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THREE STRIKES AND YOU’RE OUT: DEMOGRAPHIC ANALYSIS OF
MANDATORY PRISON SENTENCING®

CARL P. SCHMERTMANN, ADANSI A. AMANKWAA, AND ROBERT D. LONG

Much of the debate about the costs and benefits of “three-
strikes” laws for repeat felony offenders is implicitly demographic,
relying on unexamined assumptions about prison population dy-
namics. However, even state-of-the-art analysis has omitted impor-
tant demographic details. We construct a multistate life-table model
of population flows to and from prisons, incorporating age-spe-
cific transition rates estimated from administrative data from
Florida. We use the multistate life-table model to investigate pat-
terns of prison population growth and aging under many variants
of three-strikes laws. Our analysis allows us to quantify these de-
mographic changes and suggests that the aging of prison popula-
tions under three-strikes policies will significantly undermine their
long-run effectiveness.

M any U.S. states have recently adopted new prison sen-
tencing rules for repeat felony offenders. Other states are
considering such policies. Popularly known as “Three Strikes
and You’re Out” (3X), these new rules mandate long sen-
tences without parole for those convicted of a third or higher-
order felony.

Proponents of 3X argue that its crime-reducing benefits
will offset the costs of housing additional prisoners. Critics
argue that the potential benefits are small, and that 3X pro-
ponents seriously underestimate the policy’s costs. Much of
this debate is implicitly demographic. Arguments on both
sides rely on unexamined assumptions about prison popula-
tion dynamics and about age-specific patterns of crime and
punishment. The costs of implementing 3X rules depend on
how they change the size and age structure of state prison
populations. Benefits depend largely on the number of crimes
prevented through incapacitation, but rates of criminal activ-
ity vary greatly by age. Careful demographic analysis can
therefore add useful information to current policy debates
over the value of 3X laws.

Criminologists have investigated relationships between
sentencing policies and prison population growth (Bales and
Dees 1992; Blumstein, Cohen, and Miller 1981; Greenwood
et al. 1994; Joyce 1992; Langan 1991; Petersilia and Green-
wood 1978). Even studies with detailed demographic analy-
sis (e.g., Blumstein et al. 1981), however, have emphasized
demographic changes among those at risk of entering prison
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and their consequences for growth in the total number of
prisoners. Many of the relevant questions about 3X policies,
in contrast, are about demographic change within the prison
population itself. Such questions have received less attention.

In the analysis of 3X policies, even state-of-the-art re-
search has kept the demography extremely simple. For ex-
ample, Greenwood et al. (1994) analyze California’s sentenc-
ing policies in an ageless population.'

We take a more explicitly demographic approach to in-
vestigating 3X laws. We construct a multistate life-table
model for prison admissions, releases, and readmissions,
with single-year age-specific rates. We derive a different set
of transition hazards for each alternative sentencing policy
and then analyze policy alternatives by (1) comparing their
long-run steady states and (2) comparing the transition paths
between current policy and the steady state for the proposed
alternative. Baseline transition rates are from recent admin-
istrative records from Florida. Because Florida’s rates do not
differ greatly from those of other states, our simulation re-
sults are also applicable to other prison systems.

Our principal goal is to increase the stock of available
information on the costs and benefits of mandatory sentenc-
ing laws. In doing so, we also hope to illustrate the relevance
of demographic methods and models to areas outside of the
field’s traditional ken.

Our principal finding is that 3X policies are poorly de-
signed from a demographic point of view. Cost-effective
policies should selectively incarcerate small numbers of very
high-risk criminals. Our simulations show that, given the
prevailing age patterns of crime and prison admission, 3X is
likely to do the opposite. In the long run, 3X will cause large
increases in prison populations, primarily by adding large
numbers of inmates who are unlikely to commit future of-
fenses—namely, o/d inmates.

DEMOGRAPHIC MODELING OF PRISON
POPULATION DYNAMICS

Demographers bring considerable intuition to the problem of
mandatory sentencing and prison population change. From
stable-population theory, for example, we know that if there
is a constant number B of births year after year, a closed
population, and an unchanging age-specific mortality sched-

1. Greenwood et al. (1994) include desistance behavior in their model,
and this serves as a crude approximation of age effects. They assume that each
year the hazard of future criminal activity falls to zero for a fixed proportion
(typically 10%) of current criminals. In their model, both criminals who are
incarcerated and those who are on the street may desist in this manner.
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ule, then in the long run the population becomes constant at
size Be,, where e, equals life expectancy at birth. An increase
in the life expectancy of each individual would therefore (in
the long run, with everything else held constant) lead to an
exactly proportional rise in the size of the population alive at
any one moment. »

The same logic applies to prison populations. Incarcera-
tion is a kind of birth (i.e., an entry into the population of
prisoners), release from prison is a kind of death (an exit
from the population), and the average completed sentence is
a kind of life expectancy (mean time between entry and exit).
Suppose, for example, that prison admissions stayed constant
over time, but that a new policy increased the length of all
completed sentences by 50%. The analogy with stable popu-
lation suggests how to translate from the policy to its demo-
graphic result: A 50% longer sentence for each individual
prisoner should mean that, in the long run, prisons will have
to house 50% more inmates on any given day.

Stable-population theory provides some insight into
prison population dynamics, but it is incomplete. The incar-
ceration-equals-birth and release-equals-death analogies, al-
though informative, are imprecise. Notably, people cannot be
reborn after they die, but they can reenter prison after being
released. Such returns are the main reason for 3X rules.
Therefore, if we are to understand 3X’s demographic impli-
cations fully, we need a better analytical model.

A Multistate Life-Table Model

Migration provides a better analogy to the process of prison
admissions, releases, and readmissions. Like the populations
of neighboring regions, prison and nonprison populations
coexist and exchange members. Over a lifetime, an indi-
vidual may move back and forth between these populations
any number of times, and the intensity of movements at vari-
ous ages can be summarized in a multistate life table (see
Keyfitz 1985: chap. 12; Rogers 1975; or Schoen 1988). The
multistate life-table model fits our problem well, and we use
it as a general framework for analyzing transitions in and out
of prison under different sentencing rules.

Figure 1 presents a highly simplified version of the
multistate life-table model we propose. Our main strategy is
a three-way disaggregation of both the prison and nonprison
populations into (1) those who have never completed a spell
in state prison, (2) those with exactly one completed spell,
and (3) those with two or more completed spells. This disag-
gregation is useful because it creates more homogeneous
subpopulations (thus making the first-order Markov assump-
tion that is built into the multistate life-table model more
plausible), and because it allows us to count the third- and
higher-order “strikes” (i.e., entries into prison) that are the
focus of 3X laws.

