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PARAMETERS OF MORTALITY IN HUMAN 
POPULATIONS WITH WIDELY VARYING LIFE SPANS 
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SUMMARY 
A three-component, competing-risk mortality model, developed for animal survival data, fits human life table 
data for all ages over a range of mean life spans from 16 to 74 years. The competing risks are a novel 
exponentially-decreasing hazard, dominant during immaturity; a constant hazard, dominant during 
adulthood; and an exponentially increasing Gompertzian hazard, dominant during senescence. By fitting the 
model to a specific life table using non-linear techniques, estimates of the five model parameters and their 
standard errors obtain; the proportion of deaths expected from each hazard alone may then be calculated. 
Preliminary analysis of 13 life tables indicates that for human populations under heavy stress, with very short 
mean life spans of about 20 years, the three hazard components account for roughly equal numbers of deaths; 
for modern populations, with mean life spans of about 75 years, nearly all deaths are due to the hazard of 
senescence. Factor analysis of the correlation matrix of parameter values for the 13 populations shows a two- 
factor structure. One factor involves only the multiplicative constants (initial values) of the three hazards, but 
not the hazard rates of change; the second factor involves only the parameters of the immaturity hazard and 
the rate of acceleration of the senescence hazard, but not the constant hazard nor the multiplicative constant 
(initial value) of the senescence hazard. 
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INTRODUCTION 

Strong interest has been displayed for hundreds of years in quantifying human mortality. However, 
complete human survival curves (or, equivalently, life tables) have not until now been completely 
fitted by a mathematical model. 

Pearl and Miner,’ attempting to find a mathematical law to express animal survival curves, 
abandoned the attempt, saying ‘It appears clear that there is no universal law of mortality.’ They 
called for the collection of more animal survival data. There is no lack of life table data for humans. 
Hutchinson’ has provided a good historical summary of such data for humans, animals and even 
grasses. Following the early life expectancy tables of Ulpian in the third century A.D., and the first 
life table by Gaunt,’ Halley4 in 1693 constructed a still-useful life table for the city of Breslau. A 
particularly useful compilation is that of Preston, Keyfitz and Schoen.’ Clark6 compiled a 
collection of high-stress life tables. Preston’ dealt with various patterns of mortality. 

Attention has also focused on the problem of constructing a mathematical model for mortality. 
In 1760 Daniel Bernoulli used the notion of competing risks together with Halley’s Breslau life 
table in an attempt to discern the consequences of eliminating smallpox as a cause of mortality, as 
described by David.’ Gompertz’ proposed an exponentially-increasing hazard which is still used. 
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Makeham” added a constant hazard to that of Gompertz, again employing the notion of 
competing risks. After infant and juvenile mortality are spent, Makeham’s model fits human data 
well; it cannot, however, be used to fit an entire life table. The Weibull hazard has considerable 
current interest for reasons pointed out by David;’ these include the ability of the Weibull to 
furnish an increasing, decreasing or constant hazard, depending on the value of its shape 
parameter. Pinder, Weiner and Smith” used the Weibull in a not-too-successful attempt to fit 
animal life tables. Noble and Hayes” used a sum of Gaussians to approximate human mortality 
data. In addition to models used in an attempt to fit actual life table data, a number of other models 
have been proposed for various purposes: these include those of Szilard,I3 Sacher and Trucco,14 
Johnson,‘ Curtis,I6 Burch,’’ Forbes, Sprott and Feldstein,’* Brown and for be^,'^^^^ Takeda,” 
Woodbury2’ and Turner and Pruitt.” None of these, however,except possibly that ofTakeda,21 is 
suitable for fitting complete human life table data. The model of S ~ a l a ~ ~  does fit complete life tables 
for a number of animal species reasonably well. 

Siler’ proposed a three-component competing-risk model for animal mortality. The first 
component, dominant in the period of immaturity, is an exponentially decreasing hazard; from this 
hazard alone there is a non-zero survivorship at infinite time. The second component, dominant 
during adulthood, is simply a constant. The third hazard, dominant during senescence, is an 
exponentially increasing Gompertzian hazard. All three components are assumed independent and 
present concurrently throughout the entire life span. Applied to animal survival data, the model 
fitted the data well. The Weibull hazard was not employed, since, when adjusted to yield a 
decreasing hazard for the infant and juvenile period, the net survivorship was zero, making it 
impossible to fit actual survival data; in fact, infant/juvenile mortality is characterized by a non-zero 
survivorship. Since the model fitted the animal data well, it was checked to see if it also fitted human 
data and provided any increased insight into human life table data. 

I also attempted in the work here reported to find mortality parameter patterns which might be 
related to environmental stress. Since no data on the environmental stress factors themselves were 
directly available, I took the average life span as an inverse measure of stress. Few animal data are 
available for the same species under different environmental stress conditions; Taber and 
Dasmann26 provided an outstanding example of such data. As noted above, however, a wealth of 
such data is available for humans, and the paper will analyse human survival data in the hope that 
the analysis may prove illuminating for other species as well. 

