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THE PROCESS OF DEMOGRAPHIC TRANSLATION
N. B. RYDER

University of Wisconsin

RESUMEN

“Traslacién demogrdfica” es el establecimiento de interrelaciones entre una serie cronolégica de
observaciones en seccion transversal en periodos de ttempo sucesivos y las series cronolégicas del mismo
indice, referido a cohortes sucesivas. Este documento presenta dos tipos de soluciones a este problema

y dd algunos ejemplos de cada uno.

THE NATURE OF THE PROBLEM

The question with which this paper is
concerned begins with a table of measure-
ments which are specific for age and time.
To summarize this table with respect to
changes in the measurements through
time, it is customary to compute some
index which combines the measurements
over the entire span of ages and study the
time series of such indices year by year.
But there are two ways of organizing such
a table into temporal segments: first, as
age-specific measurements for a series of
years; second, as age-specific measure-
ments for a series of birth cohorts. The
problem to be solved is the relationship
between a time series of some index for
successive periods, and the time series of
the same index for successive cohorts.
This paper presents two directions of gen-
eral solution of the problem, and some
elementary examples of each. It then at-
tempts to argue the merits of the transla-
tion process, as it is here named, for vari-
ous problems in demography.

PREVIOUS WRITING ABOUT TRANSLATION

The author first became interested in
the problem while doing graduate work at
Princeton in the late 1940’s. In his doc-
toral dissertation [1] he demonstrated
the tendency for period and cohort total
fertility rates and mean ages of fertility
to diverge in the short run and in the long
run, and located the source of these di-
vergences in the changing distribution
through time of the childbearing of suc-
cessive cohorts. His first use of specific
translation formulae [2] concerned the
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analyses of two centuries of Swedish fertil-
ity history and of recent American ex-
perience. These studies were both based
on age-specific fertility rates. Subsequent-
ly he has published two associated papers
[3, 4] on contemporary American age-
parity-specific fertility, using somewhat
more complicated formulae than before,
and applying them to truncated cohort
age spans. Most recently he has used
translation formulae at various junctures
in designing a model of demographic
transition [5] and extended the applica-
tion to other demographic variables. The
present paper undertakes to direct atten-
tion to the process of translation itself, in
the belief that others may find it useful.
It also presents the mathematical argu-
ment as far as the author has been able
to develop it.

CHARACTERISTICS OF THE BASIC TABLE

The conventional table of demographic
measurements which are age-specific and
time-specific has rows for each age of ob-
servation and columns for each time of ob-
servation. What are here called period
indices are summaries of all observations
in a particular column (e.g., their sum or
mean age). Since a cohort is identified by
a fixed difference between time of obser-
vation and age at observation, its meas-
urements are located along a diagonal in
such a table. If year of observation is ¢,
year of age is a, and year of birth is T,
then theidentity ¢ = T + a holds through-
out the table.! The following observations

1 To represent this identity more faithfully in

a geometric sense, the table might better be
constructed with columns at 60° and 120°, per-



about the basic table are pertinent to the
argument of this paper: (1) Indices for the
measurements in each cohort diagonal
may be computed and studied as a time
series which has as much formal legiti-
macy as the series for successive periods.
(2) Although the period and the cohort
indices summarize the same body of basic
data, they need not move identically. (3)
In the practical situation in which inter-
vals must be used, only two of the three
variables (¢, T, a) can be defined precisely,
and it is most common for the cohort
variable (T) to be residually identifiable
only as the approximate difference be-
tween the other two. (4) The ordinary
table will have measurements at each age
for each period. Accordingly the older
cohorts will be truncated in their younger
ages, and the younger cohorts in their
older ages.

ALGEBRAIC PRELIMINARIES

Represent the measurement for cohort
T in age z by b,(T'). Assume that the time
series of measurements in any particular
age may be represented by the nth-order
polynomial in 7. Thus b.(T) = ¢y + T
+ ¢T? + ... + ¢, T Each age z would
have its own polynomial, i.e., the co-
efficients ¢, ci, . . ., ¢, are functions of
z. The author has chosen to work with
polynomials because he is interested in
summarizing the age distribution of meas-
urements with indices of the moment
family (like the mean and the variance)
and these flow from polynomial fitting. It
is useful to note that the following state-
ment, which will be needed in the next
paragraph, may be proved by induction:

bo(T—x) = b.(T) —xb'(T)

xZ
+2—! b, (T) — ...