Arrows in Figure 1 indicate the possible transitions be-
tween states. We use o, 3, and [ to denote hazards of prison
entry, prison exit, and death, respectively. The majority of
the population never goes to prison, and remains in the up-
per left circle from age 15 until death. Of those who enter
prison (top right square), most are eventually released back
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FIGURE 1. A SIMPLIFIED MULTISTATE LIFE-TABLE MODEL

Free Incarcerated

15th
Birthday No Prior

Spell 1

Spell 2

2+ Prior
Spells

into the nonprison population (middle left circle). Some of
those released return for a second spell in prison (middle
right square), whereas others do not. By construction, our
model is a one-way ladder downward: Once an individual
enters prison he cannot return to his initial state. Each strike
moves an individual down the ladder by one rung.

Figure 1 omits some important details. In the full model,
both prison readmission rates and 3X release rates vary with
age and with duration in the current state. We effect duration
dependence by defining separate states for those entering a
given category (e.g., released with one prior spell, or in prison
on a third strike conviction) at distinct ages.? For example,
there are distinct states for “free with one prior spell, age 28,
last released at age 28” and “free with one prior spell, age 28,
released at age 27.” These two states have different hazards for
reentry to Spell 2 (0.245 and 0.118, respectively). Similarly,
those in prison on 3X convictions are tracked not only by their
current age but also by the age at which they entered spell 3+.

The full model effectively has 187 states, not including
death. These states are as follows:

1 Free, never been in prison.

In prison, Spell 1.

Free, been in prison once, last reentered free
population at age 15...74,75+.

3...63

2. For our study (in which we will calculate only the numbers in vari-
ous states at different ages, rather than the full multistate life table), the
version of duration dependence we set out is satisfactory. However, Wolf
(1988) provides a elegant alternative for duration dependence that is
computationally far more efficient for the full life-table model. We were not
aware of his paper until the end of the editorial process, and we thank the
editor for calling it to our attention. ~
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64 In prison, Spell 2.
65...125 Free, been in prison twice, last reentered free
population at age 15...74,75+.
126 In prison Spell 3+, not subject to 3X rules.
127...187 In prison Spell 3+, subject to 3X rules, entered
Spell 3+ at age 15...74,75+.

Most transitions in this model are impossible, as illus-
trated in the simplified version in Figure 1. For example, the
only possible transition (other than death) from State 1 is to
State 2. For 15-year-olds, the only possible transition from
State 2 is to State 3 (or to State 4 for 16-year-olds, to State 5
for 17-year-olds, etc.). The only possible transitions from
States 3...63 are to State 64, and so on.

Data

We obtained data for this study from administrative records
of the Florida Department of Corrections, which maintains
individual-level computer files of all prison admissions and
releases in each fiscal year, and status files that provide mid-
year snapshots of the state prison population. Both types of
files allow unique identification of individual inmates, a fea-
ture that allows us to pool data for several years in order to
estimate directly the reentry hazards that are critical to the
3X debate.

Throughout our calculations we disaggregate individuals
by a, single year of age; /= 1 for those currently incarcerated,
and = 0 otherwise; X = 1 for prisoners sentenced under 3X
laws, and = 0 otherwise; P, the number of previous prison
spells for serious felonies® [P =0, 1, or 2+]; and a, the age at
which an individual entered his or her current state. We use
administrative records for the years 1990-1993 and our model
of 3X laws, to calculate the following hazard rates:

o(a,a,P) = the prison admission rate for a-year-olds
who entered their current state (either released or never-in-
carcerated) at age a,, and who have P prior spells in prison.
If P = 0 (no prior spells in prison), then a, is irrelevant, and
is simply the prison admission rate for the general popula-
tion at age a.

B(a,a,P.X) = the prison release rate for a-year-olds who
entered prison at age a,, and who have P prior admissions. If
X =1, then 3X laws apply, and the prisoner is released if and
only if @ - a, exceeds the mandatory minimum sentence; oth-
erwise a, is irrelevant, and we simply use the observed re-
lease rates for a-year-olds.

W(a,l) = the mortality rate for a-year-old males in the
Florida general population (if 7 = 0) or in Florida prisons (if
I=1).

Transforming the rich set of administrative data into o’s,
B’s, and W’s is a complex process. In the interest of brevity,
we omit details here and refer interested readers to Schmert-
mann, Amankwaa, and Long (1995). The short version of the
process is as follows. Estimation of release and mortality

3. Serious felonies are murder, manslaughter, sexual offenses, robbery,
violent personal offenses, burglary, theft, forgery, fraud, drug offenses,
weapons offenses, escape, and several automobile-related offenses, such as
DUI and hit-and-run.
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hazards B and p from available data involve only straightfor-
ward calculation of events and exposure. For age-specific
prison entry and reentry rates, however, we have good infor-
mation on the number of events, but no exact data on popu-
lations at risk. We solve this problem either by estimating
the populations at risk (in the case of first entries), or by us-
ing the individual-level identifiers in several years of admis-
sion and release data to calculate age-specific rates for a
small subset of people on whom we have accurate informa-
tion (in the case of prison reentries).

Release Rates (). Figure 2 illustrates the calculated haz-
ard rates for release at ages 15 through 75+, represented as
points. Each panel also contains a smoothed rate schedule, in-
dicated by a line. We will use these smoothed schedules in the
projections below.* Several features of these graphs merit at-
tention. First, age-specific release rates are high. For example,
consider a rate of 0.5, which is fairly typical of Figure 2. At
this rate, approximately 39% of those imprisoned at the start
of any given year will have been released by the end of that
year. Equivalently, a release hazard of 0.5 implies that the
mean length of a spell in prison is two years. High release rates
indicate that prison populations have high turnover, especially
when compared with the state or national populations with
which demographers often work. Like any small, open popu-
lation, prison populations are demographically very active.

Age-specific release rates tend to decline with the num-
ber of prior spells in prison. Those in prison for the first time
are, generally speaking, the most likely to be released at any
given age, followed by those in for the second time; the least
likely to be released are those in prison for the third+ time.
Thus, there is some evidence that Florida’s sentencing and
release policies already penalize multiple offenders, albeit
weakly.