THE MODEL 

The model, as given by Siler,25 has three independent competing risks with hazards pi(t), 
survivorships &(t) and death density functions J;;(t). Then, with non-subscripted quantities 
representing total effects, the following well-known relationships hold: 
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The first hazard represents the hazard of immaturity, exponentially decreasing: 

Pl@) = a,exp(-b,t)  
s, ( t )  = exp { ( - a1 lbl 1 [1 - exp ( - bl t)l) 
fl ( t )  = dS, (t)ldt = a, exp ( - b ,  t )  exp { ( - a, lb, ) [1 - exp ( - b ,  01 1 

Although these equations seem perfectly straightforward, and are immediately obtained from 
the well-known Gompertz hazard equations by changing the sign of the exponent, their behaviour 
is definitely non-standard. Survivorship at infinite time is non-zero, with 

Sl(C0) = exp(-a,/b,)  
Correspondingly, the area of the 'density function'f, ( t )  is less than one. Fortunately, when the 

first hazard is combined with the second and third using equations (l), all straightens out: net 
survivorship at infinite time is zero, and the area of the net density function is one. The non-zero 
survivorship from the first hazard represents a biological fact of life; death from the hazards of 
childhood is not a sure thing. 

Relationships for the second and third hazard components are well-known: 

P 2 M  = a2 

f 2 ( 0  = a,exp(-a,t) 
P 3 W  = a3 exp (b3t) 
s,(t) = exp(a,/b,)[l -exp(b,t)I 

S 2 ( t )  = exp ( - a , t )  

f 3  ( t )  = 0 3  exP (b3 t)exP (a3/b3 [I - exP (b3t)I 
In combination, then, 

~ ( t )  = a ,exp( -b l t )+a2+a3exp(b3t )  

s(t) = sl ( t ) s 2 ( t ) s 3 ( t )  

f ( 0  =h ( W 2  (OS3 (0 + s, ( O f 2  ( W 3  ( t )  + s, ( W 2  N f 3  (t)  

PARAMETER ESTIMATION AND DATA FITS 

The estimation ofcompeting risks and of risk parameters when individual survival times are known 
has received considerable attention, as seen in References 27 and 28. When fitting life tables, 
however, the non-linear regression approach is indicated.29 I employed simple unweighted least 
squares with a Gauss-Newton a lg~r i thm.~ ' .~ '  Asymptotic parameter standard errors and the 
parameter intercorrelation matrix were obtained by standard linear model theory. 

A distinction must be made between two types of parameter correlation matrices. The first, called 
here the parameter intercorrelation matrix, results from fitting a single data set. Significant 
intercorrelations imply only a difficulty in distinguishing between effects of the parameters on the 
error term and reflect a certain kind of uncertainty in the parameter estimates; such intercorre- 
lations do not imply any relation between true values of the parameters for different data sets. I will 
refer to correlations among true parameter values for different data sets as correlations, as distinct 
from the intercorrelations above. 

Human life tables were taken from several sources. The Breslau table was taken from H a l l e ~ . ~  
Hutchinson, supplied the tables for Sweden for the years 1757-1763, 1816-1840, 1891-1900, 
1931-1940 and 1959. Tables for Stone Age Man and West Indian slaves were taken from Clark.6 
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Preston et d 5  gave data for Chile for 1909 and 1920 Taiwan, 1920and 1930; and the United States, 
1964. Average life spans ranged from 15.8 to 74.1 years. Figure 1 displays typical data fits; RMS 
errors for the 13 life tables averaged 0.9 k 0.3 per cent and ranged from 0.48 to 1.50 per cent. 
Although the departures of the data from the model are small and are approximately normally 
distributed, the errors are in some cases somewhat systematic, as with the Sweden data for 
1757-1763, 18161840 and 1891-1900. However, the apparent pattern of these departures is nor 
the same from year to year for the same country, nor from country to country. In view of the lack of 
a pattern in the patterns themselves, I tend to attribute these apparently systematic deviations to 
the propagation through the years of annual variation in stress on the populations for which the 
data were collected rather than to an error in the model, although proof of this would require 
considerable research. 

