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A COMPETING-RISK MODEL FOR ANIMAL MORTALITY!

WiLLIAM SILER
Department of Biomathematics, University of Alabama in Birmingham,
Birmingham, Alabama 35294 USA

Abstract.

A three-component competing-risk model for animal mortality is presented, in which

the additive hazards include a new model, dominant during the prematurity period; a constant hazard,
dominant during the period of maturity; and the conventional Gompertz hazard, dominant during
senescence. A good fit of the model is obtained to survival data for a variety of species, with both
laboratory and field data being represented. Interpretation of the model parameters in terms of animal

adjustment to hazards is offered.
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INTRODUCTION

Since Pearl and Miner’s (1935) unsuccessful attempt
to find a mathematical model which would fit survival
curves for a variety of species, a number of such
models has been constructed, including those of Szi-
lard (1959), Sacher and Trucco (1962), Johnson (1963),
Noble and Hayes (1964), Curtis (1966), Burch (1967),
and Forbes et al. (1970). Most of those models deal
primarily with senescent mortality. The oldest such
model (Gompertz 1825) retains a fair degree of accep-
tance; Calloway (1967) wrote that summation of var-
ious causes of senile decay composed of “‘random
events constantly accelerated’ tends cumulatively to-
ward a Gompertz-like distribution. Reliability theory
has been little used in the case of animal mortality;
Gehan and Siddiqui (1973) discussed the fitting of
some standard failure rates to animal survival data,
and a work by Proschan and Serfling (1974) contained
a number of theoretical papers concerned with the ap-
plication of reliability theory to mortality. There pres-
ently exists a considerable volume of data against
which models of animal mortality can be tested. Pearl
and Miner (1935), Deevey (1947) and Laws (1968) pre-
sented life tables for a variety of species.

More than 40 yr ago, Pearl and Miner (1935) noted
that there are three general types of animal survival
curves: I (concave downward); 11 (log linear); and 111
(concave upward). Type I is the typical ‘*wear-out™
failure pattern; Type Il is the common constant hazard
or exponential survival pattern; and Type III can be
considered the ““early failure’ pattern.

In attempting to find a satisfactory mathematical
model for mortality, candidate distributions may be
classified as corresponding to one or more of Pearl and
Miner’s (1935) three types. Most of the above models
are of Type I or 11 hazards. Type 111 (decreasing) haz-
ards have been discussed, although little has been pre-
sented in the way of specific mathematical models.
Davis (1952) and Barlow and Proschan (1965) noted
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that there is experimental evidence for hazard func-
tions which decrease initially. Williams (1966) sug-
gested that evolutionary selection should result in an
orderly reduction in mortality with increasing age.
Proschan (1963) noted that decreasing failure rates
may result from summing the effects of concurrent
differing constant hazards. Two workers, G. C. Wil-
liams and J. M. Emlen (personal communication)
suggested a decreasing hazard model based on evo-
lutionary principles; this model worked fairly well for
data on primitive man but could not be fitted to crude
fish-survival data, mainly due to the zero survivorship
expected from the early failure period.

The Weibull distribution has attractive features
which are well stated by David (1974) and by Pinder
et al. (1978). These include the ability to provide a
hazard function that increases, is constant, or de-
creases (depending on shape constant), thus corre-
sponding to all three of Pearl and Miner’s (1935) types.
There is, however, a problem with the use of the Wei-
bull distribution for early failure. Some organisms,
notably fish, exhibit extremely high failure rates during
the larval and juvenile periods with fairly stable long-
term survivorship thereafter (Marr 1956). This pattern
cannot be fitted with the Weibull distribution, again
due to the zero survivorship expected from the early
failure period.

In fact, empirically obtained hazard functions from
reliability data are well known to decline initially, level
off, and then increase. Empirically obtained animal
survival curves yield hazard rates with the same char-
acteristics (Emlen 1970). This paper will suggest that
these characteristics occur as a result of three com-
peting risks: a hazard that decreases as a result of
animal adjustment to its environment, particularly as
a result of maturation; a constant hazard, reflecting
those hazards to which the animal does not adjust; and
an increasing hazard occurring as a result of senes-
cence. For the first of these, a new distribution is pro-
posed, unique in that from this hazard alone a finite
survivorship is expected at infinite time: for the sec-
ond, the conventional constant hazard model is as-
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sumed; and for the third, the 150-yr-old Gompertz
(1825) distribution is retained, partly because of its
theoretical basis and its consistency with the deri-
vation of the decreasing hazard function, and partly
because of its satisfactory fit to actual animal survival
data.