Finally, release rates tend to decline with age. This de-
cline may occur for several reasons, the most notable of
which is population heterogeneity. Older prisoners have usu-
ally been in prison longer than younger prisoners, as most
admissions occur at young ages. If longer spells in prison
are associated with more serious crimes or with worse be-
havior while in prison, then one would expect older prison-
ers to be the least likely to be released. The data in Figure 2
are consistent with this heterogeneity argument.

Entry rates (o). Figure 3 illustrates the calculated haz-
ards for first entry. Points represent calculated rates at single
years of age, and the line is a smoothing spline approxima-
tion to the rate schedule. All rates are below 1%, indicating
that relatively few Floridians ever enter prison.

Another notable feature of Figure 3 is large age differ-
ences in first admission rates. Rates rise sharply over ages

4. Schoen (1988:96) advises smoothing when using single-year age-
specific rates in multistate life-table applications. We smooth the rate sched-
ules for mortality and release rates with loess and locally linear fits (Cleve-
land 1979). We smooth the entry and reentry rate schedules with regression
splines (Hastie and Tibshirani 1990: chap. 2). Simulation results are insensi-
tive to the choice of smoothing techniques. Using smoothed rates, rather than
the single-year rates calculated from the raw data, makes virtually no differ-
ence in any of our qualitative or quantitative findings. It does, however, make
the projection results less noisy and hence slightly easier to interpret.
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FIGURE 2. FLORIDA PRISON RELEASE RATES BY AGE, 1990-1993
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FIGURE 3. AGE-SPECIFIC ENTRY RATES FOR THOSE WITH NO PRIOR SPELLS IN PRISON
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15-20 (in the 15-17 range, only a fraction of offenders are
tried as adults), peak at ages 20-25, and then fall steadily to
near zero at ages 60+. Although the data in Figure 3 are for
first admissions only, they also reflect the general age pat-
tern for all admissions. In short, Florida’s prison admissions
are highly concentrated among the state’s youngest adults.
There are relatively few admissions at ages 40+, and virtu-
ally none at ages 60+.

Crimes and first prison admissions are not synonymous,
of course, but the age pattern seen for prison admissions in
Figure 3 is consistent with the age patterns for offense rates
found in virtually all previous research on this topic (e.g.,
Blumstein et al. 1986: vol. 1; Hirschi and Gottfredson 1983;
Nagin and Land 1993). There is debate among criminolo-
gists and other social scientists about how the criminal be-
havior of individuals varies by age and about the analytical
relationship between individual behavior and the single-
peaked age pattern seen in aggregate crime-rate data (Land,
McCall, and Nagin 1996; Nagin and Land 1993). There is
little contention, however, about the general shape of the

aggregate crimes-by-age schedule, which invariably looks
like the schedule for first prison entries in Figure 3.

Figure 4 contains the calculated age-specific prison re-
entry hazards for the first and second years after release and
the corresponding smoothed rate schedules.® These rates are
constructed from data on prisoners released in the last sev-
eral years and therefore reflect Florida’s current arrest, con-
viction, and sentencing policies.

Figure 4 illustrates several interesting points, some of
which are critical to understanding the consequences of 3X.
First, and most important for 3X, reentry hazard rates are
very high. This is especially true compared with the rates for
first entry illustrated in Figure 4, none of which exceeded
0.01. A typical-looking reentry rate of 0.25 for the first year
after release at ages 20-25, for example, indicates that 22%
return to prison within 12 months. Second, reentry hazards
decline monotonically with age at release. Older prisoners,

5. When interpreting reentry data, remember that returns to prison may

be caused either by new crimes and convictions, or by parole violations.
This complicates comparison of re-arrest and reentry rates.



450

DEMOGRAPHY, VOLUME 35-NUMBER 4, NOVEMBER 1998

FIGURE 4. FLORIDA PRISON REENTRY RATES, BY AGE, FOR THE FIRST AND SECOND YEARS AFTER RELEASE: 1990-

1993
1st Year After Release 2nd Year After Release
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when released, are far less likely than their younger counter-
parts to return to prison at a later time. Third, age-specific
reentry rates decline sharply from the first to the second year
after release. Apparently there is considerable heterogeneity
in propensity to return to prison, with those most prone to
return doing so quickly, leaving behind a group that is far
more resistant to reentry.

As with the data on first entries, the data on prison
reentry for Florida are broadly consistent with existing re-
sults in the criminology literature. Many U.S. and Cana-
dian studies have found a negative association between age
and recidivism rates (Gendreau, Little, and Coggin 1996).
The decline in reentry rates between the first and second
year after release also matches known patterns. For ex-
ample, Greenwood et al. (1994) indicate that 39.3% of
prisoners released in California are expected to be re-ar-
rested within one year, and 54.5% within two years. The
corresponding hazard rates for re-arrest are 0.50 and 0.29,
respectively. Re-arrest rates are not directly comparable
with the data in Figure 4, as only a fraction of arrests lead
to reincarceration, but they make the Florida data look sen-
sible: A comparison with re-arrest rates in the first year
and second year after release makes the sharp drop be-
tween first- and second-year reentry rates appear to be a

real, and important, feature of the process of prison inflows
and outflows.®

Mortality Rates (). For the nonprison population, we
use published life-table data for the U.S. male population
(National Center for Health Statistics 1994). For the prison
population, we divide age-specific counts of prison deaths
by the corresponding midyear prison populations. We then
smooth the results into an age-specific mortality schedule
for those in jail: pu(a,j = 1). The results are illustrated in
Figure 5.7

6. Greenwood et al. (1994) report re-arrest hazards for the first, sec-
ond, and third years after release of 0.50, 0.29, and 0.19, respectively. We
note a similar pattern in Florida reentry rates, with second-year reentry rates
close to 50% of first-year rates at all ages. In the absence of detailed data on
Florida reentry rates for the third and higher years, we extrapolate reentry
rates using this pattern—the estimated third-year rate equals half of the ob-
served second-year rate, fourth-year rate equals half of the third-year rate,
etc.—until the estimated reentry rate reached the first-entry rate for the gen-
eral population, when we assumed that the reentry rate was equal to the first
entry rate.

