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Four models are developed to describe the odds transformation of period- and 
age-specific fertility rates as products of age, period, and cohort effects. These are 
applied to data for white U.S. women age 15-44 from 1920 to 1970, with equal 
weights given to each rate. All models which include age fit subsets of the data 
extremely well. Per effect, the incorporation of periods improves the fit much 
more than the incorporation of cohorts. It is shown that first differences are 
invariant in two-effect models, and second differences are invariant in the three- 
effect models. 

The fertility of an aggregate over time is frequently described in terms 
of an array of age- and period-specific fertility rates. Ideally, the 
numerators for these rates arise in a birth registration system and the 
denominators come from census counts or intercensal estimates of num- 
bers of women. When such sources are not available, the birth histories 
from a survey may be used, in which case the array will be missing a 
triangle of rates corresponding to the older ages at far-removed time 
periods. 

The quality of estimates obtained from these two sources is a topic of 
considerable interest. In the present paper such questions will be put 
aside, and discussion will be confined to the uses of these arrays of rates, 
taking them at face value. It should be understood, but will not be 
repeated, that the accuracy of one’s conclusions will be impaired to the 
extent that the estimates are of poor quality. 

An array of fertility rates from a socially defined, relatively homogeneous 
population contains three structural dimensions. The first is age, which 
we shall vary across rows. This dimension has been focused upon in 
discussions of natural fertility, as by Henry (1961), and in the develop- 
ment of model fertility tables by Coale and Trussell(l974). Stable popula- 
tion theory is based on the key assumption that the age-specific schedule 
of fertility (and of mortality, as well) is fixed. Second, much research 
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focuses on the time dimension, represented by the columns of the array. 
Through such summaries as the Total Fertility Rate (TFR), trends across 
time are discerned. It is probably fair to say that policy makers in nearly 
all countries are most interested in changes across time, and in how these 
may be related to family planning programs and economic indicators (see, 
for example, Butz and Ward, 1977). 

The third dimension is the birth cohort, represented by the diagonals of 
the array. Some researchers, such as Lee (1974), have placed particular 
emphasis upon the cohort identification. The importance of the concept of 
the cohort as a theoretical tool has been made clear in several contexts by 
Ryder (1965) and has been applied to fertility by Easterlin (1973) as well. 

The U.S. Department of Health, Education, and Welfare recently 
(Heuser, 1976) issued estimates of age- and period-specific rates for the 
United States for single years of age and years 1917-1973. We shall use 
the data for white women age 15-44 (at time of childbirth) to investigate 
the following questions: 

1. From a statistical point of view, what is gained by employing all 
three dimensions simultaneously, rather than just two of them‘? 

2. When all three dimensions are included, is it possible to disentangle 
their separate roles? 

THE QUANTITY TO BE MODELED 

The basic age- and period-specific fertility rate is defined to be the 
number of births in an interval of time to women in an interval of age (at 
date of childbirth), divided by the number of woman-years of exposure to 
the specified age x time interval. This rate will be termed pi,, where i 
refers to an age interval and j to a time interval. It is approximately 
interpreted as the proportion of women in age interval i during time 
interval j who give birth. By extension, it is an approximate estimate of 
the probability that a woman who is at the beginning of the age interval at 
the beginning of the time interval will have a child in the next year. The 
reasons why these rates are only estimates of proportions and of prob- 
abilities are well known (see, for example, Spiegelman, 1968, pp. 254- 
258) and will not concern us. 

In this paper, pij will be interpreted as the proportion of woman-years of 
exposure to age interval i and time interval j which result in a live birth. 
This interpretation does not involve any approximations and translates 
into an estimate of the probability that a woman-year of the specified type 
will produce a birth. 

Given this interpretation, it is natural to conceptualize an R x C table of 
rates (with R age intervals and C time intervals) as an R x C x 2 table of 
frequencies, in which the two panels refer to the dichotomous response 
variable of whether or not a woman-year of exposure resulted in a live 
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birth. In other words, the two-way table of rates pfj may be regarded as 
simply a collapsed form of a three-way table of multinomially distributed 
frequencies nijk, such that k = 1 if a woman-year of exposure produced a 
live birth and k = 2 if it did not. Specifically,p, = n,,/niJ* where ni,* = n,, 
+ nii2 is the number of woman-years in the specified age x time category. 

It is generally recognized that the proper quantity for statistical model- 
ing in such a multinomial context will be the oddsf, = nul/ni,, rather 
than the proportion. (See, for example, Goodman, 1972a; and Bishop, 
Fienberg, and Holland, 1975.) Thus, we shall work with the odds, which, 
are related to the proportion throughf, = pUl( 1 - pu), rather than with the 
age- and period-specific rate itself. Multiplicative models will be de- 
veloped for these odds. 

Because the use of the odds rather than the original rates is uncommon 
in fertility analysis, some justification is called for. We shall offer such a 
justification, which is also bound up with the use of multiplicative models 
on these odds. However, it is certainly not intended to be a proscription 
against the various alternatives. 