+ (=1 Z b (T)

where the superscript “(n)” signifies the
nth-order derivative with respect to 7.
If B(r, T) is defined as Zx7b,(T), using a
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standard definition of moments, then
@ (r, T) = Zx'b,®(T), where the par-
enthetical superscript again indicates a
time derivative. 8(r, T) is the rth (abso-
lute) moment of the age distribution of
the measurements for cohort 7. The =
sign, where not otherwise specified, indi-
cates summation over the entire age
span. The zero moment is the sum of the
measurements for a cohort over the range
of ages. Unlike moments as the term is
ordinarily used in statistics, these are
absolute rather than relative to the zero
moment. In the discussion that follows
the functional letter 8 (and later u) will
be used to refer to a cohort calculation,
and the second term within parentheses
will refer to the date of birth.

When the functional letter B (and later
M) are used, they will refer to a period
calculation, and the second term within
parentheses will refer to the date of ob-
servation, i.e., the period. It may also be
of interest to note that any set of (n 4 1)
observations may be represented exactly
by an nth-order polynomial. Such a
polynomial has no more than n non-
vanishing derivatives. If there are = ages,
there are at most x moments. If g(r, T') is
an nth-order polynomial in 7', then
B® (r, T) is an (n-k)th-order polynomial
inT

THE FIRST TYPE OF GENERAL FORMULA

In terms of its cohort components, age
by age, the rth moment of the period dis-
tribution, B(r, T), for the period cor-
responding to the time when cohort 7T is
age 0, can be expressed as Zz'b. (T — x).
Using the expansion of b,(7T — z) given in
the preceding paragraph, we have:

B(r,T) =Zxb0,(T) —Z27+10./ (T) +. . .

+(=1)= % b (T).
n!

haps employing hexagonal cells. The author
sometimes thought that the predisposition to
ignore cohort indices may derive in part from
the convention of presenting a period-by-age
configuration in a rectangle, thus veiling the
cohort vector.
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Following the expression for the kth de-
rivative of the rth moment of 38, above,
we have

B(r,T)=8(r,T)—p(r+1,T)+...

+<—1>"ni!a<n>(r+n,r)
Z(

In words, the rth moment of the period
function has been expressed as the sum of
the rth moment of the cohort function
and successively higher derivatives of suc-
cessively higher moments of the cohort
function, with alternating signs. The de-
velopment proceeds in the same way,
when the interest is in expressing the rth
moment of the cohort function in terms
of moments of the period function. The
result is:

B (r+1,T).

8(r, ) = 180040, 1.
=0 "*

DISCUSSION OF THE FORMULAE

These formulae provide one way of
expressing the relationship between a
time series of cohort indices and a time
series of period indices. Intuitive meaning
will be provided in the discussion of a
simple example, below. The treatment is
admittedly ponderous, and becomes more
so with the second type of general formula
to be discussed later. The mathematical
development might be cleaner if in-
finitesimal rather than finite calculus
were used, and if the approach to period
and cohort functions were made through
solid geometry, relating sections of a sur-
face at one angle to sections of the same
surface at another angle. Although the
general solution seems satisfactory from a
formal standpoint, it rapidly approaches
the realm of impracticality in application,
because of the well-known instability of
higher moments and higher derivatives,
especially when the basic data betray
such patterned irregularities as those pro-
duced by age misstatement and mis-
enumeration.

AN EXAMPLE OF THE FIRST (MORE
SIMPLE) TYPE OF FORMULA

Suppose the polynomial fitted to the
measurements in each age is a straight
line. Then all derivatives beyond the first
vanish, and the formula for the zero mo-
ment (for the sum of the observations in
all ages) becomes B0, T) = p(0, T) —
8’'Q, T). The period to which this
formula applies is that corresponding to
the time cohort 7 is born, i.e., year T.
Suppose we now consider the value of the
zero moment for the period when cohort
T reaches its mean age, say p;, of some
type of activity.

B(O, TH ) =B(0, T+l~¢1)

_6,(1:T+ﬂ1)
=g(0,T)+p'(0,T)
B(1,T) .,
Xt =8 (L)
= 18(0, )]+ [1 = w/(D)]
since 3(1 T)
w(T) = 5(0.7T)"

Under the assumed conditions we have
the result that the period sum, for the
period representing the time the cohort
reaches its mean age of some type of
activity, exceeds the cohort sum by a
factor which is the complement of the
annual change in the cohort’s mean age.
Let us term this factor ‘“distributional
distortion.” When the measurements con-
cerned are age-specific birth rates, this
formula is an expression of the tendency
for the period total fertility rate to exceed
the cohort total fertility rate whenever
and to the extent that the mean age of
childbearing is declining from cohort to
cohort. This is one component of explana-
tion of the baby boom.