ProPOSED COMPETING-RISK MODEL

Suppose that an individual organism adapts to a spe-
cific hazard to life in such a way that the rate of change
of the hazard equals an adjustment constant times the
magnitude of the hazard itself. For a decreasing hazard
(Type III), the adjustment constant is negative; for a
constant hazard (Type II), the adjustment constant is
zero; and for an increasing hazard (Type I), the ad-
justment constant is positive. We now assume that
there are three (and only three) adjustment patterns
occurring concurrently, one for each of the above
cases; we further assume that these three risks are
competing, but noninteracting. This approach then
yields the total hazard function to be:

r(t) = a;e™®' + a, + azetht )

Here r is the total hazard function, a, is the hazard
weight (or initial hazard), and b; is the adjustment con-
stant. By differentiating the total hazard rate with re-
spect to time t, it can be seen that the hazard will
eventually increase monotonically; by setting time t =
0, it can be seen that the hazard rate will initially de-
crease provided that the product a;b; > ab,.

Hazard for immature animals

Survivorship from the second and third of the in-
dividual risks discussed above are well known, being
zero at infinite time. However, survivorship from the
first of the above risks is qualitatively different from
that expected from other proposed early failure dis-
tributions. If ¢,(t) is the survivorship at time t, then
for the decreasing hazard function,

¢4(t) = exp{(—a,/b)[1 — exp(—b,1)]}. )
At infinite time, the survivorship would be:
¢4(>) = exp(—a,/b,). 3)

A nonzero survivorship is then expected at infinite
time from the decreasing hazard. This survival pattern
itself does not, of course, make much sense; however,
because the first risk is only one of three competing
risks, the second and third of which have expected
survivorship zero at infinite time, the net survivorship
at infinite time would be zero. The biological signifi-
cance of the parameters a, and b, may be better seen
by noting that a, represents the initial value of the
hazard at the time zero, and that 1/b, is the time con-
stant with which the hazard is reduced. In particular,
for the case where the first hazard represents that of
immaturity, if

/by =Ty 4)
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then T,, is the time constant with which maturity is
approached.

While the most common use of this decreasing haz-
ard would be to account for the hazard due to imma-
turity, it can also be used (as mentioned above) in a
more general sense for other hazards to which an an-
imal adjusts successfully. An example is the hunting
hazard to which male deer become subject after reach-
ing legal hunting age. (This use of an additional hazard
of the form of the ‘‘immaturity’’ hazard would require
specifying the age at which the decreasing hazard be-
comes effective.)

An experimental check on the validity of the de-
creasing hazard model is shown in Fig. 8. This figure,
taken from data reported in Fineman et al. (1974),
shows the model fitted to laboratory survival data for
the freshwater Kkillifish Oryzias latipes, the Medaka.

It appears then that the desirable mathematical
characteristics of the Weibull hazard function are vi-
tiated in the early period of animal survival curves,
when a decreasing failure rate is normally observed.
The new decreasing hazard function here proposed,
unusual in that from this risk alone a nonzero survi-
vorship is expected, does have desirable features
when considered as one of several competing risks.

Hazard for mature animals

Because time-varying hazards due to immaturity
and senescence are separated by our model, the haz-
ard for mature animals is simply a constant:

M2 = aZ’

with survivorship

€, = exp(—ayt). (6)

Hazard for senescence

For simplicity, we here retain the conventional
Gompertz model, except for a parameter transforma-
tion which makes the parameters easy to interpret.
The Gompertz model

My = azexp(byt), @)
gives a survivorship
¢35 = exp{(as/by)[1 — exp(bst)]}. 8

The associated probability density function is
f(t) = azexp(bst)exp{(as/by)[1 — exp(bst)]}, (9)
and the log of the density function, L, is:
L = ¢,a3 + bst + (as/by)[1 — exp(bst)].  (10)

The modal survival time, T, if only wu; were operating,
is then obtained by equating dL/dt to zero, yielding

