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Models for the Estimation of the Probability of Dying between
Birth and Exact Ages of Early Childhood

JEREMIAH M. SULLIVAN

INTRODUCTION

In the developing nations of the world, deaths to children under five years of age constitute a large
fraction — sometimes, a majority — of all deaths. Childhood mortality statistics are, therefore, of
considerable descriptive value. In addition, when known with accuracy, they can provide insight
into a population’s demographic characteristics by facilitating the analysis and understanding of
existing fertility and nuptiality patterns. Moreover, childhood mortality statistics are useful as a
sensitive index of a nation’s health conditions and as guides for the structuring of public health
programmes. Nevertheless, childhood mortality levels are typically known only approximately, if
at all, in developing nations.

In general, the absence of accurate mortality statlstlcs for the childhood populations of
developing countries is due to a scarcity of reliable data. Vital registration is often incomplete or
totally absent so that mortality statistics must be computed or estimated from survey and census
data. These sources usually provide data on the age and sex composition of a population and of
tabulations of vital events during the past calendar year (reference period data) or during the
lifetime of the respondents (retrospective data). Reliable reference period data are, of course, an
appropriate source of mortality statistics. However, for well-known reasons, the accuracy of data
obtained in a single survey or census in a developing country is often questionable.! Age misreporting,
underenumeration at certain ages and misconception of the duration of a reference period are the
principal causes of inaccurate census data. These errors distort reference period data, particularly
the data applicable to the childhood ages, and, accordingly, diminish confidence in age-specific
death rates computed directly from them.2 Nevertheless, problematic reference period data can still
be used to estimate mortality conditions for some ages by use of techniques such as model life
tables,® stable population theory? and, if at least two census tabulations are available, cohort survival
rates.5 Unfortunately, the first two techniques provide only very approximate estimates of childhood
mortality rates and the third technique is not applicable to the childhood ages.®

Notwithstanding the typical errors found in reference period data, censuses often provide
relatively accurate tabulations of the female population by five-year age intervals and of retrospective
data on their children, namely: (1) the total number of children ever-born and (2) the number of

1 D. Goldberg, and A. Adlakha, ‘Notes on infant mortality based on surveys in the Ankara Area’, in F. Shorter and
B. Giivenic (eds.), Turkish Demography: Proceedings of a Conference (Haceteppe University Press, Ankara, 1966).

2 United Nations, Department of Social Affairs, Population Studies, No. 13 (United Nations, New York, 1954);
Department of Economic and Social Affairs, Population Bulletin of the United Nations, No. 6 (United Nations,
New York, 1963).

3 United Nations, Department of Economic and: Social Affairs, Methods of Estimating Basic Demographic Measures
from Incomplete Data, Population Studies, No. 42 (United Nations, New York, 1967) ; Department of Economic and
Social Affairs, The Concept of a Stable Population. Application to the Study of Populations of Countries with Incomplete
Demographic Statistics, No. 39 (United Nations, New York, 1968).

4 Eduardo E. Arriaga, New Life Tables for Latin American Populations in the Nineteenth and Twentieth Centuries,
Population Monograph Series, No. 3 (University of California, Berkeley, 1968).

5 Paul Demeny, and F. C. Shorter, Estimating Turkish Mortality, Fertility and Age Structure: Application of Some
New Technigues (Faculty of Economics Pub. No. 218, University of Istanbul, 1968).

¢ United Nations, Methods of Estimating Basic Demographic Measures from Incomplete Data. Cf. also Sullivan’s
review of Arriaga’s monograph in Social Biology, June 1971.
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children surviving at the time of the inquiry.” In particular, women who are young or newly married
are able accurately to report such events because the relevant events have only recently occurred.
From these data, statistics on the proportion dead of children ever-born, by age interval of female
respondents, may be computed. A technique for converting these retrospective mortality statistics
to more precise mortality measures was recently developed by William Brass. Essentially, the
technique provides estimates of the probability of dying between birth and various exact childhood
ages.8 Since the errors often found in reference period data severely limit their usefulness as a source
of childhood mortality statistics, the Brass technique, which relies on retrospective data, is of
considerable value. Indeed, it is the only procedure which will provide relatively accurate estimates
of childhood mortality conditions in many populations of the world to-day.

This paper deals with the problem of converting retrospective mortality data into precise
mortality measures and offers some modifications and adaptations of the Brass solution to this
problem. Section I discusses the assumptions underlying the construction of the Brass model. If
accurate estimates of current mortality conditions are to be obtained from that model, those
assumptions must hold approximately. In this section, particular stress is placed on the model’s
assumption of static conditions and on its use of mathematical functions to depict the degree of
variation found among empirical fertility and mortality schedules. Section II develops two additional
models for converting retrospective data into mortality estimates. They are, alternatively, designed
for use with retrospective data tabulated by age-intervals of women (the age model) and by marital-
duration intervals (the duration model). As with the Brass model, these models assume static
conditions. Their development differs from the Brass model in two ways. Regression analysis is
used to determine the relationships of interest, and empirically based fertility and mortality
schedules provide the data for that analysis. In this section, we also compare the reliability of
mortality estimates obtained from the Brass model with those obtained from the age model. This
comparison is essentially a test of the appropriateness of the Brass procedure of representing
empirical fertility and mortality schedules with analytical expressions. Finally, in Section III,
we compare and evaluate the models developed in this paper, the age and duration models. Their
performance was found to differ because of the fundamental differences in the structure of age-
specific fertility schedules on the one hand, and marital-duration schedules on the other hand.

It is appropriate in this introduction to mention Appendix I, which deals with a problem of
special note. It contains a discussion of the underlying determinants of retrospective mortality data,
i.e. fertility and mortality conditions. The framework of the discussion is a general dynamic model
in which fertility and mortality schedules are permitted to shift in level and configuration over time.
The Brass model is then reviewed as a special (static) case of this dynamic model. We do not discuss
this material because its treatment is not an immediate concern of this paper. Nevertheless, it is
included in an appendix for several reasons. First, the existing literature does not include a dynamic
model of the process by which retrospective mortality statistics are generated. Secondly, the
structural assumptions of the Brass model and of the age and duration models, as well, may be
shown to be special cases of the more general dynamic model. Finally, explicit contrast of the
dynamic and static models will clearly reveal the conditions under which use of the latter is
inappropriate.