DATING AND SIMPLIFICATION

Formulae like the one in the preceding
paragraph are advantageous not only for
reducing computations in application but
also for explication. The essence of the



relationship is expressed in familiar terms,
at the cost of some inaccuracy. It would
appear that any curve which would repre-
sent empirical reality adequately would
have to be a rather high-order poly-
nomial, implying high-order moments and
derivatives. But such calculations are
notoriously susceptible to errors in the
original measurements by age. These
problems have been avoided in my em-
pirical investigations by using linear or
sometimes quadratic fits, but bringing
them into close correspondence with
reality by fitting them to a moving
series, using each new equation to provide
a value only for the central cohort or
period of the series. Perhaps the best argu-
ment for this practice is that it works
[2, 4].

Another procedure which achieves both
simplification and approximation to real-
ity is dating. As in the preceding para-
graph, the formulae adopt a more fa-
miliar look when the period toward which
translation is occurring is located at the
mean of the cohort distribution which pro-
vides the basis for translation. Such a
choice maximizes the tendency for period
and cohort parameters to be alike. Indeed
in the example of the preceding para-
graph, period and cohort totals are al-
ways equal when this dating practice is
followed, provided there is no distribu-
tic;na,l variation through time (provided
M = 0)-

THE SECOND TYPE OF GENERAL FORMULA

The first type of general formula proved
clumsy for other than linear fitting and for
attempts to translate the mean. Because
the basic statistical measures are relative
moments, the formulae were developed
again, this time using a separate poly-
nomial fit for the total, and proportion of
that total in each separate age. As before

B(0,T) =2b.(T— ) = 2b.(T)
—sz,,'(T)+...+(—1)nz:—','

X b™(T).
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If b.(T) = B(0, T):ps(T), where p(T) is
the proportion of the total in age z, then

(1) = D3(1)(T) - pioi (7).
=0

B(0,T) = [8]-[2p— Zap'+2 "221”'"

— o (0B g [zap

x bl/

—Zatp +E e~ (— )

74 (n—1) ’”
Gl g ey
x4P,, n— P 2)
+2 - (- T

and so forth, where all functions are for
cohort T', and B is the zero absolute mo-
ment. Symbolize Zzp,(T) by u.(T), the
conventional rth moment about the
origin. Then

B(O,7) = (81 [1— w450~
+ (=1 B = () [+
+[57]

12
Mg
L wr =

Fm(”—l)

R e Y

(_ 1)7:—2’_‘"&_2)]

(n—2)!

and so forth. Accordingly,

B(o,1) = Y {EU0D

2!

=0

[E(_Z) ﬂi+j(j)(T)]}

=0

and B(r, T) is the same formula with the
order of the moment increased to (7 +

j+n.
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EXEMPLIFICATION OF THE SECOND
TYPE OF GENERAL FORMULA

Consider first the period total as a
function of the cohort total, under the as-
sumptions that B(0, T) is linear, and all
proportions are fixed. For the year when
cohort T is age 0, we have B0, T) =
B(0, T) — u(T)-B'(0, T). Using the same
dating trick as before, the total for the
year when cohort T is at its mean age u
is BO, T+ u) =80, T+ p) — (T +
w80, T+ u) = B0, T) + u(T)-8(0,
T) = (0, T). This should not be a sur-
prise. It is the same result as obtained in
paragraph 7, because the assumptions
here are a special case of the assumption
of linearity there. If, however, we assume
that the proportions p.(T) as well as
B(0, T) are linear, this becomes a special
case of the quadratic in b,(T). The as-
sumption that all p.(T) are linear means
that pi(T) and u(T) are also linear, and
that their second and higher order deriva-
tives vanish. The formula becomes

B(0,T) = [B(0,1)]-[1—p(T)]
+ [8/(0, )]+ [p' (T) — ma(D)].

Substituting (T + wm1) for T in the
above equation, and simplifying, we ob-
tain B, T+ w) =81 — m' + 6-7)
where all functions are for cohort T, ¥
stands for cohort variance, and & is [B’(0,
)]/18(0, T)], i.e., the proportional change
in the cohort total. The difference between
this and the result for the linear assump-
tion with the general formula of the first
type is 8-4’. This term, which is of the
second order of smalls, is helpful for
indicating the consequence of departure
from linearity.