7. For ages 75-120, we estimate mortality using the single-year age-
specific g(x) values from the Social Security Administration’s period life-
table for the year 2000 (Bell, Wade, and Goss 1992). We also assume that
prison admission rates are 0 for those 75+ and that release rates for those
aged 75+ are identical to release rates for those aged 74. Realistic variations
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FIGURE 5. AGE-SPECIFIC MORTALITY RATES FOR FLORIDA MALES AND PRISON INMATES
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The primary feature of note in Figure 5 is the crossover
of the mortality schedules. Prison death rates are signifi-
cantly higher than those for the general population at middle
adult ages, but lower at ages 65+. We are skeptical about this
crossover. Prison mortality rates are estimated from a small
number of cases in the highest age groups, so the crossover
may simply be the result of noisy data. Alternatively, the low
old-age mortality among prisoners may be real, due to selec-
tive policies that favor the release of older inmates who are
frail or in failing health.® Given our uncertainty about prison
mortality rates at high ages, we adopt an assumption de-
signed to bias our projection results against finding large ef-
fects for 3X: At every age, we assume the prison mortality
rate for our projections to be the higher of the two curves, so
that prison mortality rates always exceed or equal the rates
for the male population of Florida as a whole.

in assumed rates for 75- to 120-year-olds have only trivial effects on simu-
lation outcomes.
8. We thank an anonymous reviewer for pointing out this possibility.

SIMULATION RESULTS
Stationary Population Under Current Rates

Our model disaggregates the population by age and state
(e.g., never in prison, in first prison spell). As in any
multistate life table model, populations are vectors. We use a
column vector,

N(a,t)=[N,(a,t)..Ny(a,t)],

to denote the population at age a and time ¢, disaggregated
into subpopulations in states 1,2,...,5.°

9. In our model, S = 187, as described earlier. In our simulations, we
calculate only the numbers of people alive in each state at each age in the
stationary population. This is equivalent to calculating only the / column of
a standard life table. Full multistate life tables, like their single-state coun-
terparts, include many other interesting indices of state-specific survivorship
(e.g., L, e) and also include gross flows between states at various ages. See
Rogers (1975) or Schoen (1988) for thorough descriptions of multistate life
tables.
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Our first simulation exercise finds the long-run steady
state—that is, the stationary population vectors N*(a)—asso-
ciated with the current admission, release, and mortality
rates.' This population would arise in the long run if all tran-
sition hazards and the size of 15th-birthday cohorts remained
constant into the indefinite future.!!

Figure 6 compares the steady-state prison population
with the actual prison population observed in Florida on June
30, 1993.12 Both populations are disaggregated by age and
spell number. The steady-state population matches the over-
all age structure of the 1993 cross section well. Over five-
year age groups, the index of dissimilarity'® between the two
total population curves is 0.15. The steady state does a cred-
ible, but less convincing, job .of matching the disaggregated
pattern of spell number by age. Over the three spell types,
the index of dissimilarity is 0.24; over the 48 (age X spell)
combinations, it is 0.33. The numbers of prisoners in second
and especially third+ spells in the 25-40 age range is nota-
bly lower in the steady state than in the current population.

Figure 7 compares age-specific counts of annual admis-
sions and releases in the steady-state model and in the fiscal
year 1992-1993 data. The steady-state simulation matches
the actual data very well for these inflows and outflows,
which are important for simulating policy changes. Over
five-year age groups, the index of dissimilarity between
steady state and actual admissions is 0.04; for releases, the
index is 0.12.

There is no reason to expect that an actual population
will exactly match the long-run patterns that arise when its
demographic rates are continued forever. Thus, it is no sur-

10. Formally, the stationary population in our model is a solution to
the vector differential equation

dN(a) = [M(a)] N(a)da,

where N(15) is known and M(a) is the matrix of hazards at exact age a,
arranged as indicated in Rogers (1975: chap. 3). In practice, we approxi-
mate numerically with

N(a + A)=[1+ M(a) * A] N(a),

where we use a value of A = 0.1 years. This allows up to 10 transitions per
year per individual, which is sufficient for high accuracy even with high
transition rates. Changing the value of A to, say, 0.2 or 0.05 years alters our
simulation results only trivially. Schoen (1988: section 4.3) discusses sev-
eral calculation methods for multistate life tables; our approach is essen-
tially a numerical version of his “constant forces” method.

11. We scale the radix (i.e., the constant annual number of 15th birth-
days) so that the model’s stationary prison population equaled the actual
1992-1993 Florida prison population. The radix necessary to match 1992—
1993 is 130,572. For comparison, the number of 15-year-olds enumerated
in Florida in the 1990 census was 152,172. We do not expect an exact match,
of course, as the prison population in 1992-1993 includes effects of past
fluctuations in cohort sizes and in admission and release rates. We conclude
only that our radix seems roughly consistent with the available data.

12. Florida’s fiscal year 1992-1993 ran from July 1, 1992 to June 30,

1993. :
13. For any vectors x and y of distributions over a set of discrete cat-
egories, the index of dissimilarity is D(x,y) = 1/2 x (_ |x,~ y ), where ¢
indexes categories. In our calculations x and y are the steady-state and ac-
tual prison populations, and categories are 16 age groups (15-19,20-
24,...,70-74,75+), 3 spell categories (1,2,3+), and 48 age x spell combina-
tions.
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prise that the actual prison population differs somewhat from

its long-run, stationary equivalent. In fact, it is remarkable

that the two populations in Figures 6 and 7 look so similar.

The steady state approximates the cross-sectional data
well because prison populations have high turnover, and be-
cause they are concentrated in a narrow band of ages. A
prison population is virtually reconstructed within a short
period, so that there is a short “population memory.” In this
case, recent rate levels should explain most of the cross-sec-
tional pattern, and they do. The exception to this short-
memory rule lies in the distribution of the population by
number of previous spells. Previous spells are more affected
by past transition rates and past fluctuations in population
size, and it is precisely in this area that the disparity between
synthetic and actual cross sections is greatest.

Although the current and steady-state populations differ
in some important ways, they are sufficiently similar to make
the steady state a useful baseline for analysis. Each policy
experiment that we report has a similar logic:

1. We use the steady-state population as the initial popula-
tion.'*:

2. Starting from this initial population, we project the popu-
lation forward at new rates that reflect the particular 3X
policy being analyzed. We analyze short-term prison
population dynamics during a transition to the 3X policy
in question and, by looking at the new steady state, esti-
mate the long-term results of the policy.