SECTION I

William Brass developed a table of multipliers, appropriate under certain conditions, for converting
statistics on the proportion dead of children ever-born® reported by women in the age intervals
15 to 19, 20 to 24, etc., into estimates of the probability of dying before attaining certain exact

? William Brass, Ansley J. Coale, et al., The Demography of Tropical Africa (Princeton, New Jersey, 1968);
Ansley J. Coale, and Paul Demeny, Regional Model Life Tables and Stable Populations (Princeton, New Jersey, 1966).

8 Ibid.

® Hereafter, we will use the term children ever-born, c.e.b., to mean all the births experienced by a woman or
group of women. Age distributions of c.e.b. will then mean the distributions which would result in the absence of
mortality.
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childhood ages. Following the notation of the literature, we will indicate the proportion dead of
c.e.b. to women in successive five-year age intervals by D;, where =1 signifies the interval 15~-19,
etc. Thus, in life-table terminology, the Brass multipliers convert D, values into estimates of ¢(a).
Selection of a multiplier from the Brass table for converting a D, statistic to its corresponding g(a)
estimate depends on factors peculiar to the population for which mortality estimation is desired.
Since the rationale underlying the development of the Brass multipliers is presented in detail
elsewhere, this discussion will only indicate the factors which determine the precise value of a
selected multiplier and the principal assumptions underlying the model employed to develop those
multipliers. Those assumptions are the conditions which a population must meet if the Brass model
is to provide accurate estimates of current mortality levels.

Brass found that the relation between corresponding pairs of D, and ¢(a) is primarily influenced
by fertility conditions and, in particular, by the age at onset of childbearing. In general, the earlier
that age in a given population, the older are the children of the women in each age interval. The
older the children, the longer their exposure to the force of mortality and the smaller the multiplier
required to convert the proportion dead to a point on the mortality schedule (g(a) estimate) which
the children have experienced. Therefore, the appropriate value of a conversion multiplier depends
on fertility conditions. Accordingly, the selection of a Brass multiplier is keyed to a fertility para-
meter, the ratio of the average parity of women aged 15 to 19 to women aged 20 to 24, P,/P,. This
statistic has the virtue of being correlated with the age at onset of childbearing and of being easily
obtained from the data necessary for calculation of statistics on the proportion dead of c.e.b. to
women of five-year age intervals.

Two sets of assumptions underlying the Brass model can be distinguished. The first set
pertains to the structure of the model. The second set pertains to the functions which were used to
determine the relationship between corresponding pairs of D; and ¢(a), on the one hand, and the
selection factor, P;/P,, on the other. The structural assumptions are:

(1) static conditions; age-specific fertility and infant and childhood mortality are assumed to
have been constant in recent years, and

(2) a uniform age distribution of women within each five-year age interval considered.

The assumptions implicit in employing mathematical functions are:

(1) empirical mortality schedules can be closely approximated by an analytic function of age
and a scale factor, and

(2) empirical fertility schedules can be approximated by an analytic function of age with a
single parameter, the age at onset of childbearing, and a scale factor. The role of the
parameter, age at onset of childbearing, is to slide the fertility function along the age axis
(i.e. a linear translation) without altering the relative magnitude of the age-specific rates
which are a fixed number of years removed from the age at onset of childbearing.

For reasons integral to the Brass technique, the required degree of similarity between Brass functions
and empirical schedules is limited to their rate of change with respect to age and not their level.
One of the major concerns of this paper is the investigation of how accurately the Brass functions
approximate empirical schedules and, in particular, to investigate the accuracy of the procedure of
sliding the fertility function along the age axis in representing the variability among empirical
schedules characterized by different ages at onset of childbearing. There is evidence, based on a
limited number of observations, that the Brass functions do represent empirical schedules closely
and that the technique estimates mortality accurately.'® However, a more general test of the
performance of the Brass technique is needed. At the end of the next section of this paper such a
general test is undertaken by employing the Brass model over a wide, but not exhaustive, range
of fertility and mortality conditions.

10 United Nations, Methods of Estimating Basic Demographic Measures.
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SECTION 1II

In this Section I present two models which are designed to estimate the level of childhood mortality.
Each model is developed with the use of regression analysis. Unfortunately, few empirical data are
available on the variables included in the models. However, quasi-empirical data, data generated
from empirically observed fertility and mortality schedules, can be used for the analysis. The data
of the first model were generated from age-specific fertility and mortality schedules. The data of
the second model were generated from marital-duration fertility schedules and age-specific mortality
schedules. All the schedules were specific for single years of age or marital duration. To the extent
that the generated data preclude respondent error, they are actually preferable to fully empirical
data.

The Age Model

Our objective is to develop a set of equations for estimating multipliers (g(a)/D; ratios) to
convert observed D; values into estimates of g(a). The age model is a simple linear regression model
relating the ratio of selected pairs of g(e) and D,(q(a)/D; ratios for fixed values of a and i) to a
fertility schedule parameter. The variables of the model are similar to the Brass variables and are
readily calculated from retrospective data obtainable in surveys and censuses. The statistical
characteristics of the regression equations of the model will help to determine their accuracy when
used for estimation purposes.

Three types of data are necessary for the regression analysis: (1) fertility schedule parameters,
(2) the probability of dying between birth and various ages (g(a) values), and (3) the proportion
dead of c.e.b. to women in five-year age intervals (D; values). A single observation on these three
sets of data was obtained from each possible combination of the fertility and mortality schedules
listed in Appendix II. In all, 65 fertility and 40 mortality schedules were used to generate the data.
The mortality schedules were taken from the Coale and Demeny Regional Model Life Tables and
Stable Populations. The 40 schedules represent four distinct mortality patterns (West, North, South
and East) at levels of life expectancy at birth from 30 to 52-5 years. Table 1 depicts the data generated
for various age intervals of women.