DERIVATION OF TRANSLATION FORMULAE
FOR MEAN AND VARIANCE

With the formula obtained in para-
graph 9, we can translate values for the
first and second moments of the period
distribution, and thus obtain for the
period distribution the mean (M) and
the variance (V = M, — M,*). Intuition
and experimentation suggest that the

principal source of discrepancies between
period and cohort mean, and between
period and cohort variance, would be
temporal variations in the cohort total.
Therefore the author considered the case
of linear change in the zero moment, and
fixed proportions, again dating at (T +
m). B(1, T) = B(0, T)- m(T) — £'(0, T)-
u2(T). Substituting (T + w1) for T, and
simplifying, we obtain B(1, T + m) =
(B + ulﬁ')'(l-u) - (ﬁ')'(ﬂz) = Bum —
(B4 p1(B’) - (1) — (B)) - (u2) =Bur— B’ (p2—
pi?) = Bur — B'y. Using the same as-
sumptions in the preceding paragraph we
obtained B0, T + w) = B0, T). Ac-
cordingly,

My (T+ ) = m (1—aﬁ).

Thus the distortion of the period mean
from the cohort mean depends on the real-
tive annual change in the sum, weighted
by the coefficient of variation. By similar
procedures we can determine that Mq(T+
p1) = ug — 8(us — ppe). Then the variance
of the period dated at T + ui is V(T +
w) = My(T + ) — MAHT+ m) = (7)-
(1 — dazo — 8%y) where o is the standard
deviation (the square root of the variance)
and a; is a common measure of skewness
(the third moment about the mean di-
vided by the cube of the standard devia-
tion). The principal reason for providing
this last formula is to correct a published
error (1960, p. 121, n. 6). In general, these
formulae document the assertion the
writer has made at various times that the
period mean is a distorted verison of the
cohort mean, because of temporal varia-
tions in the cohort sum, just as the period
sum is a distorted version of the cohort
sum, because of temporal variations in the
cohort mean. Empirically these formulae
are not as satisfactory as the ones pro-
vided for translation of the zero moment.

USES OF THE FORMULAE IN ANALYSIS

An obvious and important question at
this point is why one should go to the
trouble of determining the relationship
between time series of period and cohort



parameters when the only situation in
which the parameters can be computed on
a cohort basis is one in which the period
parameters are themselves available. In
attempting to answer this question, the
writer’s first assertion is that transla-
tion formulae can be used to help de-
termine the level of current fertility. It
is only true in a special sense that data
are equally available from both cohort
and period viewpoints. No cohort para-
meter can be computed accurately un-
til that cohort has completed the activity
being studied, and that might be long
past the time of maximum activity.
Since a complete new period function by
age is provided each year as the records
are processed, there is an understandable
tendency to use period parameters for
analysis, even if it is well understood (and
it doesn’t seem to be yet) that they are
distorted reflections of cohort behavior.
If cohort parameters were just as con-
venient, they would probably be pre-
ferred. Now the translation formulae pro-
vide an indication of when it is plausible
to use a period time series as if it referred
to cohorts, when such an inference is un-
warranted, and what the magnitude of
distortion is.

It is also possible to use the translation
formulae to make estimates of cohort
parameters from period parameters, and
thus provide a basis for completing the
truncated experience of younger cohorts.
In two papers [3, 4] the writer showed
how to use this procedure to escape from
the analytic dilemma of recent but dis-
torted period indices, on the one hand,
and old or incomplete cohort indices, on
the other. The procedure does not give
something for nothing. The problem is
that it is difficult to complete a cohort
function in the higher ages, while taking
into account possible distributional
changes which are themselves difficult to
see when one is looking at differentially in-
complete experience. Application of the
translation formulae to period parameters
is a way of using all the information avail-
able in a manner which does not waste
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data. Furthermore, the indices used in the
formulae are less erratic from one period
to the next than are the distributional
components from one cohort to the next.