Three-Strikes Policy Simulations

In this section we report our findings from a variety of 3X
simulation exercises. Each policy experiment has three pa-
rameters: (1) minimum sentence (M), the minimum sentence
that an inmate convicted under 3X laws must serve without
chance of parole; (2) coverage (C), the proportion of those
entering a third+ spell in prison who are subject to 3X laws
(0-100%, with lower numbers representing more selective
targeting of 3X to certain types of offenders); and (3) deter-
rence (D), the percent reduction in criminal activity among
ex-prisoners who are no longer incarcerated that is caused
by the existence of the 3X law (0-100%, with lower num-
bers representing little change in criminal behavior due to
3X; in most of our experiments, deterrence is 0). Given these
parameters, we implement 3X by setting release rates equal
to O for prisoners who are in a third or higher spell and are
subject to 3X rules. Specifically, we use the baseline rates,
except that we change

Bla,a, P=2+,X=1]1=0whena—-a, <M,

and we alter P to ensure immediate release for (P = 2+, X =
1) prisoners when the minimum sentence has been com-

14. There is analytical advantage in using the steady-state population,
rather than the observed current population, as the experimental baseline.
Specifically, the steady-state data include disaggregated population counts
(such as the age-specific distribution of prior spells in prison for the non-
incarcerated population), which are unavailable in the administrative data.
Greenwood et al. (1994) use the same strategy in their analysis of 3X in
California.
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FIGURE 6. STEADY-STATE AND ACTUAL PRISON POPULATIONS, BY AGE AND SPELL NUMBER
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pleted. The assumption that all 3X prisoners are released im-
mediately after completing the minimum sentence generally
biases our simulations toward finding smaller population
changes under 3X, because we assume the lowest possible
value for prisoner-years per 3X conviction.

Appendix Tables Al and A2 contain summary results
for policy experiments over various (M,C,D) combinations.
Before proceeding, it is important to highlight what we are
doing, and what we are not doing, in these experiments.

We are not in any sense making forecasts for Florida’s
prison system. We have not attempted to make accurate
and precise models of real-world sentencing policies. Our
approach is analytical rather than predictive. By adopting
generic models of 3X policies, we trade real-world speci-
ficity for analytical insight. The objective of our simula-
tion exercises is to learn about the basic demographic con-
sequences of various sentencing policies, keeping other
factors constant. We also hope to learn about the sensitiv-
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FIGURE 7. STEADY-STATE AND ACTUAL PRISON POPULATION FLOWS, BY AGE
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ity of demographic changes to policy parameters and pos-
sible behavioral changes.

Full 3X policy. We begin with a policy that we call full
3X—mandatory life sentences for all third strikes, with no
deterrence. In our notation this corresponds to M = 200+
years, C = 100%, D = 0%. The full 3X policy leads to the
greatest demographic changes in prison populations, and as
such it will illustrate most clearly the patterns of change that
occur. In subsequent experiments, we relax the extreme as-
sumptions about coverage, sentence length, and deterrence.

We wish to analyze the direction, magnitude, and speed
of prison population change under the full 3X policy. To do
this, we simulate a transition from the steady-state popula-
tion to the new long-run state that arises if release rates are 0
for those in prison for the third+ time. Because this is an
analytical exercise rather than a forecast, we maintain the
simplifying assumption that the size of 15th-birthday cohorts
remains constant into the indefinite future. This everything-
else-equal approach is appropriate, as our focus is on the im-
pact of changes in release policies, and we do not want to
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FIGURE 8. EVOLUTION OF THE PRISON POPULATION, BY AGE, UNDER A FULL 3X POLICY
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confound policy effects with external effects caused by fluc-
tuations in fertility, mortality, and migration rates. Any real-
istic forecast of prison population changes, however, must
incorporate the effects of past and expected future changes
in basic demographic rates on the sizes of future 15th-birth-
day cohorts.

Figure 8 illustrates the projected changes in prison popu-
lations under a full 3X policy, showing age-specific counts
of prisoners 0, 20, and 40 years after implementation, as well
as the new long-run equilibrium. Population increase would
be gradual, with the number of prisoners growing steadily
for approximately 50 years and then leveling off at a new
long-run size.

The manner in which the prison population grows is in-
teresting: There is virtually no growth in the number of pris-
oners under age 25 because few people reach a third spell in
prison at such a young age. After 3X starts, growth spreads
like a wave from younger to older ages over a period of about
80 years. The population of prisoners in their 30s and 40s
grows rapidly during the first 20 years of the policy and then
levels off. Similarly, the population of prisoners in their 50s
and 60s grows over the second 20 years, and the population
of prisoners in their 70s and 80s grows (less rapidly, because
of mortality) in the third 20-year period.

This wave of growth begins passing through the prison
population as the first cohorts who have spent their high-risk
years subject to 3X start accumulating third strikes. This re-

sults in a build-up of prisoners with 3X sentences, most of
whom are initially young. As time passes, the first cohorts at
the leading edge of the 3X wave get older, replacing in the
age distribution previous cohorts that were not as affected
by the new laws. Consequently, the number of middle-aged
prisoners rises. The number of younger prisoners remains
constant, however, as the positions in the age distribution for-
merly occupied by the leading-edge cohorts are taken up by
other, more recent cohorts with similar accumulations of 3X
prisoners. This process continues until the last of the lead-
ing-edge cohort dies, when the prison population has become
stationary in its new form.

This simulated transition leads to several immediate con-
clusions about the likely effects of a full 3X policy. Growth of
the prison population would be substantial. Holding all other
demographic factors constant and changing to full 3X would
more than double the total prison population in the long run: In
our simulation the increase was 129%. For Florida, this would
mean more than 60,000 additional prisoners in the state system
on any given day, even if fertility, mortality, and in-migration
remained constant at current levels.

On a more positive note, prison population growth is not
all loaded at the front end of the process. Under a full 3X
policy, the prison population would double gradually over
about 60 years rather than overnight.

Prison population aging under full 3X is also dramatic, as
illustrated in Figure 8. Although the overall prison population
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FIGURE 9. STEADY-STATE POPULATIONS, BY AGE, WITH VARYING MINIMUM SENTENCES
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more than doubles in the long run, the population at ages 60+
grows by a factor of nearly 20 (2% of the current steady-state
population is 60+; 19% of a larger steady-state population
would be 60+ under full 3X), and at ages 80+ the growth fac-
tor is over 200. As with total population growth, these aging
effects occur steadily over about 60 years from the beginning
of a 3X policy. The most alarming part of the story—multifold
growth in the numbers of very old prisoners—happens last in
the process. For example, in our simulations the population of
prisoners 60+ rises sharply, but this increase starts to happen
only about 30 years after initiating a full 3X policy.

Variations in minimum sentence. Three-strikes laws
would have less dramatic effects on prison populations if
mandatory sentences were, say, 20 or 30 years without pa-
role rather than life without parole. Demographic modeling
allows us to estimate how sensitive prison population
changes are to the length of 3X sentences. In this section, we
briefly report on policy experiments that keep coverage at
100% and deterrence at 0%, but differ from the full 3X
policy by varying the minimum sentence for a third strike.