TABLE 1. Data generated by each pair of age-specific fertility and mortality schedules

Mortality data: ga) fora=1, 5
Age intervals of women

1520 20-24 25-29 30-34
Average parity data, P;: P, P, Py
Proportion dead of c.e.b., D;: D, D, D, D,

v

Hereafter we will report our results for only those g(a)/D; ratios for which the regression
analysis was most successful: ¢(2)/D,, ¢(3)/D5 and ¢(5)/D,1* The fertility parameter which best
explains variation in the value of these g(a)/D; ratios, and which should be employed in the regression
model, cannot be determined a priori. Certainly, the desired parameter must reflect differences in
the relationship among age-specific fertility rates of young women. Table 2 presents the results of
correlation analysis between g(a)/D; values and two such parameters: the ratio of the average parity
of women aged 15-19 to women aged 20-24 (P,/P,, the Brass parameter) and the ratio of the

1 Other ratios are, of course, equally valid and were investigated. Nevertheless, these particular results are displayed
because they yield smaller percentage errors in estimating g(a) values than do other relations, say, for example,
q(1)/D; or ¢(1)/D,. We should note, in addition, that alternative forms of the regression model, logarithmic and
second-degree polynomial, produced no better results than the simple linear model for regression with g(2)/D,,
¢(3)/D, and ¢(5)/D, and improved the regressions with other g(a)/D; ratios very little.
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TABLE 2. Correlation coefficients between the q(a)/D, values and fertiliry parameters

Fertility parameter

g(a@)/|D;  Mortality pattern P, /P, Py P,

West —0'970 —0'970
North —0'973 —0°967
q(z) /D‘3 East — 0.970 —_ 0.97 I
South | —0'966 — 0968
West —0-868 —0-988
North —0'869 —0°990
93)/Ds East —o0859  —0'988
South —0-852 —0°985
West —0'747 —0°920
North —0749 —0922
4(5) /D4 East —_ 0.659 — 0-897
South —0'737 —0'919

average parity of women aged 20-24 to women aged 25-29 (P,/P,). Since P,/P; correlates more
highly with g(a)/D; in eleven of the twelve data sets of Table 2, it was used as the explanatory
variable of the age model which was specified as:

L — 4t Bpypy). (1)
i

Using this model, a regression was calculated separately with the data generated from the
mortality schedules of each of the four mortality patterns. The resulting regression equations
incorporate all the variations in the shape of the fertility schedules but only the variation in the shape
of the mortality schedules that is found within a single mortality pattern over a range of life
expectancy at birth from 30 to 52-5 years. Reconciliation of the regression equations associated
with the four different mortality patterns, for a particular g(a)/D; ratio, is accomplished at a later
point. The regression coefficients and the statistical characteristics of the regressions of q(2)/D,,
49(3)/D3 and ¢(5)/D, on P,/P; for all four mortality patterns are displayed in Table 3. Values of R?

TABLE 3. Results of regression: age model

Regression Standard

Regression Mortality coefficients error
equation* pattern A B regression R?

West 1°30 —0'54 0-008 0942

_ North 1'30 —0-63 0°0I0 0936
4@)[Dy=A+BP,P) 126 —o4s 0007 o043
South 1-33 —061 0-009 0°938

West 117 —0°40 0°004 0'977

_ North 117 —0-50 0°004 0-980
q(3)/DS—A+B(P2/P8) East I'I4 _0.33 0'003 °~977
South 1-20 —044 0005 0-970
West 113 —0°33 0°009 0-846
North 115 —042 0°0II 0851
East I'II —026 0007 0-839
South 114 —0'32 0-009 0°845

4(5)|Dy=A+ B(P,|Py)

* Each regression is based on 650 observations on the data.
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are substantial (universally > o0-80). The standard error of each regression is less than 1 part in 100.
Since, over the range of P,/P, investigated the regression equation centers approximately on
unity, this implies that estimates of g(a) are characterized by a standard error at approximately
1%.

A comment on the reason for the deviation of data points from the regression line is appropriate
here. From the resemblance among the mortality schedules of a given family, it can be inferred
that the deviations of g(a)/D, values about a fitted regression line are almost wholly caused by
differences in fertility schedules. This was verified by a study of the residuals.

The regression equations associated with g(2)/D, are shown diagrammatically in Fig. 1. In
magnitude, the West regression equation lies between those of the other mortality patterns. This
suggests that, if the prevailing mortality pattern is unknown, the use of the West equation for
estimation is the safest course. A statistical analysis pertinent to the problem is contained in Table 4.
In that table we present the standard errors of estimate of the multipliers estimated by the four

q(2)
D,
1-244

120+

116

zm T

1124

108+

1044

1-00¢

0-964

0927

088t

1 I Il 3 i 4 .
T T

0250 0300 0350 0400 0450 0500 0550 0600 F’2/

WY

Panel A. g(2)/Dy=A+ B(P,/P;)

FIGURE 1. Regression equations, age model.
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regression equations for each g(a)/D; ratio with the data from the four mortality patterns.’2 Reading
across each line of Table 4 reveals how well a given estimation equation fits the data of the four
mortality patterns. Of course, the West regression equation best estimates multipliers for the West
mortality pattern, etc. The largest standard error of estimate of each regression equation indicates
the maximum expected error caused by employing that regression equation when the true mortality
pattern is unknown. Minimization of these maximum errors is the safest approach to estimation in
those circumstances. The min-max solution for each g(a)/D;, relation is indicated in Table 4. The
West equation is the best overall performer and is thus recommended for use in estimating multi-
pliers when the mortality pattern is unknown.’

TABLE 4. Standard error of estimate, age model

(Standard error of estimating actual g(a) /D; values generated by the West, North, East and South mortality schedules
by employing the regression equations of the West, North, East and South mortality patterns. 16 combinations for
each g(a)/D; relationship.)

Relation  Regression Mortality pattern of data Min-max
estimated model West North  East South  solution
West 0008 0043 0009 0016
North 0043 0'0I0 0041 0046
4(2)/D, East 0'0I0 0042 0'007 0016 0'042
South 0'0I0 0°046 00I4 0009
West 0004 0'045 0007 0018 0°045
North 0045 0004 ©005I 0063
43)/Ds East 0006 0049 0003 0016
South 0018 0062 0014 0°005
West 0008 0025 0008 0015 0025
North 0025 ©00II 0026 0037
4(5)/Ds East 0009 0027 0007 00I§
South 0'0I0 0039 0°0I9  0°008

Evaluation of the Brass Model and the West Regression Model

Both the Brass model and the West regression model are evaluated here in terms of the accuracy
with which they estimate ¢(2), ¢(3) and ¢(5). The data generated for the preceding regression
analysis (P,/P, and P,/P; ratios and D, and g(a) values) are used in this evaluation. Brass multipliers
were determined from P, /P,. These multipliers were then used in conjunction with data on children
dying, D, values, to estimate g(a) probabilities.!* In the same way, the parity ratio P,/P, was used
to make estimates with the West regression model. Deviations between estimated and actual g(a)

* The standard error of estimate pertains to the difference between actual g(a)/D; values (data generated
for the regression analysis) and estimates of g(a)/D; obtained from the regression equations in conjunction with
Py|P, values from the data of the regression analysis.