USES OF THE FORMULAE IN PROJECTION

The customary mode of projection uses
cohort or age components. As noted, as-
sumptions about temporal changes in co-
hort distributions are difficult to formu-
late on a piece-by-piece basis. Projections
of age components tend to be blind to
the implied distributional modifications
for constituent cohorts. There is little
logic to the relationship between the per-
formance of one cohort in one period and
the performance of the next cohort in the
next period. On the contrary, translation
projections can use assumptions about the
time path of the cohort mean and vari-
ance which are designed to reflect what we
may know about changing patterns of
childbearing. The proposal is that we de-
termine, by methods suggested in the pre-
ceding paragraph, the present trends in
cohort distributions, project these into
the future on the basis of assumptions
about movements of the cohort total,
mean and variance, and then employ the
translation formulae to derive directly
from these the movements of the period
parameters, as required for policy pur-
poses. This will not necessarily produce
more accurate projections, but the projec-
tions will be more self-conscious. That is
to say, the assumptions, and the reasons
for them, will be stated in terms of cohort
behavior, rather than in terms of arbi-
trary operational procedures.

THE FORMULAE AS RELATIONSHIPS

Any decent formula is not only an
assistance in statistical analysis or prac-
tical projection, but also an expression of
relationships. It is a way of distinguishing
between the more important and the less
important facets of complex reality, in
the same way as the mean and the vari-
ance are abstractions of essential features
from diverse frequency distributions. Re-
gardless of the analytic priority of co-
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horts or periods in time series analysis,
the translation formulae give both more
meaning by indicating the implications
for each of certain kinds of change in the
other. The main task of the formal demog-
rapher is essentially the transformation of
measurements from one shape into an-
other to accommodate diverse analytic or
policy purposes. In the process, there
often occurs the important by-product of
the revelation of new and interesting
topics for substantive inquiry. In the
present case, the translation formulae
demonstrate clearly the relevance of dis-
tributional change as a focus for investiga-
tion. The age patterns of cohort fertility,
inter alia, are now recognized as critical
features of short run and long run de-
mographic transition, and this recogni-
tion is at least partly attributable to the
links between period totals and the chang-
ing time distribution from cohort to co-
hort.

THE TRANSLATION MODEL (%)

Perhaps the most important employ-
ment of the formulae will prove to be in
models of demographic change [5]. Until
now there have been few models designed
to encompass more than the overt mani-
festations of population variations through
time. One reason for this is that fertility
and mortality functions by age are re-
sistant to simple mathematical formula-
tion, and arithmetical assumptions are
both unwieldy and particularistic. The
translation model of demographic change
relies on the distinction between the be-
havior of a series of cohorts through time,
and the manifestations of that behavior in
successive periods, as two modes of repre-
sentation of the same experience. These
modes are distinguished by the circum-
stance that the former considers data in
the shape most suited to the analysis of
determinants, while the latter considers
data in the shape most suited to the analy-
sis of consequences. Model-building is the
reverse of the typical demographic pos-
ture. Instead of taking a set of data and
milking them for information about the

determinant vital processes, which then
become the topic of “population studies,”
the model-builder starts with those proc-
esses, and shows what consequences flow
from them.

In this work, the translation model
seems to offer greater economy of state-
ment than is possible with schemes which
use age components of fertility, mortality,
and population, for each time period. It is
simpler, it obviates the implicit detail of
assumption of the component technique,
and its form seems more elegant. It is in
the spirit of Lotka: showing the ultimate
dependency of births, deaths and popula-
tion by age, on the underlying processes of
fertility and mortality (which, in his mod-
els, were cohort processes).

THE TRANSLATION MODEL (%)

The model begins with a radix of births
to establish the initial size of the inital
cohort. The relative sizes at age zero of
successive cohorts are a net reproductiv-
ity relationship, involving three compon-
ents: (1) the proportion of the cohort sur-
viving to the mean age of childbearing, P;
(2) the cohort gross reproduction rate, R;
(3) a translation of this net reproduction
rate, Ro = RP, which represents births
occurring over a span of years, into the
appropriate number of births in a particu-
lar year. Given assumptions about the
time series of P, R, and A (the mean age
of net reproductivity), the time series of
births year by year may be determined.?