T, = (1/b3)¢n(bs/ay). 1

An approximation to survival time variance o? is ob-
tained from (—d2L/dt?)~! with t = T, or



752

O

Dall Mountain Sheep
Murie (1944)

10% Loss Young Skulls
20%Loss Young Skulls
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Fi1G. 1. Proposed mortality model fitted to survival curve
data for the Dall Mountain Sheep (Ovus dalli dalli).

o2 = (1/bgh). (12)

(This approximation is valid for the normal distribu-
tion and is relatively insensitive to skewness but sen-
sitive to kurtosis, as can be easily verified. Negative
kurtosis will result in an overestimation of variance;
positive kurtosis results in an underestimation of
variance.) Replacing a; and b, by T, and o

s = (1/a®expl(t — TY/al, (13)
¢, = exp{exp(T,/d) — expl(t — Ty/al}. (14)

An approximate method for estimating the Gompertz
parameters by desk calculator from real survival data
follows from the above. Because in real survival data
there is little difference between mean and modal sur-
vival times, a;/by being small,
Ty=T, (15)
in which T is the mean survival time if only w, were
operative. Given this approximation, then a simple
approximation to parameter b, is given by

bs = 1/, (16)
|
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FiG. 2. Proposed mortality model fitted to survival curve
data for the hippopotamus (Hippopotamus amphibius).
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African Buffalo
Male
Spinage (1972)
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F1G. 3. Proposed mortality model fitted to survival curve

data for the African Buffalo (Syncerus caffer).

in which T is the set of measured survival times. A

simple approximation to a; follows:
a; = (1/&)exp(—T/a). 7

Combined mortality and survivorship

Recalling our postulate that the three types of ma-
turity are additive, we have

(18)
(19

=yt e o,
f) =€1'€2‘€3,

with u; and ¢; given above.

These three components of mortality may be related
to those noted by Pearl and Miner (1935): Type I, with
a long plateau at survivorship nearly unity, followed
by a relatively swift descent; Type II, log-linear; and
Type III, with survivorship decreasing swiftly during
the early time period, concave upwards, and then ap-
proaching zero roughly asymptotically. Deevey (1947)
associated the Type I1I curve with heavy juvenile mor-
tality. We note that Pearl and Miner’s (1935) Type III
curve corresponds to the distribution above for the
hazard due to immaturity; their Type II curve corre-
sponds to the hazard for the mature animal; and their

Zebra
Female
Spinage (1972)

SURVIVAL PROBABILITY

— - S — R - =
o] 5 10 15 20

AGE , YEARS
Fi1G. 4. Proposed mortality model fitted to survival curve

data for the female zebra (Equus burchelli boehmi).
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F1G. 5. Proposed mortality model fitted to survival curve

data for the Roe Deer (Capreolus capreolus) of the Kalo.

Type I curve corresponds to the hazard due to senes-
cence.

The combined mortality, obtained by simple addi-
tion of the three component hazards, then declines
sharply during the infant and juvenile period, levels
off during adulthood, and finally climbs sharply during
senescence. These are characteristics of animal mor-
tality pointed out by Emlen (1970).

DATA ANALYSIS

The model was tested by fitting it to a number of
measured survival curves in the literature for a variety
of species and by examining the “*best fit"" parameters
to see if they made biological sense.

Model fitting was accomplished by a least-squares
nonlinear regression program using a Gauss-Newton
approach. Derivatives were determined numerically.
The method is similar to that of Marquardt (1963). (For
those few cases in which individual survival times are
available, maximizing the log likelihood function
would be preferable.)

In few cases were sufficient data available to eval-
uate the entire model. Frequently a large hazard to the
mature animal (presumably predation or starvation) so
reduced the sample at the older ages that information
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FiG. 6. Proposed mortality model fitted to survival curve

data for the Black-tailed Deer'(Odocoileus hemionus columbi-
anus) of the chaparral.

on senescence could not be obtained. In most cases
insufficient data were available during the prematurity
period to evaluate both w, and T,,. the two parameters
for the immaturity hazard: in such cases the fraction
surviving the immaturity hazard, ¢ (x). was deter-
mined.

Results of fitting the model to some representative
life tables for vertebrates are given in Table 1. and in
Figs. | through 8. Standard errors of the parameter
values, obtained from linear model theory. are given
in Table 2. These results will be separately discussed.