Figure 9 illustrates the age-specific steady-state popula-
tions for M = 10, 20, 30, 40, and life. In these simulations
coverage is fixed at 100%, and deterrence is fixed at 0%.
The figure also includes the steady-state population under
current policy (the lowest curve) for reference.

Several points are worth noting in Figure 9. First, al-
though the effects on the long-run state prison population are

smaller when 3X sentences are shorter, they are still substan-
tial. For example, minimum 3X sentences of 10, 20, and 30
years would cause long-run prison population increases of
31%, 61%, and 84%, respectively. For prison systems that
are already overcrowded, these increases may be significant:
In Florida, for example, 20-year minimum sentences for
100% of 3X offenders would eventually lead to more than
30,000 additional prisoners in the state system on any given
day, holding all other factors constant.

Figure 9 also illustrates the effects of sentence length on
prison age structure. Obviously, shorter sentences mean
younger prisoners. Because of the possible high expenses as-
sociated with older prisoners, an interesting metric for age
structure is the fraction of prisoners who are 60+ years old.
One can see from Figure 9 that the bulk of prison population
growth with 10- to 30-year minimum sentences occurs
among prisoners younger than 60. In the steady state at cur-
rent rates, 2% of prisoners are 60+. With 10-, 20-, and 30-
year minimums, the proportions 60+ would be 2%, 5%, and
9%, respectively. As noted earlier, this proportion rises to
19% with life sentences. Because of the distinct age pattern
in prison entries, sentence length has a strong effect on the
aging of the prison population under 3X, with shorter sen-
tences associated with much less aging.

Finally, there are obvious similarities between Figure 9,
which represents the long-run populations under various
minimum sentences, and Figure 8, which represents the
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short-run evolution of the prison population at various times
after implementation of a full 3X policy with mandatory life
sentences. This similarity is not a coincidence. The prison
population evolves similarly in all of the policy experiments:
It grows and ages as a leading-edge cohort (the first cohort
subject to 3X during the peak ages for criminal activity), ac-
cumulates third strikes and mandatory sentences, and then
settles into a steady state as the leading-edge cohort eventu-
ally exits the prison population and later cohorts follow the
same pattern of prison entry and exit. With shorter minimum
sentences the leading-edge cohort exits prison faster and at
younger ages (more often by release and less often by death).
This decreases the time to the steady state and makes the
steady-state population younger.

Variations in 3X coverage. The demographic impact
the full 3X policy is large, suggesting that the costs of cast-
ing a broad net to catch hard-core offenders may also be
large. Many 3X proposals, however, define more restrictive
conditions under which a convicted felon receives a 3X sen-
tence: For example, he or she may have to commit a certain
type of crime, or commit multiple crimes within a specified
number of years. Partial 3X proposals come in a variety of
forms (see Greenwood et al. 1994). This variety, together
with a general lack of data that is disaggregated in the right
form for evaluating a particular law, makes it difficult to ana-
lyze a broad spectrum of 3X proposals within a single, uni-
fied modeling framework.

We can gain some demographic insight about such poli-
cies, however, by treating the problem generically. We will
suppose there are some policy variants under which 10% of
all third admissions to prison are out, others under which
20% are out, and so forth. These are the coverage rates (C)
defined earlier.

Figures 10a and 10b summarize a variety of policy ex-
periments in which we allow coverage to differ from 100%.
Each experiment is represented by a star in the figures, with
linearly interpolated values for intermediate levels of C. Fig-
ure 10a reports on the growth of the steady-state population
under various policies; Figure 10b reports on population ag-
ing. Deterrence (D) is assumed to be 0 in all of these experi-
ments, but minimum sentences (M) vary, with each line in
the figures corresponding to a distinct level of M. In both
figures, 3X coverage is represented on the horizontal axis,
with more easterly values corresponding to higher coverage
and a broader 3X net.

The simple story that arises from these experiments is
that coverage matters. The demographic impact of 3X on the
prison population is quite sensitive to the value of C. The
degree of coverage is particularly important when 3X sen-
tences are long. Conversely, length of sentence matters rela-
tively little for prison population growth or aging when cov-
erage ranges from 10% to 20%.

These results suggest that careful targeting of 3X may
be important in increasing its cost effectiveness. Deciding
which 10-20% of third-time felons should be subject to long
mandatory sentences remains a difficult problem, but our
analysis indicates that narrowing the coverage and selecting
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3X prisoners more carefully could substantially reduce the
costs associated with prison growth and aging.

Variations in deterrence. There is general consensus in
the empirical literature on crime that the deterrence effects
of mandatory sentencing policies are small (U.S. Sentencing
Commission 1991). Nevertheless, it is useful to know what
levels of deterrence would be necessary to offset the popula-
tion growth caused by 3X policies.

Note that by deterrence we mean a reduction in criminal
activity among those who are not incarcerated. It is impor-
tant to distinguish deterrence from incapacitation, which is
a reduction in criminal activity that occurs when a criminal
is incarcerated and his or her criminal career is interrupted.
In this section, we are investigating the potential effects of
behavioral changes that would reduce the number of 3X
prison entries. In the multistate life-table model, we simu-
late deterrence effects by altering the hazard rates for transi-
tions from the “not in prison, 2+ strikes” population to the
3X prison population. Specifically, we multiply all of the en-
try hazards a(a,a,,P = 2+) by a deterrence factor (1 — D/100),
where D is the deterrence rate.

Figure 11a reports results for prison population growth;
Figure 11b reports results for aging. Coverage is fixed at
100% in these experiments, whereas deterrence (measured
on the horizontal axis) varies from 0% (its value in all previ-
ous experiments) to 50%. Results from the empirical litera-
ture in criminology suggest that the true value of D is close
to 0; even the middle values of D (20-30%) in our experi-
ments are probably excessively optimistic.

Several points are important in these figures. First, our
experiments show that deterrence could cancel or even re-
verse the population growth effects of 3X. However, this
would happen only if 3X sentences were very short and de-
terrence levels were unrealistically high.

Second, prison population growth is somewhat sensitive
to deterrence levels, even at low levels of D. For example,
long-run prison population growth under a full 3X policy
would fall from the 129% reported earlier to 105% if D=10, or
to 81% if D =20. In Florida, for example, a 10% or 20% deter-
rence level could reduce the long-run number of state inmates
under 3X by perhaps 10,000-20,000, which is obviously sig-
nificant, even though overall growth in the prison system
would still be extremely large in any of these scenarios. As the
figure illustrates, the effects of deterrence on prison growth
are slightly weaker when 3X sentences are shorter.