13 It is interesting to note that the data used by Coale and Demeny to produce the West Model Life Tables were a
residual collection of 130 life tables remaining after the life tables used as data for the North, East and South Model
Life Tables were removed from the original collection of reliable life tables. The West mortality pattern is an average
of non-distinctive life tables which comprise the great bulk of the data collected by Coale and Demeny.

14 Estimates of ¢(5) from the Brass model based on the fertility index P, /P, vice 7 or 7’ (the mean and the median
age respectively of the fertility schedule) are reported here because the P, /P, index actually yielded much better
estimates (lower average percentage error) than  or .
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values were used to compute two statistics: the standard error and the average percentage error of
estimate. These are shown in Table 5.

A comparison of the performance of the two models with the West mortality data is biased in
favour of the regression model — the regression model being the best linear estimator of multiplying
factors for the data of the West mortality pattern. Of course, no advantage is enjoyed by either
model when assessing their accuracy in estimating g(a) values with the data of the North, East or
South mortality patterns.

TABLE §. Evaluation of mortality estimating techniques

Brass Model: §(a) =(multiplier) D;
West Regression Model: §(a)=(A+ B P;/P;) D;

Standard error Average 9% error
Mortality of estimate of estimate
pattern Regression  Brass  Regression  Brass
model model model model
Estimate of ¢(2)
West 00018 0°0021 06 07
North 0-0086 00094 40 44
East 0-0021 00018 07 06
South 00025 00032 08 10
Estimate of ¢(3)
West 0°0009 00078 03 29
North 00109 00184 46 76
East 0°0020 00066 o5 2'3
South 00045 00055 16 16
Estimate of g(5)
West 0-0024 00091 06 31
North 0-0066 00157 23 55
East 00024 0°0088 06 30
South 00046 00064 13 2'0

In estimating g(2), the two models perform equally well. With the exception of the data
associated with the North mortality pattern, both provide estimates which are accurate, on average,
within 19%,. However, the regression model is more accurate in estimating ¢(3) and ¢(s). For three
mortality patterns, it provides estimates which are accurate, on average, within 1-59%,. The exception
is the North mortality pattern, where the average percentage error is several times greater. In most
instances the average percentage errors of estimate of g(3) and ¢(5) of the Brass model are several
times greater than those of the regression model.

Table 6 helps to elucidate the cause of the differential performance of the models in estimating
g(3) and ¢(5). The table displays the mean value and the range of multipliers estimated by the
regression equations of the four mortality patterns and by the Brass models for various g(a)/D;
ratios. Each regression equation fits the data of its own mortality pattern exceedingly well. Thus,
the accuracy of the Brass technique depends on whether the estimated multipliers have a mean
value and a range similar to that estimated by the equations of regression model. The mean values
of the multipliers estimated by the Brass model and by the West, East and South equations are
close together. However, mean values associated with the North equations lie somewhat apart.

In contrast to the general agreement of mean values, there are substantial differences in the
range of multipliers estimated by the regression model and the Brass model. The multipliers of the
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Brass model - particularly those applicable to values of D3 and D, —span a considerably smaller
range. This difference stems from two possible sources. First, P,/P, of the age model reflects the
fertility of women aged 30 and below, while P, /P, reflects the fertility experience of women aged
less than 25. Thus, P,/P, is more sensitive to fertility variations of older women and, since data
from older women are used to estimate ¢(3) and ¢(5), P,/P; should be a superior index for selecting a
multiplier for estimating those values of g(a). Secondly, the Brass fertility function, particularly
the procedure of sliding that function along the age axis, may not simulate the variability of empirical
fertility schedules as completely as do the schedules of the age model.

TABLE 6. Mean and range of multipliers estimated from the regression equations and from the Brass
model for the parity ratios of the fertility schedules employed in the study

(Range for P, [P,=0045 to 0'175 and P,/P;=0264 to 0-552)

Mean Range

_ Multipliers (g(2)/D,)
Regression models

West 1-07 oI5
North 1-03 o018
East 1-07 o013
South 1-07 018
Brass model 1-08 010
Multipliers (g(3)/D,)
Regression models
West 1-00 012
North 095 015
East 100 o'10
South 1-0I 013
Brass model 1:03 005
Multipliers (¢(5)/D,)
Regression models
West 1-00 o'10
North 098 o012
East 0'99 0-08
South 1-00 o'10
Brass model 1-03 0°04

In conclusion, although the West regression model has some advantages, both models perform
extremely well. Those errors on the order of a few percentage points due to structural deficiencies
in the models are tolerable. Since even retrospective data collected in censuses and surveys in the
developing nations are somewhat in error, more elaborate structural relations do not appear
justified. Nevertheless, the simplicity of the West regression model and its advantages in the
estimation of ¢(3) and ¢(5) would seem to recommend it over the Brass model for the estimation of
childhood mortality conditions when the underlying mortality pattern is unknown.

The Durarion Model

The model of this section differs from the age model in a single characteristic. It is structured
in terms of marital-duration intervals rather than age intervals. The important differences in the
structure of age-specific and marital-duration-specific fertility schedules need elaboration. First, they
differ in degree of variation displayed by the parameters, age at onset of childbearing and duration
at onset of childbearing. Among age-specific fertility schedules, the age at onset of childbearing
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has a range of several years. Among marital fertility schedules, the duration at onset of childbearing
varies over a range of less than one year. Secondly, age-specific fertility schedules peak and begin
declining several years after the age at onset of childbearing, while marital fertility schedules usually
peak within a year of the duration at onset of childbearing. Since the age distributions of the c.e.b.
to women of a particular age or marital duration are equivalent to their respective fertility schedules
written backwards, these age distributions reflect the characteristic differences between these two
types of fertility schedules. When aggregates of c.e.b. to all the women of an age or duration interval
are composed, once again the distributions differ markedly. Since the proportion dead of c.e.b. is
partially determined by the age distributions of those children, one would expect that estimation
models based on age-specific and duration-specific fertility schedules exhibit different properties.
This conjecture, soon to be examined, is the motivation for constructing the duration model.