DiscussioN

Dall Mountain Sheep, Ovis dalli dalli
(Murie 1944)

Figure 1. The skulls of the very young animals in
Murie’s collection are fragile and, as Deevey (1947)
remarked, are probably underestimated in the data.
For the first run a 10% loss in the youngest age group
(0-6 mo) was assumed. These data gave a 78 sur-
vival from the hazard of immaturity with a maturity
time constant of 0.94 yr. The constant hazard of ma-
turity is quite small (0.008), indicating a relative im-
munity of the mature, healthy animal to predation.
though Murie (1944) stated the major cause of death
is predation by wolves. Apparently the wolves prey
mainly on the older, weaker animals. Modal survival
time from the senescence hazard is =10 yr. with a
standard deviation of =1.5 yr. A second run was made
with an assumed 20% loss of the youngest skulls. Sur-
vivorship from immaturity was reduced from 78% to
64%: the maturity time constant was reduced from
0.94 to 0.47 yr, as mentioned above. In all probability
the maturity time constant is not far removed from the
time to sexual maturity: probably, then. Murie (1944)
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TaBLE 1. Model parameter values.

Error of Initial Maturity  Immaturity Constant Senescence Senescence
fit hazard time constant survivors hazard modal span SD
Animal o Ko T € () k T, o
Dall Sheep
10% correction 0.002% 0.26 0.94 0.78 0.008 10
20% correction 0.011% 0.94 0.47 0.64 0.011 10 .
Hippotamus 0.0046+1 1.17 0.58 0.51 0.039 37.5 3.2
African Buffalo
male 0.019+ 2.72 0.26 0.50 0 12.6 4.0
Zebra, female 0.024+ 0.51 0.28 0.87 0.076 16.8 1.8
Kalo Deer
male 0.17% * * 0.46 0.50 * *
female 0.08% * * 0.62 0.41 * *
Chaparral Deer
female 0.05% * * 0.80 0.153 * *
British Blackbird 0.17% * * 0.88 0.59 * *
Medaka
XY 0.021% 0 * 1.0 0.0011 417 29
YY 0.020+ 0.0115 24.5 0.75 0 353 73
YY (androgen) 0.021+ 0.026 23.5 0.54 0 331 92

+ RMS absolute error.
t RMS error relative to survival probability. :
* Cannot be determined from the data. For the hazard of immaturity, model reparameterized in terms of immaturity

survivorship ¢ (=) instead of u, and T,,. If the life span was not long enough to determine the senescence hazard, that hazard
was set to zero.

has not greatly underestimated the quantity of young with 51% survival from this hazard. A long period of

skulls. maturity follows, during which there is a constant haz-

. . . ard of 0.039. Of the animals that survive the hazard

Hippopotamus, Hippopotamus amphibius of immaturity, about one third survive the hazard of

(Laws 1968) adulthood to the age of 30 yr. At this age, the hazard

Figure 2. The hippopotamus has largely overcome of senescence begins to be felt, with a modal survival
the hazard of immaturity by the time he is 2 yr old, time for senescence of 37.5 yr.

TaBLE 2. Parameter standard errors.

Animal Ko Tm €1(x) k T, O

Dall Sheep

10% correction 0.075 0.17 0.014 0.17 0.19

20% corrections 0.090 0.07 0.009 0.12 0.14
Hippopotamus 0.049 0.027 0.0005 0.16 0.20
African Buffalo

male 0.004 * 0.13 0.42
Zebra, female * * 0.02 0.005 0.31 0.43
Kalo Deer

male * * 0.064 0.038 * *

female * * 0.012 * *
Chaparral Deer

female * * 0.022 0.006 * *
British Blackbird * * 0.10 0.022 * *
Medaka

XY * * * 0.0002 1.7 2.6

YY 0.011 2.6 * 1.9 2.7

YY (androgen) 0.0013 1.3 * 3.6 6.0

* Cannot be determined from the data.
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Fi1G. 7. Proposed mortality model fitted to data for the

British Blackbird (Turdus merula merula). Similar data and
fits occur for nearly all species of small birds for which data
from the wild are available.

