( tVtRb = . 
30 The birth ratio calculated in Equation D1 is used in order to split deaths in year t, based on data from 
the years in which the respective cohorts were born (i.e., years t-x and t-x-1).  Yet, if a territorial change 
occurred between years t-x and year t, then the territory covered at the time of death, year t, is not the 
same as the territory covered at the time these cohorts were born.  Equation D1 implicitly assumes that 
the birth ratio for the two cohorts is the same for the territory covered in year t-x as in the territory 
covered in year t. 
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the beginning of the birth series (if there were territorial changes).  For example, suppose we have death 

data for 1900-2000 in country X and there was a territorial change in 1850.  Individuals who died at age 

50 in 1900 were born in either 1849 or 1850.  In order to calculate the birth proportion, ( )1900,50bπ , 

shown in equation (D1), we need ( )1850bR . Nonetheless, in many cases we will not have birth data prior 

to the earliest death data, in which case we set ( ) 5.0, =π txb  by default and assume )()1( tBtB =−  in 

order to calculate )(tIMR  (see p. 13). 

Extinct cohort methods 

When we estimate population sizes using extinct cohort methods, we apply a different form of 

adjustment for territorial changes.  Suppose that we are estimating )(xP  by this method, and that some 

territorial change occurs at time t.  Define 
)(
)(),(

xP
xPtxV −

+

=  to be the ratio of the population size at age x 

just after this change (i.e., on January 1st of year t) to the comparable value just before the change (i.e., on 

December 31st of year t-1).   

For the country in question, we require population counts by age (and sex if available) for the 

territory that is gained or lost during the territorial change as well as for the entire country.  Preferably, we 

use population estimates near the time of the territorial change, but sometimes we may only have data 

from a census at time t* (close to the territorial change at time t).  If a territory was added, then we must 

use data from the subsequent census, whereas if territory was lost, then we use data from the census prior 

to the territorial change.   

In some cases, the available data may be aggregated into age groups, in which cases the V(x,t) 

factor is calculated for the age group and then applied to each single year of age within that age group.  In 

fact, such data may be preferable because random variations across age are smoothed.  Therefore, even if 

data by single year of age are available, we may still calculate the V(x,t) factors by five-year age groups.  

In any case, at very high ages (e.g., age 90 and older), the V(x,t) factor is calculated using aggregate data 

even if data by single year of age are used at younger ages.  Aggregating across an open age interval at 
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very old ages is necessary because the population counts by single year of age can become very small at 

high ages, resulting in V(x,t) factors that are very erratic (including even zero or undefined values).  If 

data are not available by age, then we must use V(t) calculated from the total population of all ages. 

If there are no further territorial changes during the life of this cohort, then we estimate 

 [ ]∑
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Now, suppose there is no territorial change at time t, but rather at time 1t , where tt >1 .  Define 

ttN −= 11  (i.e., the time until the territorial change).  We estimate ),( txP  as follows: 
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If there is also a territorial change at time t, then this formula gives the value for ),( txP+ . 

For cohorts who live through more than one territorial change (at older ages), the above formula 

requires a slight modification.  For example, assume that s territorial changes occur at times 1t , …, st ,  

where ttts >>> 1L .  Define ttN −= 11 , …, ttN ss −= .  Then, we estimate ),( txP  as follows: 
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Intercensal survival methods 

When we estimate population sizes using intercensal survival methods, we apply a similar 

adjustment for territorial changes.  Referring to Figures 4a-c, suppose that a change in the territorial 

coverage of vital statistics occurs on January 1st of year 11 Ntt += , where NN ≤1  and N equals the 

number of complete calendar years between the two censuses.  Given ),( txV , defined as above, the main 

formulas for existing cohorts (Figure 4a) would be modified as follows: 
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Note that the latter equation provides two different estimates of ),( 11 tNxP + , corresponding to the 

territory covered by the statistical system just before and after January 1st of year 11 Ntt += .  Thus, 

),( 11 tNxP +−  comes from the top part of the formula and ),( 11 tNxP ++  from the bottom part, and it is 

easy to confirm that ),(),(),( 111111 tNxVtNxPtNxP +⋅+=+ −+ . 