Since the age and duration models are conceptually similar, a lengthy description of the latter
is unnecessary. The twelve fertility and the 40 mortality schedules which were employed to generate
the data for the model are listed in Appendix II. Table 7 summarizes the data obtained from a
single pairing of a fertility and mortality schedule.

TABLE 7. Data generated by each pair of duration-specific fertiliry and age-specific mortality schedules

Mortality data: g(a) for a=1, 5

Duration intervals of women

0—4 5-9 I0-14
Average parity data, P;: Py P, Py
Proportion dead of c.e.b., D;: D, D, D,

The appropriateness of a linear regression model was substantiated by correlation analysis
between g(a)/D, values and fertility parameters (P;/P,, P,/P; and P,/P;).® The correlations
between g(a)/D; values and each of these fertility parameters were all in excess of 0-87. Moreover,
the correlation between a particular g(a)/D, ratio and each of the three parity ratios did not differ
enough to establish one particular parity ratio as a superior explanatory variable. Development of a
model designed to use statistics based on respondents’ reports about events experienced as recently
as possible will minimize recall error. Hence, P,/P, was chosen to serve as the explanatory variable
of the duration model.’¢ This choice resulted in the following regression equation:

19 _ a1 B(py/Py). @)

i

Regressions were calculated separately for data generated from each of the four mortality
patterns. Table 8 displays the most successful results obtained with the model, that is, those

15 The use of the symbols P; and D; to represent average parity and proportion dead of c.e.b. in this model should
not lead to confusion with their use in the age model. For the remainder of this paper, it will be clear from the
context of their use whether these symbols represent the experience of women of an age or duration interval.

16 In the age model P,/P;, as opposed to P,/P,, was selected as the explanatory variable because of its greater
explanatory power. In the duration model P,/P; did not enjoy a similar advantage over P,/P,. This difference
between the models is most probably due to the consistency with which the women of young ages, on the one hand,
and of early marriage durations, on the other, characterize age and duration specific fertility schedules. For the age
model, P, pertains to women under 20 and sometimes contains small numbers of c.e.b. ; fertility in the first five years
of marriage, however, is always substantial. Hence, P, in the duration model is always a predominant fertility schedule
characteristic while it may not be so in the age model.
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TABLE 8. Results of regression:duration model

Regression Standard
Regression Mortality coefficients error
equation* pattern A B regression R?
West 1°34 —0°35 0-01I 0'891
North I —0-38 o-o1 o
4(2)[Dy=A+B(P:Py) E:st Iig -038 o~oog o%}f
South 1-40 —0'42 0021 0764
West 1-18 —0'44 0°009 0°951
_ North 1-18 —053 0008 0'974
93)/IDy=A+BP:Py) g I'16 —0'37 0006 0-968
South 1-22 —o0'50 0-008 0-968
West 117 —0'44 0-019 o810
_ North 1-20 —0-57 0°024 0-824
4(5)/Dy=A+B(P.Py) East 114 —0-36 0°016 0815
South 1-19 —046 0019 0'834

* Each regression is based on 120 observations on the data.

89

g(a)/D; ratios which, when regressed on P,/P,, displayed the smallest standard errors of estimate;
namely ¢(2)/D,, ¢(3)/D, and ¢(5)/D;. Once again the values of R? are high and standard errors of
regression are small. Fig. 2 graphically represents the regression equations associated with q(2)/D;.

We will now examine the accuracy of the regression equations in converting Dj statistics to
g(a) values. Table 9 shows the expected error of the conversion multipliers estimated by each
equation. Standard errors are presented both from the application of each equation to data from its
own mortality pattern and from the application of each equation to data from three ‘alien’ mortality
patterns. Statistics of the former kind are found along the diagonal of each panel in Table g and
statistics of the latter variety are the off-diagonal terms. Assuming that nothing is known about the

1-281
1264
1244
1224
1204
1184
116

112

q(a)

D,
i
L

S

032 035

R /%

+

040

q(2)/Dy=A+ B(P,|P,).

FIGURE 2. Regression equations, duration model

0-45
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TABLE 9. Standard error of estimate, marital duration estimation model

(Standard error of estimating actual g(a)/D; values generated by the West, North, East and South mortality schedules
by employing the regression equations of the West, North, East and South mortality patterns. 16 combinations for
each g(a)/D; relationship.)

Relation Regression Mortality pattern of data Min-max
estimated  model West North  East  South solution

West 0004 0017 0028 0026 0°028
4(2)/Dy North 0:0I8 0007 ©00I3 0043

East 0028  o0-0II 0004 0053

South 0027 0043 0054 0008

West 0004 0039 0006 0016 0°039

North 0039 0°003 0°044  0°054
4(3)/Ds East 0007 0°045 0002  0-0II
South 0016 0054 ©00I2 0003

West 0008 07027 0007 00I3 0°027
rth . 00 0030 00
4(5)/Ds No 0027 0009 3 37
East 0008 0031 0006 0-0IO0

South 0013 0038 0-0II  0°007

prevailing mortality pattern, min-max criteria may be employed to minimize the risk of a substantial
error. Table 9 indicates that according to min-max criteria, the West equation provides the best
solution. Indeed, the maximum standard error of estimate of the West equation with the data from
any mortality pattern is less than 0-0s, which is equivalent to errors of less than 5% in estimating
g(a) values.