African Buffalo, Syncerus caffer
(Spinage 1972)

Figure 3. While it is possible to calculate the initial
hazard and immaturity time constant, the parameter
standard errors are too large to make these parameter
values meaningful. One can state confidently that the
time constant for immaturity is <1 yr. The survivor-
ship from the hazard of immaturity can be calculated
with reasonable confidence as about 50%. A period of
5 or 6 yr of maturity follows during which very few
deaths occur, the hazard of adulthood being negligible.
The hazard of senescence begins to be felt at an age
of =8 yr, with a modal survival time for senescence
being =12 yr.

Zebra, female, Equus burchelli boehmi
(Spinage 1972)

Figure 4. It is not possible to calculate confidently
values for the initial hazard and immaturity time con-
stant for the zebra from the data, except that the value
of the immaturity time constant is <1 yr. During the
period of adulthood there is a constant hazard of 0.076,
sufficiently large so that few animals survive to meet
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the hazard of senescence. At an age of ~15 yr. the
hazard of senescence begins to appear, with a modal
survival time from this hazard being =17 yr.

Roe Deer of the Kalo, Capreolus capreolus
(Andersen 1953)

Figure 5. These animals, though also wild ungu-
lates, present quite a different picture from the Dall
Mountain Sheep. The data do not permit evaluation
of the maturity time constant, except that it is <1 yr.
Survivorship from the hazard of immaturity is 46% for
males and 62% for females; the constant hazard of
maturity is less for females, being =0.5 for males and
0.4 for females.

Because of a very large constant hazard of maturity,
probably predation or starvation, survivorship to se-
nescence is too small to estimate the parameters of
the senescence hazard; apparently virtually no animals
survived long enough to die of the hazards associated
with senescence. It seems likely that the modal sur-
vival time from senescence would be =10 yr, consis-
tent with that of the Dall Sheep.

Black-tailed Deer of the chapparal, Odocoileus
hemionus columbianus (Taber and Dasmann 1969)

Figure 6. The survival curve for this species and
environment is similar to that of the Kalo Deer,
but reflects a much less severe environment, or
conceivably greater hardiness as a species. Survivor-
ship from the hazard of immaturity is =80%: the con-
stant hazard of adulthood is only 0.15, compared with
62% and 0.4 for the female Kalo Deer.

Unfortunately, although survivorship to 9 yr of age
is very appreciable (20%) and there is a hint in the
data that the hazard of senescence is beginning to ap-
pear at that age, the data do not extend beyond this
point. Consequently, the senescence hazard parame-
ters cannot be evaiuated, although the modal survival
time from senescence is certainly >10 yr.

British Blackbird, Turdus merula merula
(Lack 1943)

Figure 7. A large survivorship is seen from the im-
maturity hazard (88%): this is probably an overesti-
mate, because a portion of the early time period was
not included in the data. The data for this bird indicate
a severe constant hazard of nearly 0.60, probably due
to predation. As in the case of the Kalo Deer, virtually
none survives to die of the senescence hazard.

This picture seems to be typical of small birds; for
nearly all, after a period of juvenile adjustment of a
year or less, no further adjustment takes place. The
senescence hazard cannot be determined in the pres-
ence of such heavy predation. Aviary data would be
required to determine the senescence hazard. It ap-
pears that, in spite of the very short mean life span in
the wild, the life span from the senescence hazard
alone would be many years.
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F1G. 8. Proposed mortality model fitted to laboratory sur-

vival curve data for the Asiatic Killifish, the Medaka (Oryzias
latipes).

Medaka, Oryzias latipes
(Fineman et al. 1974)

Figure 8. These data on the tropical fish Orvzias
latipes are of interest in giving a picture of life under
laboratory conditions. The data also give a fairly de-
tailed picture of the effect of the hazard of immaturity,
thus giving a check on the new distribution here pro-
posed for that hazard. Because these animals (like
many fish) can undergo sex reversal, it is possible re-
liably to obtain YY genotypes; the data here shown
are for XY males, YY males, and YY males to which
exogenous androgen (methyl testosterone) was admin-
istered in food.

Considering the small cohort size (40-50 animals)
the fit of the model to the data is encouraging, espe-
cially the good fit during the early time period. Be-
cause this is the period during which the novel part of
the model dominates. it is the period which requires
the most careful checking.