Similarly, for the infant cohort (Figure 4b), the modified formulas are as follows: 
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and 

[ ]

( )
( )

[ ]

[ ]

( )
( )





















≤≤

∆
+−+

+−
+

++++−

⋅




 ++++−−

<≤

∆
⋅

+−+

+−
+

++++−−

=+

∑

∑

∑

−

=

−

=

−

=

NnN

ffN
nf

itiDitiD

tNVitiDitiDDC

Nn

tNVffN
nf

itiDitiDDC

ntnP

n

Ni
LU

N

i
LUa

n

i
LUa

1

0
2

2
12

1

2
12

1

1

11
1

0
1

1

11

0

2
2

12
1

2
12

1

1

0
1

for

1
1

),1(),(

),(),1(),(

0for

),(1
1

),1(),(

),(

1

1
 .  ( D10 ) 

Finally, we consider the case of new cohorts born during the intercensal period.  For those born 

after the territorial change (i.e., in calendar year 1Nt +  or later), the standard formulas can be used.  For 

those born before the territorial change, however, modified formulas are needed.  Consider the cohort 

born in year jt +  where 10 Nj <≤ .  As before, define 1−−= jNK  (the age of the cohort on January 

1st before the second census).  Also define 111 −−= jNK  (the age of the cohort on January 1st of year 

1Nt + ).  Then, the modified formulas are as follows: 

 

[ ]

[ ] )(),(),1(

),(),(),1(),0(ˆ

1

11
1

2

1

1

dc

K

Ki
LU

K

i
LULjt

DDijtiDijtiD

tKVijtiDijtiDjtDBC

+−+++++−−

⋅












+++++−−+−=

∑

∑

+=

=
+

 ,  ( D11 ) 
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Sometimes more than one territorial change occurs during an intercensal interval.  In this 

situation, the formulas are only slightly more complicated.  Suppose that s territorial changes occur at 

times 11 Ntt += , …, ss Ntt += .  The formulas above are for the case where 1=s .  If 2=s , the formulas  

for existing cohorts would be as follows: 
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 These formulas can be adapted as well to cases where 2>s .  Formulas for the infant cohort and new 

cohorts receive similar modifications to adjust for territorial changes. 
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Linear interpolation 

 When we use linear interpolation to calculate population size on January 1st (for example, when 

we have reliable population estimates referring to July 1st of each adjacent year), it is important to ensure 

that both populations refer to the same territory.  When a territorial change occurs on January 1st of year t, 

we multiply the population estimate for the given date in year t-1 by ),( txV  before performing linear 

interpolation.   In this way, the population in year t-1 is adjusted to reflect the same territory as on January 

1st of year t. 

Period death rates around the time of a territorial change 

In the event of a territorial change, the formula for the exposure-to-risk (shown in equation 49), 

which is used to calculate the period death rate, requires a minor modification.   Suppose there is a 

territorial change on January 1st of year t+1.  The exposure-to-risk in the age interval [ )1, +xx  during 

calendar year t would be calculated as follows: 

 [ ] [ ]),(),(
6
1)1,(),(

2
1 txDtxDtxPtxPE UL

p
xt −+++= −  , ( D15 ) 

 
where )1,( +− txP  is the population at age x just before the territorial change. 
 

Cohort mortality estimates around the time of a territorial change 

Territorial changes present a special problem for cohort life table calculations.  Fortunately, the 

solution is fairly simple.  Let LD  and UD  be the cohort death counts at some age just before and after a 

territorial change (assumed to occur on January 1st).  Also, let −P  and +P  be population estimates (at the 

same age) just before and after this change.  Define UU D
P
PD +

−

=* , which represents the upper-triangle 

deaths that would have occurred in the original territory.  Compute death rates and life table quantities as 

follows: 