SECTION III
Comparison of the Age and Duration Models
Both the models which we have presented are designed to estimate ¢(2), ¢(3) and g(5). Inaddition, the
West regressions provide a min-max solution to both models. These similarities allow a convenient
pairing of estimation equations between the two models (Table 10). The independent variable of
both models, in each case a parity ratio, reflects the same demographic characteristic—the shape of

TABLE 10. Preferred estimation equations from the age and duration models
(Based on West Regional mortality pattern)

Mortality Estimation  Equation estimating the multiplier

value to be model applicable to statistics on the
estimated proportion dead of c.e.b.
q(2) Age 1:30-0'54 (P,/Py)
Duration 1-34—0°35 (P,/P3)
a(3) Age 1:17-0°40 (P3/Py)
Duration 1:18-0°44 (P, /Py)
a(s) Age 1:13-0°33 (Py/Py)
Duration 1-17-0'44 (P,/P,)

* P,|P, is the parity ratio of women age 20—24 to women age 25-29. P, |P, is the parity ratio of women married
0—4 years to women married 5-9 years.
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childhood age distributions. The slope of each equation indicates the relative weight assigned to the
parity ratio in developing the estimates of g(a). The slopes of the two models differ most in the
estimation of ¢(2). If, because of respondent error, the parity ratios P,/P; (age model) and P, /P,
(duration model) are somewhat in error —say in error by the same absolute amount — it will be
advantageous to use the duration model. Indeed, for ¢(2), the duration model is approximately
half as sensitive to erroneous parity ratio values as the age model.

Inspection of the fertility schedules of the models will help to explain the difference in slope
between the two equations for the estimation of ¢(2). Table 11 contains data on the range of values
of parity ratios from the fertility schedules used to develop each model. By a factor of two, the
parity ratios of the age-specific fertility schedules exhibit the greater range. Fig. 3, which depicts the
extent of variation in the childhood age distributions associated with the fertility schedules of the
two models, is also pertinent to the explanation of the slope differential. The two curves of Panel A
are associated with the marital fertility schedules with the maximum and minimum parity ratios.
The curves are quite similar. Accordingly, the function of the parity ratio, to ensure that estimated
multipliers are consistent with the distribution of c.e.b., is not crucial, hence the small slope of the
regression equation in spite of the narrow range of marital parity ratios. The curves of Panel B are
associated with age-specific fertility schedules with the maximum and minimum parity ratios.
These age distributions are much more disparate than those of Panel A. Therefore, the burden
placed on the parity ratio P,/Pj to assure accurate multipliers is relatively heavy. Thus, in spite of
the greater range of P,/P,, the regression coefficient for ¢(2) of the age model is greater than that of
the duration model.

TABLE 11. Range of parity ratios from the fertility schedules of the age and duration models

Parity Values of parity ratio

Model ratio Min. Max. Range
Age P,|P, 025 055 030
Duration P, /P, 032 045 013

These conclusions apply only to the sets of fertility schedules in each model. The universality
of the results can be assessed only by considering the representativeness of those schedules. Since
that task is undertaken in detail elsewhere!? only a summary is presented here. Consider first the
age model. The listing of fertility schedules in Appendix II reveals that low-fertility populations
of the developed world are well represented in the age model. Only one schedule of that collection,
the schedule from the Cocos-Keeling Islands, represents a high-fertility population. However,
that schedule represents high-fertility populations rather well in the sense of displaying a P,/P,
ratio which is quite high, both because of an early age at marriage and because most girls are pregnant
at the time of marriage.'® Consider now the fertility schedules of the duration model. They span a
gamut of high and low-fertility populations. The Hutterite schedule represents the high-fertility
end of the range, while white-collar workers in England and Wales (1929) represent the low-fertility
end. Since the Hutterites exhibit a pattern of marital fertility which is sustained at a level as high as
that reliably recorded for any population in the world, it represents parity ratios as low as those of

17 Jeremiah M. Sullivan, Estimation of Childhood Mortality Conditions from Childhood Survival Statistics, Doctoral
Thesis, University Microfilms Order No. 71-1636 (Ann Arbor, Michigan, 1970); ‘Book Review: Eduardo E. Arriaga,
New Life Tables for Latin American Populations in the Nineteenth and Twentieth Centuries’ (Social Biology,
June 1971).

18T, E. Smith, ‘The Cocos-Keeling Islands: A demographic laboratory’, Population Studies, 14, 2 (November
1970).

G
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Panel A. Duration interval 0—4.

Proportion of
Children at Age

0-40

Duration Interval 0-4
0304 p

0-20

0.10..

Age of Children

Panel B. Age interval 20-24.
Proportion of

Children at Age
0-404

0264

0-30¢ Age Interval 20-24

0-201

~—.

010¢

Age of Children

FIGURE 3. Age distributions of c.e.b. in absence of mortality

any sizeable current population.’® It might be argued that if the Hutterites were to marry early
rather than late, their associated P, values would be somewhat higher. The cumulative fertility of
Hutterite women implies an average of 2-86 c.e.b. by the end of the fifth year of marriage and §-50
by the end of the tenth year.?? Thus, the childbearing performance of these women did not flag in
the second five years of marriage. Of course, the English populations also marry late. But that
characteristic extends the P, /P, values at the high end of the range.

19 In counter-distinction to P,/P; of the age model, the value of P, /P, in the duration model is inversely related
to the fertility level. Thus, in the duration model the Hutterite and German populations display the smallest parity
ratios while the low-fertility English populations display the highest. Among Hutterite females, high fertility continues
well after the first five years of marriage, so that P, is high relative to P,. Among the English population of the early
part of this century, contraception tended to impinge more heavily at longer marriage durations leading to higher
parity ratios. .

20 Mindel C. Sheps, ‘An analysis of reproductive patterns in an American isolate’, Population Studies, 19, 1 (July
1965).
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Inspection of the fertility schedules implicit in the models reveals that a wide range of fertility
conditions is represented. This in turn implies that it is appropriate to employ the models over a
wide range of fertility levels and that our conclusion regarding the sensitivity of the models to
respondent error is not the result of a selective aggregation of schedules. However, some reservations
about the representativeness of the schedules with regard to future fertility conditions should be
stated. It has often been observed that the introduction of family planning programmes among the
high-fertility population of the developing world results in the adoption of contraceptive practices
on an age and marital duration selective basis. Greater reduction of fertility at older ages and longer
durations of marriage could result in fertility schedules substantially different from those we have
employed. Nevertheless, since family planning programmes take considerable time to initiate, in
the near future, few parity ratios pertaining to sizeable national populations will be encountered
which are beyond the range of those associated with our models.