The obvious differences between the curves are
largely ascribable to the hazard of immaturity. If the
animals are arranged in order of “*maleness,”" i.e., XY,
YY.YY + androgen, the initial hazard and death from
immaturity increase; the constant hazard, never large,
drops; the modal life span from the senescence hazard
decreases and its variance increases, indicating an in-
crease in the initial hazard of senescence, but a de-
crease in the rate at which this hazard is accelerated.
Fineman et al. (1974) discussed in more detail the ef-
fects of genotype. phenotype, and sex on the parame-
ters.

The division of causes for mortality into three types,
depending on the adaptive response of the animal to
the hazard. appears to have some general validity, at
least as far as vertebrates are concerned. The new
distribution here proposed for hazards to which the
animal adapts. particularly the hazard of immaturity,
has some of the characteristics of the Gompertz dis-
tribution in inverted form and can be derived from
similar reasoning. The finite survivorship from this
hazard is biologically sensible. The concurrence of the

WILLIAM SILER
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three hazard types with Pearl and Miner’s (1935) three
types of survival curves is also encouraging. In short,
the approach appears fruitful, but the real test must
await analysis of more life tables to see if increased
biological understanding can result from use of the
model.
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APPENDIX

The formulas given in the body of this paper for relating
the Gompertz hazard parameters to survival mean and vari-
ance are simple and sufficiently accurate for obtaining initial
estimates of parameter values for nonlinear model fitting.
Somewhat more accurate values (for the Gompertz parame-
ter ratio a/b < 1) may be derived by using a cumulant-gen-
erating approach (Kendall and Stuart 1969). In this method,
the Laplace transform of the senescence survival time den-
sity function is first obtained. The logarithm of this transform
is differentiated twice with respect to the Laplace variables.
To obtain the mean, the Laplace variable in the negative first
derivative is set to zero; for the variance, the Laplace vari-
able in the second derivative is set to zero.

As given in the body of this paper, the survival time density
function for the Gompertz hazard is:

f(t) =a exp(bt)exp{(ab)[1 — exp(b/t)]}. (la)

Using the Laplace transform as a moment-generating func-
tion, we have

M(s) =
J ‘ exp(—st) a exp(bt)exp{(a/b)[1 — exp(bt)]} dt.  (2a)
t=0

Rearranging terms, and letting

v = et (3a)

we have

M(s) =a exp(a/b)f v SvP-lexp[—(a/b)vP] dv. (4a)
V=1
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A further simplification is achieved by letting
x = (a/b)vP, (5a)
which leads to
M(s) = exp(a/b)(a/b)s”’f e *x %" dx. (6a)
x=a/b
Noting that by definition
I'(n) =J e *x" 1 dx, (7a)
0
the moment-generating function becomes
M(s) = exp(a/b)(a/b)*'®
a/b
~[F(1 —s/b) — f e Xxs/P dxw. (8a)
x=0

Assuming that a/b < 1, we neglect the integral term in Eq.
8a, giving

M(s) = exp(a/b)(a/b)s’’T'(1 — s/b). (9a)
Taking the natural logarithm of M(s), we have
L = L [M(s)] = a/b + (s/b)In(a/b)

+ In[I'(1 — s/b)]. (10a)

To obtain an estimate of the mean, we differentiate L once
with respect to s, change sign, and then set s = 0, yielding

dL

— —_ d p—
T = (Ub)In(bra) — = {ln T(1 = s/b)]. (11a)

By definition
d _
1 [In I'(z)] = ¥(2), (12a)
where W(z) is the digamma function.
To utilize this relation, we let
1 —s/b=u, ds = —bdu, (13a)
so that
dL
o (1/b)In(b/a) + (1/b) ¥(1 — s/b). (14a)

By setting s = 0 in Eq. 14a, we obtain an approximation to
the survival time for a/b < 1, or

w = (1/b)in(b/a) + (1/b)¥(1).
or
u = (1/b)in(b/a) — 0.57721/b. (15a)

To obtain an estimate for the variance, we differentiate Eq.
14a again with respect to s:

d%ln L
ds?
in which ¥'(z) is the trigamma function. An estimate for the

survival time variance is obtained by setting s to zero in Eq.
16a:

= (1/b)¥'(1 — s/b) (16a)

o? = (1/bH¥'(1). (17a)
The standard deviation is thus obtained:
o= VW¥(l) /b =1.283/b. (18a)
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