 ( )*
3
1

*

UL

UL
x DDP

DDM
−+

+
= − , *

*
3
2

3
1

UL

UL
x DD

DD
a

+
+

= , and 
L

UL
x DP

DDq
+
+

= −

*

 . ( D16 ) 
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These three quantities are mutually consistent, like other cohort quantities.  Furthermore, 

equivalent values are obtained if instead we define LL D
P
PD −

+

=* , which represents the lower-triangle 

deaths that would have occurred in the new territory, and compute as follows: 

 ( )UL

UL
x DDP

DDM
−+

+
= + *

3
1

*

, 
UL

UL
x DD

DD
a

+
+

= *
3
2*

3
1

, and *

*

L

UL
x DP

DDq
+
+

= +  . ( D17 ) 

Thus, the result is the same whether this adjustment is made to the lower or the upper triangle.  The 

method is also consistent with an estimate of xq  based on the French method of partial quotients, since 

 +

+

−

− −
+

−=
P

DP
DP

Pq U

L
x 1  . ( D18 ) 

Other changes in population coverage 

Sometimes there may be changes in the coverage of demographic data that are not due to 

territorial changes, but can be treated as such in order to make the appropriate adjustments to the 

formulas.  For example, in some countries the vital statistics collection system changed from covering the 

de facto population to covering the de jure population at some time t.  In order to account for this change 

in the birth and death count data, we treat it as a territorial change and calculate V(x,t) factors based on the 

de jure population and the de facto population at the time of the change in population coverage.  We then 

use V(0,t) as an estimate of ( )tRb . 
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Appendix E 

Computing death rates and probabilities of death 

The purpose of this appendix is to describe and justify the methods used for computing death 

rates and probabilities of death in the HMD.  We consider the case where death counts are available by 

Lexis triangle and population estimates are available by single years of age for individual calendar years 

(see Appendices A and B for the methods used to split 1x1 or 5x1 data, if needed).  A key assumption is 

that deaths are distributed uniformly within Lexis triangles, and so we begin by exploring the implications 

of this assumption.  We then show how the main formulas used in computing cohort and period death 

rates and probabilities of death can be derived making use of this assumption. 

Uniform distribution of deaths 

We typically assume that deaths are distributed uniformly within individual Lexis triangles.  The 

main results following from this assumption are summarized in Table E-1.  For example, deaths in the age 

interval [ )1, +xx  occur, on average, at age 
3
1

+x  if they occur in the lower triangle and at age 
3
2

+x  in 

the upper triangle.  Deaths in either triangle contribute, on average, 
3
1  of a person-year of exposure 

within the triangle where the death occurred.  At the same time, all deaths result in an equivalent amount 

of lost exposure within their respective triangles (relative to what the individual would have contributed if 

s/he had exited the triangle as a survivor). 

 

Table E-1.  Implications of assuming uniform distribution of deaths within Lexis triangles (at age x) 

 Lower triangle Upper triangle 

Average age at death 
3
1

+x  
3
2

+x  

Average contribution 
(per death) to exposure 
within triangle 

3
1  

3
1  

Average lost exposure 
(per death) within 
triangle 

3
1  

3
1  
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These relationships are not intuitively obvious and must be derived using calculus.  The 

uniformity assumption implies that the probability density of deaths is 2 over the triangle (because the 

total area is 
2
1 ).  The values in Table E-1 are then found by integrating over age and time.  For example, 

the average age at death in a lower triangle is found by solving the following double integral: 

 
3
1)(2

1

0 0
+=+∫ ∫ xdtdssx

t
 .  ( E1 ) 

Similarly, the average lost exposure for a death in the upper triangle is 

 
3
1)1(2

1

0

1
=−∫ ∫ t

dtdss  , ( E2 ) 

and so forth. 

Cohort death rates and probabilities 

Death rates and probabilities of dying are simpler conceptually for cohorts than for periods.  As 

depicted in Figure 10 (main text), cohort rates and probabilities are measured over the parallelogram that 

follows the lives of individuals who turn age x in one calendar year until their next birthday, at age 1+x , 

in the following calendar year.  We assume that there is no migration and deal with the case of a closed 

population, since the effects of migration on calculated rates and probabilities are negligible so long as 

migratory flows have the same direction and a similar magnitude over the interval. 