Finally, our experiments illustrate that deterrence effects
will not matter much for prison aging under 3X. The level of
aging under 3X (measured as the steady-state fraction of
prisoners who are age 60+) is not sensitive to the level of
deterrence. In short, the length of 3X sentences has far more
impact on prison population aging than the level of deter-
rence. Realistic variation in deterrence levels has only small
effects on aging, even when 3X sentences are long.

DISCUSSION

Our simulation model allows detailed examination of the
mechanics of prison population change. The demographic
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FIGURE 10. EFFECTS OF COVERAGE AND MINIMUM SENTENCE ON LONG-RUN PRISON POPULATION, WHERE DETER-
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dynamics of incarceration are interesting in themselves, but
what do they imply for the effectiveness of alternative poli-
cies?

One of the main motivations for 3X and other manda-
tory sentencing laws is to prevent crimes by forcibly sepa-
rating high-risk offenders from the rest of the population.
Our demographic analysis, which focuses on the age struc-
ture of crime and punishment, clarifies some important is-
sues about the effectiveness of 3X in preventing crime
through incapacitation.

Stated in demographic terms, the costs and benefits of
any new sentencing policy depend not on the characteristics
of the people ‘that they move from streets to prisons, but
rather on the characteristics of the person-years that they
move. The riskiest person-years, during which more crimes
are likely to be committed if the individual is on the street,
are those lived by younger and higher-rate criminals. Trans-
ferring these risky person-years from streets to prisons
would have a high benefit-to-cost ratio. Similarly, person-
years lived by older and lower-rate criminals are less risky,
and a policy that transferred those person-years into prisons
would have a lower benefit-to-cost ratio. Thus, there are
two important questions to consider when evaluating the

marginal effect of a new sentencing policy that switches a
person-year from streets to prisons: (1) What kind of person
is being incarcerated, and (2) how old are they during the
year in question?

Previous studies of sentencing policies have generally
focused on the first question. There is evidence of extreme
skewness in the distribution of crime rates across individu-
als (Visher 1986), raising the possibility that increased
prison sentences for a selected group of criminals might
move relatively risky person-years off streets and into pris-
ons at relatively low cost. Laws such as 3X attempt to use
an individual’s criminal history as a means of identifying
and selectively incarcerating high-rate offenders. Crimi-
nologists (Canela-Cacho, Blumstein, and Cohen 1997,
Greenwood et al. 1994) have made important contributions
by analyzing how effectively 3X and similar laws will per-
form this filtering.

In contrast, our demographic analysis focuses on the
second question, that of the ages at which the additional
prisoner-years generated by 3X will be lived. We thus high-
light an important kind of criminal heterogeneity that has
been underemphasized in earlier studies of sentencing
policy—heterogeneity by age. There is considerable evi-
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FIGURE 11. EFFECTS OF DETERRENCE AND MINIMUM SENTENCE ON LONG-RUN PRISON POPULATION, WHERE COVER-
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dence, both in our Florida data and in earlier criminology
studies (Blumstein et al. 1986; Hirschi and Gottfredson
1983; Land et al. 1996; Nagin and Land 1993) that criminal
activity tends to decrease significantly as an individual
ages. Because of the age pattern of crime, the public safety
benefits of keeping any particular criminal incarcerated
generally decline each year.

Our analysis shows that as a 3X system evolves, a prison

population will grow primarily through the addition of aging

and (eventually) aged individuals. Thus, the benefits of a 3X
policy will generally decrease over time, while the costs
(such as medical care for aged inmates) will likely rise.

Taking an explicitly demographic point of view clarifies
the importance of age heterogeneity. Figure 12 contains four
relevant age distributions. The leftmost (and therefore
youngest) distribution, labeled “Crimes,” is that of steady-
state prison entries at current rates. It shows, by age of of-
fender, the relative volume of crimes serious enough to war-
rant a state prison sentence under current policies. Although
it is imprecise, one can think of the height of the leftmost
curve as a crude index of the number of serious crimes that
might be prevented by incapacitating a person of a given age
for one year.

The second age distribution in Figure 12, labeled “Cur-
rent Law Prisoners,” is that of the steady-state prison popu-
lation at current rates. The similarity of this distribution to
the “Crimes” distribution illustrates an important (and prob-
ably overlooked) virtue of current policies that have short
average sentences and high prison turnover: These policies
allocate the bulk of scarce prison space to those in the high-
est-risk age categories.

The third and fourth curves in Figure 12, labeled “New
Prisoners (M = 20)” and “New Prisoners (M = Life),” illus-
trate the age distribution of the extra prisoners added in the
long run by a 3X policy with a mandatory minimum of 20
years and life, respectively. For both curves, coverage is
100%, and deterrence is 0%. Clearly, the long-run effect of
these policies is to add large numbers of individuals (or
equivalently, person-years) to very low-risk age categories.
Longer minimum sentences lead to more serious mis-
allocations of prison space.

Both the public debate and policy analysis of 3X have
generally ignored age effects like those we illustrate. Doing
so yields an incomplete analysis that underestimates costs and
overestimates benefits. Age effects on crime rates are strong,
and longer sentences will lead to much larger and much older
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FIGURE 12. LONG-RUN AGE DISTRIBUTIONS OF CRIME AND PUNISHMENT
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prison populations. Taken together, these facts imply that the
aging of prison populations under 3X policies will signifi-
cantly undermine the long-run effectiveness of the policies.

APPENDIX: 3X SIMULATION RESULTS

The appendix tables contain summary results for our 3X
policy experiments with the multistate life-table model.
Some of these results are also presented graphically in the
body of the paper (Figures 10 and 11). Appendix Table Al
reports results for a set of experiments in which minimum
sentence (M) and coverage (C) vary, but there are no deter-
rence effects of the 3X policy (D = 0). Appendix Table A2

reports results for experiments in which M and D vary, with
coverage fixed at 100%. We do not investigate interactions
between coverage and deterrence, primarily because we be-
lieve (as do most criminologists) that actual deterrence ef-
fects are likely to be close to 0.