SUMMARY

This paper develops two models for the estimation of childhood mortality conditions from statistics
on the proportion dead of c.e.b. to women of five-year-age and marriage-duration intervals.
The models were developed by employing regression analysis with data generated from empirically
observed fertility and mortality schedules. The data were generated on the assumption of unchanging
fertility and mortality, and the models will yield estimates of current mortality conditions only if
a population’s recent demographic history coincides with those assumptions. Consideration was
given to the problem of estimation when the configuration of the underlying mortality pattern is
unknown. Preferred sets of estimation equations were presented (Table 10) for use in those circum-
stances. Based on the variation in the shape of the mortality schedules of the mortality patterns
isolated by Coale and Demeny, we concluded that in absence of knowledge about the prevailing
mortality pattern, the West equations of both models will provide estimates of g(2), ¢(3) and ¢(5)
with a standard error of estimate of less than 5§9%,. The advantage of having both models available
for use is that, on some occasions, the preconditions for the use of only one will be met. In the
happy circumstance that the use of either is appropriate, one can serve as a check for the other.
Additionally, in this paper, the reliability of the Brass model in estimating childhood mortality
was tested over a wide range of fertility and mortality conditions. Its performance was consistently
high - the age model enjoying, within the context of the test we administered, only a slight edge
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APPENDIX I

GENERAL DYNAMIC MODEL FOR THE DETERMINATION OF RETROSPECTIVE MORTALITY STATISTICS

Retrospective mortality data pertaining to the women of each five-year age interval are determined in an
identical manner. Therefore, this discussion will be restricted to women aged 20 to 24 without loss of
generality. Notation, consistent with the literature, will be used to indicate statistics relevant to the women
of a given age. Thus P, and P, will indicate the average parity of women 15-19 and 20-24, respectively.
C,(a) represents the age distribution of c.e.b. to women 20-24, while D, denotes the proportion dead of
c.e.b. to those women. Additional notation applicable to women of an exact age, as opposed to an age interval,
will be introduced as we proceed.
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Determinants of the Statistic D,

The proportion dead of the c.e.b. which would be reported by error-free female respondents aged 2024
is a function of (1) the proportionate age distribution of their children in the absence of mortality, and (2)
the mortality conditions experienced by those children.

The roles of fertility and mortality in determining age distributions and the proportion dead of c.e.b.
are displayed in Fig. 4. The first two quadrants present probability curves depicting the fertility of individual
women of exact ages. In the third quadrant the aggregate experience of all women in the age interval is
presented. In particular, the age distribution of c.e.b. to women aged 2024 and the mortality experience
of the children at each exact age is shown. The statistic D, is derived from the curves of the third quadrant.

It is customary to represent the fertility schedule of a female cohort as a function of age, x, i.e. f (x).
In Fig. 4 that representation is modified. That is, we substitute for x in f (x) the expression x —t, where x
is a parameter (current exact age of a woman) and ¢ is a variable (time, measured retrospectively from the
present). To permit the fertility schedules of women at different exact ages to differ, we employ a subscript,
f<(x—1). Then f3 (20 —t) represents the probability that a woman currently aged 20 had a child ¢ years ago.
Thus, in the first quadrant, each curve displays the fertility of women, who are currently at different exact
ages within the interval 20 to 24, as a time series of events during the recent past. In the second quadrant,
that fertility history is presented in cross-section as the probability that a woman has a child of a given age.
Now, the abscissa represents age, a, and the fertility schedules of the first quadrant, f,(x —t), appear in
minor reflection as age distributions of c.e.b., c,(a), where a=t.

In the third quadrant, the procedure for determining aggregate statistics on the age distribution of
c.e.b. (Cy(a) ) and the proportion dead (D,) for all women in the age interval 20-24 is displayed. The
abscissa again represents age but the ordinate is calibrated in two different scales, the proportionate age
distribution of c.e.b. and the proportion dead of children born a years ago. The aggregation process must
consider the number of women at each exact age in the interval 2024, which we represent by N, where x
indicates exact ages of women. Then, the proportion of children, in the absence of mortality, at a particular
age, say a’, is the sum, over all ages in the interval 20-24, of the product N, and ¢,(a’) divided by the total
number of children.

25
f N,c,(a’) dx
20

25 fw
f f N,c.(a) da dx
20J 0

where C,(a) is the proportion of c.e.b. to women aged 20-24 who are exactly age a’;
¢cx(a) is the age distribution of c.e.b. to women aged x exactly;
w is the oldest age of children of the women aged x exactly;
N, is the number of women at age x; and
a’ is an exact childhood age.
In the third quadrant the complete age distribution of c.e.b. is, of course, labelled C,(a).

To determine D,, the proportion dead of c.e.b. to women aged 20—24, the mortality experience of the
children is introduced. In this dynamic model, mortality must be represented in a general way which allows
the level of mortality to shift over time. Thus the mortality schedule of the third quadrant, ¢(a), is defined
somewhat differently than usual; g(a) is the probability that the member of a birth cohort born exactly a
years ago will have died before attaining age a. This schedule is a composite one, each point of which
represents the mortality experience of different birth cohorts.?! The product of Cy(a) and ¢(a) is D,.

D,= f : Cy(@) ¢(a) da, @)

where C,(a), a and w are as earlier defined; and g(a) is the probability of dying before attaining age a of the
members of the birth cohort born a years age.

D, may be interpreted as a weighted average of g(a), the weights being determined by the proportionate
age distribution, Cy(a). Thus, D, depends on both fertility and mortality conditions which reveals its
weakness as a mortality index.

Cy(a)= (1)

2 This concept must be distinguished from the usual period and cohort mortality schedules. According to this
definition of ¢(a), ¢(2) is the proportion dead among the children born exactly two years ago. It need not be the propor-
tion dying between birth and age two of any other cohort.
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FIGURE 4. Determinants of D, the proportion dead of c.e.b. to women 20-24.

The Brass Model

The Brass model may be viewed as a simulation process in which fertility and mortality schedules are
employed to generate hypothetical values of D; and g(a) — allowing the relationship between those variables
to be determined. The fertility function of the Brass model may be written as

F&x)=Kf(x; o) (3)
is the probability of a woman age x bearing a child;

is a standard fertility schedule containing one parameter, a, the age at onset of childbearing,
which serves to slide the entire schedule along the age axis; and

S
Fs(%, @)

where

K’ is a scale factor.