Once the initial size of each successive
cohort is determined, it is simple to calcu-
late what may be called the population
size for each cohort—the sum of its per-
son-years of life—by assuming a time

2Tt is clear from the mathematical argument
presented above that the cohort net reproduction
rate is not appropriate. It may not be so clear
that the conventional period net reproduction
rate is likewise inappropriate. The proper sur-
vival proportions to use age by age are those for
the respective cohorts, and not those for the
synthetic cross-section derived from the mortal-
ity rates of a period. In short, the cohort survival
proportions are translated, and these are only
remotely related to the period survival propor-
tions.



path for the cohort expectation of life at
birth, E. The cohort size is the product of
its initial size, B, and E. Now the age
structure in a period is a translation of
the cohort age structure. Viewed as an
age structure, the population at any point
of time is a cross-section of cohorts
viewed as age distributions of their per-
son-years of exposure. Thus the number of
persons (or, more properly, person-years)
in a period is a translated number of co-
hort person-years. This translation de-
pends on the changing age-distribution of
cohort person-years, which is in turn a
simple function of the changing age-
distribution of cohort mortality.

THE TRANSLATION MODEL (%77)

Finally, the number of deaths to a co-
hort is equal to its initial size, B. The
number of deaths in a period is a transla-
tion of this, with the key role in the trans-
lation formula being played by the change
in the mean age at death from cohort to
cohort. Thus, in summary, the model
employs translation at three points: (1) to
develop the births from year to year; (2)
to develop the person-years (population)
series from year to year; (3) to develop
the deaths from year to year; in each case
relying on time derivatives of the mean
of the appropriate cohort age distribution.
The three series are formally interde-
pendent, as would be expected from the
link between population change and num-
bers of births and deaths. The decision to
base the model on cohort processes is
justified by argument for the analytic
priority of cohort measures [6]. It is also
justified by the simplicity of relationships
between cohort numbers and cohort
processes. The ability to achieve the chain
of consequences in the form of period
births, period deaths, and period popula-
tion sizes, is achieved, in the absence of
age distributions of fertility and mortal-
ity, by the translation formulae. Transla-
tion is a necessary accompaniment of the
employment of summary measures of
fertility distributions (like R and 4) and
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mortality distributions (like P and E).
These in turn permit flexibility of model
development and an increased generality
of assumptions, because they are simple.

It should also be noted that parameters
of the period age distribution, like its
mean and variance, can be translated from
movements of the like cohort parameters,
and that the proportions in particular age
spans, from period to period, can be ob-
tained by translating subpopulations
bounded by particular cohort (age) limits.
In conclusion of this account, the writer
proposes that the translation procedure
provides a feasible substitute for compon-
ent models, which can give important re-
sults within a flexible framework for ex-
perimentation.

TRANSLATION FORMULAE FOR
MORTALITY MEASURES

Development of translation procedures
has proven more difficult for mortality
functions than for fertility functions, be-
cause indices of the former are multiplica-
tive whereas indices of the latter are addi-
tive. Cohort and period mortality indices
are constructed from a common surface
which may be variously represented in
terms of life table functions like ,m. or
»Pz. The most used index of mortality is
the expectation of life at birth. This is a
sum, but of ,L., or, in continuous form,
the integral of I, over all ages, where the
function I, is developed by successive
multiplication by p,. Thus the translation
formulae which have been developed
above are inapplicable. It is possible to
make some headway by converting the
successive multiplication process into a
sum of logarithms, thus deriving an ex-
pression which yields log ,. Following this
line, the writer determined that (period
l;) = (cohort I;)~¢, under the assumption
that change in colog 1m, for all ages was
linear, and the period was dated at the
mean age of the function colog ym,. (To
do this the catalytic approximation for I,
in terms of m, was used.) The writer in-
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tends to do some experimenting with
formulae like this, because it seems to him
that the mortality process is a more
typically demographic function than the
fertility process. The same type of multi-
plicative procedure is encountered in
nuptiality, when it is formulated as attri-
tion of, say, the single population, as first
marriages oceur, and in parity-specific
fertility analysis [4].

THE SCOPE OF APPLICABILITY OF
THE TRANSLATION FORMULAE

It may appear to the reader that the
above paper has discussed the translation
formulae as if they were intended only
for fertility measures. Clearly this is not
the case. The attempts to make cohort-
type inferences from cross-sectional data

which are specific for some time interval
extend through a wide variety of studies
of human and other behavior. In a paper
at the Population Association meetings
last year the writer attempted to indicate
the breadth of the demographer’s ken. [7]
It appears to him that problems of trans-
lation are pertinent in any context in
which the concept of a population, in its
most general sense, can be applied. One of
the principal consolations for a person
working in the imaginary realm of formal
methodology is the circumstance that any
small headway that can be made has the
potential for application far outside the
substantive area which may have sug-
gested the inquiry. This appears to be the
case with the formulae for demographic
translation.
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