Appendix Table A3 illustrates the joint consequences of
the changes in population size and age structure displayed in
Figures 10 and 11. It reports the ratio (number of prisoners
60+) / (number 60+ in steady-state baseline) for various ex-
periments. For example, with 50% coverage and 20-year man-
datory minimum sentences, the number of prisoners aged 60+
will be 2.51 times as high as under the current-rate baseline.
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APPENDIX TABLE A1. POLICY EXPERIMENTS WITH VARYING MINIMUM SENTENCE AND COVERAGE, BUT WITHOUT DE-

TERRENCE
Experimental Size of 60+
Parameters Steady-State Populations by Age Percent  Population
Aged Relative to
Miminum Sentence M c D Total Aged 50+ Aged 60+ Aged 70+ 60+ Baseline
Baseline:
Current Rates 0 0 0 50,573 4,107 1,004 175 2.0 1.00
10-Year Mandatory
Sentences 10 10 0 52,268 4,333 1,043 179 2.0 1.04
10 30 0 55,556 4,818 1,132 186 2.0 1.13
10 50 0 58,717 5,343 1,236 195 21 1.23
10 70 0 61,759 5,898 1,352 204 2.2 1.35
10 90 0 64,692 6,480 1,481 216 2.3 1.48
10 100 0 66,120 6,780 1,551 222 23 1.54
20-Year Mandatory
Sentences 20 10 0 54,238 5,131 1,271 211 2.3 1.27
20 30 0 61,116 7,139 1,867 301 3.1 1.86
20 50 0 67,459 9,102 2,525 411 37 2.51
20 70 0 73,337 11,020 3,228 535 44 3.21
20 90 0 78,801 12,895 3,961 668 5.0 3.94
20 100 0 81,394 13,816 4,335 736 5.3 4.32
30-Year Mandatory
Sentences 30 10 0 55,929 6,527 1,863 320 3.3 1.86
30 30 0 65,743 10,922 3,444 603 5.2 3.43
30 50 0 74,516 14,813 4,873 883 6.5 485
30 70 0 82,405 18,290 6,186 1,160 75 6.16
30 90 0 89,539 21,423 7,403 1,437 8.3 7.37
30 100 0 92,857 22,879 7,983 1,574 8.6 7.95
40-Year Mandatory
Sentences 40 10 0 57,193 7,789 2,853 598 5.0 2.84
40 30 0 69,257 14,432 6,168 1,348 8.9 6.14
40 50 0 79,954 20,244 9,046 1,993 1.3 9.01
40 70 0 89,485 25,359 11,560 2,552 12.9 11.51
40 90 0 98,020 29,890 13,773 3,044 14.1 13.71
40 100 0 101,957 31,962 14,781 3,268 14.5 14.72
Mandatory Life
Sentences Life 10 0 57,865 8,463 3,524 1,028 6.1 3.51
Life 30 0 71,186 16,359 8,091 2,572 " 114 8.06
Life 50 0 83,027 23,317 12,111 3,931 14.6 12.06
Life 70 0 93,604 29,478 15,669 5,132 16.7 15.60
Life 90 0 103,093 34,963 18,834 6,202 18.3 18.76
Life 100 0 107,479 37,484 20,287 6,692 18.9 20.20
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APPENDIX TABLE A2. POLICY EXPERIMENTS WITH VARYING MINIMUM SENTENCE AND DETERRENCE, AND COVERAGE

FIXED AT 100%
Experimental : Percent ?’iggu?;gg:
Parameters Steady-State Populations by Age Aged Relative to
Miminum Sentence M C D Total Aged 50+ Aged 60+ Aged 70+ 60+ Baseline
Baseline: Current Rates 0 0] 0 50,573 4,107 1,004 175 20 1.00
10-Year Mandatory
Sentences 10 100 0 66,120 6,780 1,551 222 23 1.54
10 100 10 61,464 6,054 1,386 204 23 1.38
10 100 20 57,073 5,407 1,244 190 22 1.24
10 100 30 52,965 4,839 1,122 177 21 1.12
10 100 40 49,158 4,345 1,019 166 21 1.01
10 100 50 45,675 3,924 932 157 2.0 0.93
20-Year Mandatory
Sentences 20 100 0 81,394 13,816 4,335 736 5.3 4.32
20 100 10 74,328 11,853 3,619 609 4.9 3.60
20 100 20 67,641 10,064 2,985 498 44 2.97
20 100 30 61,377 8,457 2,432 403 4.0 2.42
20 100 40 55,585 7,039 1,960 324 3.5 1.95
20 100 50 50,314 5,816 1,568 260 3.1 1.56
30-Year Mandatory
Sentences 30 100 0 92,857 22,879 7,983 1,574 8.6 7.95
30 100 10 84,119 19,603 6,727 1,304 8.0 6.70
30 100 20 75,801 16,532 5,569 1,060 7.3 5.55
30 100 30 67,970 13,688 4,514 845 6.6 4.49
30 100 40 60,698 11,100 3,571 656 5.9 3.56
30 100 50 54,063 8,797 2,747 496 5.1 2.74
40-Year Mandatory
Sentences 40 100 0 101,957 31,962 14,781 3,268 14.5 14.72
40 100 10 91,860 27,330 12,523 2,755 13.6 12.47
40 100 20 82,225 22,944 10,387 2,273 12.6 10.34
40 100 30 73,136 18,846 8,399 1,827 115 8.36
40 100 40 64,686 15,083 6,576 1,420 10.2 6.55
40 100 50 56,975 11,704 4,944 1,058 8.7 4.92
Mandatory Life
Sentences Life 100 0 107,479 37,484 20,287 6,692 189 20.20
Life 100 10 96,511 31,981 17,161 5,642 17.8 17.09
Life 100 20 86,047 26,767 14,200 4,648 16.5 14.14
Life 100 30 76,182 21,891 11,436 3,720 15.0 11.39
Life 100 40 67,014 17,412 8,898 2,869 » 13.3 8.86

Life 100 50 58,658 13,388 6,623 2,107 11.3 6.60
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APPENDIXTABLE A3. SIZE OF PRISON POPULATION AGED
60+, RELATIVE TO BASELINE POPULATION

AGED 60+
Minimum Sentence
10 20 30 40

Coverage Years Years Years Years Life
0% 1.0 1.0 1.0 1.0 1.0
10% 1.0 1.3 1.9 2.8 35
30% 1.1 1.9 34 6.1 8.1
50% 1.2 25 4.9 9.0 12.1
70% 1.4 3.2 6.2 11.5 15.6
90% 1.5 3.9 7.4 13.7 18.8
100% 1.5 4.3 8.0 14.7 20.2
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