The mortality schedule may be written as
g(a)=K"q4(a), €y
where g¢(a) is the probability of dying before reaching age a;
gs(a) is a standard mortality schedule; and
K” is a scale factor.

The characteristic of the Brass model which differentiates it from the general model is its assumption
of static conditions. In the simulation process, by which a pair of hypothetical values of D, and ¢(2) are
produced, values are assigned to the parameters (K’, K” and «) of the fertility and mortality functions.
Those values, and hence the functions, are fixed throughout the simulation process for a single pair of
values. The model is static then, in the sense that all women within the age interval experience, for a given
exact age, the same fertility conditions, and all their children are subject to the same mortality conditions.??

22 Note that the fertility function of Equation 3 is sub-scripted only to indicate that it is a standard schedule as
opposed to indicating that its form can change, which is the role of the subscript x of f,. (x—t) in the fertility function
of the general model. Similarly, the mortality function of the Brass model (Equation (4) ) is commonly shared by all
children. So ¢(2) is not only the proportion who have died of the children born two years ago but also the proportion
who died before attaining age two of the children born, say, three years ago. These differences between the Brass
model and the discussion of the determinants of D, emphasize the restrictive nature of that model relative to the
dynamic aspects of empirical data.
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This is the major limitation of the Brass model and of the age and duration models as well. Because these
models are not designed to cope with fluctuations in fertility and mortality conditions, results obtained under
those circumstances cannot be considered estimates of current mortality levels but must be interpreted with
extreme caution.

Within this framework, the Brass model develops a rationale for estimating g(a) parameters from D;
values. The age distribution of c.e.b. to women aged 20-24 of the Brass model is determined under the
assumption of a uniform age distribution of those women and is similar to Equation 1. Thus:

25
NK’ f fs(x—a)dx
20

Cila)= A )
NK’ f J fs(x—a) dx da
0 20
where Cy(a) is the proportionate age distribution of c.e.b. to women aged 20-24.

fi{(x—a) and K’ are as defined in (3) above, the parameter « assuming a particular value;
25—« is the age of the oldest children born to women of the interval;

a and x respectively represent the ages of children and the women of the interval 20 to 24;
and

N is the number of women at each age x in the uniform age distribution of women.

Since K’ and N cancel, C,(2) depends only on the value of «. The proportion dead of c.e.b. becomes
25—a
D,=K" fo Cy(a) ¢5(a) da (6)

where Cy(a), ¢5(a), K”, a and « are as previously defined; and 25—« is the age of the oldest children of
women aged 20~24.

D, depends on both « and K”.

Now, the relationship between D, and ¢(2) can be expressed as a ratio.
q(2) K"q5(2)
Ma= D, — ., [* €
K . Cy(a) g5(a) da

where M, is the multiplier for converting D, to ¢(2); and g(2) and D, are as previously defined.

Since K” is a scale factor in both g(2) and D,, it cancels, making these multipliers depend only on «. Brass
offers a set of multipliers (actually the ratios g(2)/D,) for different values of « to convert D, to g(2).*®
Of course, the use of these multipliers requires that they be tabulated in terms of a statistic which is a
function of « and which is readily obtained from survey data. The ratio of the average parity of women aged
15~19 to women aged 20—24, P, /P,, provides such an index. This statistic is a parameter of a fertility schedule
and in the Brass scheme equals

20—-a (20
NK’ j fi(x—a)dx da
0 15 8)
25—a (256 ¢
NK’ f fs(x—a) dx da
0 20

PI/P2=

where P, /P, is the ratio of the average parity of women 15-19 to women 20-24; and N, K’, a, x and f(x —a)
are as earlier defined.

23 Note that multipliers could be computed to represent the relationship between D, and other values of g(a), say
4(3). The association of D, and ¢(2) is not meant to imply that the argument of ¢(a) and the subscript of D; must be
equal.
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Country Year

Belgium 1935, 1939, 1940, 1945, 1960, 1965
Canada 1931, 1940-41, 1951, 1961
Czechoslovakia 1930

Denmark 1950

Finland 1950, 1960

France 1925-27, 1930-32, 1935-37, 1952, 1960
Germany 1950, 1960

Hungary 1957, 1960

Italy 1951

Latvia 1937, 1938

Norway 1930

Poland 1950, 1955, 1959

Portugal 1942—45, 1945, 1950, 1960

Sweden 1891-00, 190I~I0, I9II—-20, 1921-30, 1931~40, 194I~50, 1961
Ukraine 1926-27

United States 1960

Yugoslavia 1953, 1960

APPENDIX II

AGE MODEL

Listing of Age-Specific Fertility Schedules

(Specific for single years of age)

97

Cocos-Keeling Islands  Early 1900

SOURCES: The Office of Population Research, Princeton University, has gathered a collection of age-specific
fertility schedules by single years of age and 46 of these were used in this study. The P, [P, parameter
associated with the fertility schedule from the Cocos-Keeling Islands was o0-175 while the remaining
schedules displayed values of P,/P, which were evenly distributed over the range 0'045 to 0°134. To
provide continuity of the value of P,/P,, an additional 19 fertility schedules were obtained by shifting
the original 46 schedules downward one year (i.e. earlier childbearing) and selecting those resultant
schedules with a P, /P, value between 0:134 and 0-175.

Fertility
schedule

1 schedule
2 schedules
3 schedules
3 schedules

3 schedules

DURATION MODEL
Listing of Duration-Specific Fertility Schedules

(Specific for single years of marital duration)

Population

American Hutterite Population.

Bavarian Villages: Tottleben and Anhausen, 19th century.

England and Wales, 1900-09: Blue-collar Workers, All Social Groups and White-Collar
Workers.

England and Wales, 1920: Blue-Collar Workers, All Social Groups and White-Collar
Workers.

England and Wales, 1929: Blue-Collar Workers, All Social Groups and White-Collar
Workers.

SOURCES: Hutterite Population: Mindel C. Sheps, ‘An analysis of reproductive patterns in an American isolate’,
Population Studies, July 1965.
Tottleben and Anhausen: Lorenz Scheuenpflug, Ortssippenbuch Anhausen, Frankfurt/Main, 1961.
England and Wales: D. V. Glass and E. Grebenik, The Trend and Pattern of Fertility in Great Britain,
Part II, Tables.
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