For cohorts, the probability of dying between ages x and 1+x  is found by first computing the 

probability of survival, xp , which is the product of two components: 

 
L

UU

L
x DP

DP
P
DP

DP
Pp

+
−

=
−

⋅
+

=  ,  ( E3 ) 

where )1,( += txPP , ),( txDD LL = , and )1,( += txDD UU , as illustrated in Figure 10.  Thus, the 

probability of surviving from age x to age 1+x  is a product of the fraction surviving from age x to the 

end of the calendar year and the fraction surviving from the beginning of the next calendar year to age  



Wilmoth et al.  Methods Protocol – Appendix E 

 - 74 - 

1+x .  It follows immediately that 

 
L

UL
xx DP

DDpq
+
+

=−= 1  ( E4 ) 

is the cohort probability of dying in the age interval [ )1, +xx . 

To obtain the cohort death rate over this interval, we must first compute the exposure-to-risk.  

Consider the P individuals alive at the boundary between the two calendar years.  If there were no deaths 

in the upper triangle, these P individuals would contribute a total of P person-years of exposure over the 

complete age interval.  However, as shown above, the UD  deaths in the upper triangle result in an 

average lost exposure of 
3
1  person-years, which must be subtracted from P.  On the other hand, the LD  

deaths in the lower triangle contributed an average of 
3
1  person-years, which must be added to the total 

for the interval.  Therefore, the person-years of exposure in this interval equal 

 ( )ULx DDPE −+=
3
1  ,  ( E5 ) 

and the cohort death rate is, by definition, 

 
( )UL

UL
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x
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DDP

DD
E
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+
===

3
1

 .  ( E6 ) 

As reflected in this equation, for cohorts there is no difference, either conceptually or numerically, 

between the population death rate, xM , and the life-table death rate, xm . 

Let xa  be the average number of years lived between ages x and 1+x  by individuals who die in 

the interval.  Under the assumption that deaths are distributed uniformly within Lexis triangles, we know 

that the average age at death is 
3
1

+x  in the lower triangle and 
3
2

+x  in the upper one (see Table E-1).  It 

follows that 

 
UL

UL
x DD

DD
a

+
+

= 3
2

3
1

 .  ( E7 ) 
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We recall that, in classical life table notation, death rates, probabilities of dying, and average 

years lived in the age interval are related by the following formula: 

 ( ) xx

x
x ma

m
q

⋅−+
=

11
 .  ( E8 ) 

It is easy to confirm that these three quantities, when derived (as above) under the assumption of a 

uniform distribution of deaths within Lexis triangles, satisfy this equation.  Thus, the three quantities are 

mutually consistent, even though they have been derived independently from death counts and population 

estimates.  In the case of cohorts, this relationship is exact, and there is no need to give preference to 

either rates or probabilities in the calculation of cohort life tables. 

Period death rates and probabilities 

As depicted in Figure 9 (main text), period death rates and probabilities of death are measured 

over the 1x1 Lexis square that lies between exact ages x and 1+x  during some calendar year.  Therefore, 

these quantities reflect the blended experience of two birth cohorts.  As explained in the main text, we 

begin by computing the period death rate within a 1x1 Lexis square, which we then convert to a 

probability of death by assuming a constant force of mortality over the age interval.  Although this is a 

standard method, it lacks the desirable property enjoyed by our method for computing cohort quantities, 

since it is not reversible:  if we begin by computing the probability of death directly from data and 

converting it to a death rate, we obtain a slightly different result.  We adopt the method used here because 

it includes an explicit calculation of the exposure-to-risk, which is needed for statistical modeling, and 

because the link between death rates and probabilities of death is well defined.31 

Our method for converting death rates into probabilities of death has already been described in 

the main text.  Furthermore, it is a familiar technique (Preston et al., 2001) and requires no particular 

                                                      
31 It is common in the French demographic tradition to compute probabilities of dying directly from data, 
using the method of “partial quotients” (Pressat, 1980).  In this tradition, death rates are also computed 
directly from data, based on an explicit calculation of the exposure-to-risk.  The main difference, relative 
to the method used here, is that death rates and probabilities of death are not linked by an explicit 
formula.  In practice, however, there is very little difference between empirical results obtained using the 
two methods. 
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justification here.  Therefore, our only task in this section is to justify our method of computing the 

exposure-to-risk that forms the denominator of the period death rate.  As before, we assume that there is 

no migration within the 1x1 Lexis square and deal with the case of a closed population, since the error 

introduced by this assumption is usually negligible. 