Figure 1.  Typical fits of mortality model to human life table data 

RESULTS 

I now suppose, as did Takeda,” that the difference among the survival curves fitted result from 
environmental stress, which may include cultural factors. To check on the effect of this stress, I first 
calculated for each life table the proportion of deaths expected from each of the three hazard 
components. These proportions derive from numerical integration of the equation 

F i  = 1 pi(t)S(t)dt 

in which Pi is the proportion of deaths due to the ith hazard, pi(t) is the ith hazard, and S ( t )  is the 
survivorship from all hazards. For each life table, I employed the parameter estimates for that table. 
The results appear in Figure 2. Under the highest stress conditions, i.e. the shortest life span, 
roughly equal numbers of deaths are due to each of the three hazard components; under the lowest 
stress, nearly all deaths are attributable to the senescence hazard. 
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Figure 2. Effect of presumed environmental stress on proportion of deaths from the three hazard components. (The 
average life span is taken as an inverse measure ofenvironmental stress). The vertical distance from the abscissa to the first 
(lowest) regression line is the proportion of deaths due to the senescence hazard; the vertical distance between the two 
regression lines is the proportion of deaths due to the constant hazard, dominant during adulthood; and the vertical 
distance between the second (higher) regression line and the horizontal line at 1 .O is the proportion of deaths due to the 

immaturity hazard. Circles are data for the lower regression line; squares are data for the upper regression line. 

Table I gives correlations among the mortality components of Figure 2. Table I1 gives the 
correlations among the five mortality parameters and the average life span. With only 13 life tables 
and incompletely screened input data, Table I1 merits only a tentative interpretation. I used log 
values as a compensation for non-linear relationships. It is striking that all the parameters correlate 
at least moderately with average life span except b3, the rate of acceleration of the senescence 
hazard. However, b3 does correlate significantly with both a, and b,, the infant mortality 
parameters. 

I conducted a factor analysis with varimax rotation of the parameter correlation matrix of 
Table I1 using the squared multiple correlation coefficient to estimate communalities. The resulting 
factor loadings appear in Table 111. Factor 1 involves only the three initial hazards, or a values; the 
rates at which these initial hazards are altered are not involved. Factor 2 involves the infant 
mortality parameters, a, and b,, and the rate of acceleration of the senescence hazard, b,. 

Table I. Correlation coefficients: components of mortality 

Infant Adult Senes 

Avglife - 0.848 -0'829 0.968 
< 0.01 <0.01 < 0.01 

<0.1 <O.Ol 

< 0 1  <O.Ol 

< 0.01 < o  01 

Infant 1 0.486 -0.812 

Adult 0-486 1 - 0.904 

Senes -0.812 - 0.904 1 

Infant = proportion of deaths due to immaturity hazard, u1 exp(-b,t) 
Adult = proportion of deaths due to constant hazard, u2 
Senes = proportion of deaths due to senescence hazard, u3 exp (6 ,  t )  
Avglife = average life span. 
Probability > Irl shown beneath correlation coefficient. 
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Table 11. Correlation coefficients: parameters of mortality 

Log(a1) Log(b1) Log(a2) Log(a3) Log(b3) 

Avglife - 067* 0.47 - 086* -082* 0.07 
< 001 009 < 0.01 < 001 080 

039 0.2 1 < 0.01 0.02 

0.39 0.57 0.4 1 0.05 
Log ( a d  0.39 -0.18 1 0.39 0.16 

021 057 0.2 1 0.63 
Log (a31 0.68* - 0.24 0.39 1 - 0.36 

< 0.01 0.4 1 0.2 1 0.21 

Log (all 1 025 0.39 068* -0.62* 

Log (bl) 0.25 1 -018 - 0.24 - 0'54* 

Log (b3) - 0.62* - 0.54* 0.16 - 0.36 1 
0.02 0.05 0.63 0.2 1 

Total hazard = a ,  exp ( -  b ,  t) + a2 + a, exp (b,  t) 
Probability z Irl shown beneath correlation coefficient 
Correlation coefficient starred if significant at 0.05 level 

Table 111. Factor loadings-after varimax rotation 

Variable Factor 1 Factor 2 

Vl 
- 0.22 
n 

1 0.72 I 
I 0.56 I - 0.22 

Total hazard = a, exp (- b,  t )  + a2 + a, exp (b,  t) 

DISCUSSION 

It seems clear from Figure 1 that the proposed model is capable of fitting a wide variety of human 
life tables with about 1 per cent RMS error and, therefore, of parameterizing such tables with 
reasonable parsimony. 

Although tentative, the factor structure of the parameter correlation matrix appears reasonable, 
although one would not expect this structure a priori. The first factor involves the three hazard 
multiplicative constants, but not the rates of change; the second factor involves the rates of change, 
but not the multiplicative constants, except for the hazard of immaturity. The first hazard, however, 
is characterized by strong intercorrelation between its rate of change and its multiplicative 
constant; this artefactual intercorrelation is confounded with any real correlation of these two 
parameter among the life tables analysed; it remains possible, although unproved, that the second 
factor involves only the rates of change, but not the multiplicative constants. The effect of 
increasing stress on a population is apparently such as to increase the magnitude of the hazards in 
time-independent fashion, and to slow the rates of change of the time-varying hazard components. 
The first factor seems to correspond to the stress imposed on the population, and the second to the 



MORTALITY IN HUMAN POPULATIONS 3 79 

way in which the population responds biologically to  this stress. This is speculative; analysis of a 
much wider data base is clearly in order. 
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