To compute the exposure-to-risk in a 1x1 Lexis square, we are required to make an additional 

assumption.  Consider the ),( txN  individuals who attain exact age x and the ),1( txN +  individuals who 

attain exact age x+1 in calendar year t (see Figure 9).  Suppose, in each case, that the birthdays of these 

individuals (at age x and x+1) are distributed uniformly within the calendar year t.  Then, neglecting 

deaths, the ),( txN  individuals who attain exact age x in year t would have contributed, on average, 
2
1  

person-year of exposure within the lower triangle; likewise, the ),1( txN +  individuals who attain exact 

age x+1 in year t would contribute, on average, 
2
1  person-year of exposure within the upper triangle.  

Thus, the major component of the exposure-to-risk in this case would be [ ]),1(),(
2
1 txNtxNN ++= .  If 

the two distributions of birthdays (at age x and x+1) are not uniform within the calendar year but are 

nevertheless similar to each other, then the correct multiplier would differ only slightly from 
2
1 .  This 

type of mild non-uniformity can be safely ignored in computing the exposure-to-risk.  However, larger 

departures from this uniformity assumption can be more problematic.32 

                                                      
32 This assumption is violated most severely in situations where there are rapid changes in the size of 
successive cohort, owing to fluctuations in the birth series many years before.  The worst situation is 
when a sharp discontinuity in births occurs in the middle of one calendar year, creating a cohort that is 
“heavy” at one end and “light” at the other.  We have not attempted to correct our mortality estimates for 
the error introduced by such occurrences, which may result in artificially elevated or depressed levels of 
mortality along a diagonal of the Lexis diagram that follows the cohort(s) in question.  The user should be 
aware of this possibility and not misinterpret the data. 
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In addition, the ),( txDD LL =  deaths in the lower triangle result in an average lost exposure of 
3
1  

person-years, which must be subtracted from N .  On the other hand, the ),( txDD UU =  deaths in the 

upper triangle contributed an average of 
3
1  person-years, which must be added to the total for the  

interval.  Therefore, the person-years of exposure in this interval can be estimated as  

 ( )ULx DDNE −−=
3
1  .  ( E9 ) 

Notice that ),( txN is equivalent to the )1,( +txP population aged x at the beginning of calendar 

year t+1 plus the LD deaths in the lower triangle, and that ),1( txN + is equivalent to the ),( txP  

population aged x at the beginning of calendar year t minus the UD deaths in the upper triangle.  

Therefore, we can substitute [ ]UL DtxPDtxP −+++ ),()1,(
2
1 for N in equation (E9).  After simplifying, 

we get 

 [ ] ( )ULx DDtxPtxPE −+++=
6
1)1,(),(

2
1

 , ( E10 ) 

and thus the period death rate is 
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Appendix F 

Special methods used for selected populations 

For the sake of comparability, we aim to follow the general principles described in this document 

for all populations included in the HMD.  However, exact uniformity of methods is not always possible, 

because data at the required level of detail are not available in all situations.  Therefore, in a few special 

cases, we have developed special methods to accommodate the realities of the available data.  As of the 

current version of this document (dated May 31, 2007), the populations listed below have been treated 

with special methods.  For the most up-to-date version of this table, go to the Special Methods link 

(http://www.mortality.org/Public/Docs/SpecialMethods.pdf) on the HMD website.  

Population Special method For more details: 
Belgium Corrected counts of live births (1895-1923, 1919) 

and infant deaths (1886-1955, 1958-60) to 
include false stillbirths.  Used special methods to 
accommodate missing deaths for 1914-18.   

See Appendices 2 and 3 of the 
country-specific documentation 

Bulgaria Calculated population estimates for 1989-1992 
by treating official estimates for 1988 as a 
“pseudo-census” and then applying the 
intercensal survival method.  

See the “Data Quality Issues” 
section of the country-specific 
documentation 

Canada Adjusted death counts for missing information 
(e.g., sex, age, year of birth) and errors in the 
year of birth.  In some cases, we aggregated the 
original death counts by Lexis triangle into 1x1 
format because of apparent data quality 
problems. 

See the “Death Count Data, 
Special Details” section of the 
country-specific documentation 

England and 
Wales 

Used estimates for the total population that 
incorporate the military population. 

See the country-specific 
documentation 

France Corrected counts of live births and infant deaths 
(1899-1974) to include false stillbirths.  Used 
estimates for the total population that incorporate 
the military population. 

See the country-specific 
documentation 

Germany Corrected for overestimation of the old-age 
population for West German males in the most 
recent year. 

See Appendix 2 of the 
country-specific documentation 

Germany, East 
and West 

Used special methods to estimate death, birth, 
and population counts separately for East and 
West Berlin since 2001. 

See Appendix 2 of the country-
specific documentation 

Italy Estimated the age distribution for death counts in 
1893-94.  Adjusted the census counts for 1871, 
1921, and 1951 to cover the same territory as the 
death counts. 
 

See Appendix 2 of the 
country-specific documentation 

http://www.mortality.org/Public/Docs/SpecialMethods.pdf
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Population Special method For more details: 
Lithuania Used SR(85+) rather than SR(90+) to derive 

population estimates for almost extinct cohorts.  
The original death counts were aggregated for 
ages 99+. 

See the “Population Count Data, 
Specific Details” and “Data 
Quality Issues” sections of the 
country-specific documentation 

New Zealand We adjusted the Māori and Non-Māori 
population counts for 1991-1995 to follow the 
older definition of ethnicity. Due to the fact that 
deaths in 1995 are classified by a mixture of the 
previous and current definitions of ethnicity, we 
introduced a special adjustment factor for Māori 
and Non-Māori deaths. In addition, we adjusted 
census counts for 1960 & 1970 to cover the de 
jure  (“usual resident”) population.  

See Appendix 2 of the 
Background & Documentation 
file for the national population 

Norway Estimated the sex distribution for births during 
1846-1915. 

See the country-specific 
documentation 

Portugal Used SR(85+) rather than SR(90+) to derive 
population estimates for almost extinct cohorts. 

See the “Population Count Data, 
Specific Details” section of the 
country-specific documentation 

Russia Prior to calculation of HMD estimates, i)  the 
original death counts for 1959-1989 were 
aggregated for ages 99+, and ii) official 
population estimates in recent years were 
aggregated for ages 80+.  Population estimates 
for almost extinct cohorts were derived using 
SR(80+) rather than SR(90+). 

See Appendix 2 of the 
country-specific documentation 

Spain Corrected counts of live births and infant deaths 
(1930-1974) to include false stillbirths.  Adjusted 
the census counts for 1940, 1950, 1960, & 1970 
to cover the de facto population and the same 
territory as death counts.   

See the country-specific 
documentation 

Sweden Adjusted death counts for 1863, 1865, 1868, & 
1870 to match a secondary data source. 

See the “Data Sources” section of 
the country-specific 
documentation 

Switzerland Adjusted deaths counts for females in 1878. See the “Death Count Data, 
Deaths at 99+” section of the 
country-specific documentation 

Ukraine Prior to calculation of HMD estimates, the 
original death counts for 1959-1989 were 
aggregated for ages 99+.   

See the “Data Quality Issues, Age 
Heaping in Deaths” section of the 
country-specific documentation 

United States Tabulated individual data to derive deaths by 
Lexis triangle (1959-2004).  Adjusted population 
estimates to exclude the Armed Forces overseas 
(1940-1969) and the population of Alaska and 
Hawaii (1950-1958).  Adjusted births for 1959 to 
include Hawaii.  Used the extinct cohort method 
for ages 75+ during 1933-39 because the official 
population estimates extend only to age 75+. 

See the country-specific 
documentation 
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