The only three possibilities to be considered here are (a) additive 
models for the proportion or rate pij; (b) multiplicative models for pu 
(equivalently, additive models for logpu); and (c) multiplicative models 
for the oddsfi, (equivalently, additive models for the logit, 1ogfJ. An 
example of type (a) may be found in a path analysis by McKenna (1974; 
see also Pullum, 1976). The principal arguments against an additive model 
for rates are, first, that predictions outside the interval (0,l) can easily be 
generated and, second, that unless a complex interaction term is included, 
it is unrealistically assumed that the rate is linear in each predictor, with 
no dependence upon the levels of the other predictors. 

A model of type (b) is found, for example, in Coale and Trussell’s (1974) 
model fertility patterns. These assume that the marital fertility rate for 
a given age is proportional to that of a natural fertility population, 
and also to a damping factor which reflects the use of contracep- 
tion, typically increasing with age. Osborn (1975) has applied models of 
type (b) to stillbirth rates which are classified according to mother’s 
age, pregnancy order, etc. Except for a different form of dependent 
variable, his procedures are nearly identical to those given below for 
Model 1. This type of model (b) does not generate negative predictions, 
but it can give predictions greater than one, which will be difficult to 
interpret. The impact (on the rate) of a change in one predictor does 
depend upon the levels of the other predictors, but it does not depend 
(with type (b)) upon the nearness of the rate to the endpoints of the range 
(091). 

If the rate may be clearly interpreted as an estimate of either a joint or a 
compound probability, and if it is decomposable as a product of indepen- 
dent or conditional probabilities, then a multiplicative model is clearly 



228 THOMASW.PULLUM 

called for. In our particular application, that is not the case. In the Coale 
and Trussell (1974) application, as well, the fertility rate was not viewed 
as the estimate of a probability, and the product terms in the model were 
not viewed as probabilities. The fit which was obtained was excellent, but 
there is no reason to believe that a fit under type (c) would have been any 
less good. 

Models of type (c) have been used in the context of demography by 
Brass et al. (1968) who linearly related the logit of the probability 
of dying in a fitted life table to the logit of the probability of dying in 
a standard model life table. The first advantage of a multiplicative model 
for pl( 1 - p) is that the predicted values of this ratio may be any pos- 
itive number and the predicted p will still be in the range from 0 to I. 
The most important advantage is a complete symmetry in the labeling of 
the criterion category. This advantage even applies in the context of 
fertility: is there any a priori reason why one should model the proportion 
of woman-years that produce a birth rather than the number that do not 
produce a birth? Models forp, whether additive or multiplicative, will not 
automatically bear any relationship at all to models for the complement, 
I - p. But multiplicative models forp/(l - p) will be symmetric, so that 
a relabeling of the two response categories will simply result in a recipro- 
cation of the terms in the model. 

THE MODELS 

We shall consider four of the seven possible multiplicative models for 
the odds which make use of age, period, and/or cohort effects. The three 
models to be omitted are those which assume only a single type of effect. 
Although these models will be presented in parametric form, most of the 
results will be independent of the selected parametrization. 

The models involve constraining the frequencies in the “expected” R x 
C x 2 table to match those in the “observed” R x C x 2 table in certain 
ways. These constraints are completely analogous to the familiar proce- 
dure of matching the row totals and the column totals in an expected R x 
C table with those in an observed R x C table to which the hypothesis of 
independence is being applied. For more details, see Goodman (1972b) 
and Pullum (1977). 

The first model, to be referred to as Model I (or the age x period 
model), is given as 

Fij = TiPj (1) 

for all combinations of i and j and for (unknown) parameters cq(i = 
1 . ., R)and&(i= 1,. . . , 
effects’* and “period effects,” 

C). The of’s and &‘s wih be termed “age 
respectively. F, is the expected value of 

the odds for combination (ij) and n is a scaling factor of no interest. In the 
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predicted R x C x 2 table, the following marginal frequencies will equal 
those in the “observed” R x C x 2 table: 

(la) the R x C case bases of women-years will be preserved; 
(lb) the total number of births in each year of age (across alI time 

periods) will be unchanged (equivalently, the overall age-specific 
rate for each age will be preserved); and 

(Ic) the total number of births in each year of time (across all ages) 
will be unchanged. 

These conditions may be met by an iterative scaling procedure. It may 
be shown that when applied to an R x C x 2 table, this model will have 
(R - 1) (C - 1) degrees of freedom. In Eq. (I), the RC odds will be ex- 
pressed in terms of RC - (R - 1) (C - 1) = R + C - 1 = 1 + (R - 1) + 
(C - 1) independent coefficients. One of these will be r). By arbitrarily 
assigning (Ye = 1 and p1 = 1, we may associate the other degrees of freedom 
with the estimates of the other (Y’S and p’s. 

Model 2 is given as 

Fti = r)ffiyk (2) 

forallcombinationsofi(i= 1,. . .,R),j(j= 1,. . .,C),andk(k= 1,. . ., 
R + C - l), with the subscripts related by k = j - i + R. This will be 
termed the age x cohort model; the yk’s are “cohort effects.” It is fitted 
with these constraints: 

(2a) same as (la); 
(2b) same as (lb); and 
(2~) the total number of births in each cohort (across all years and 

ages given) will be unchanged. 

This model has (R - 1) (C - 2) degrees of freedom; in the parametric 
form, we arbitrarily assign (or = 1 and yR = 1. 

The third model (Model 3 or the period x cohort model) is included 
largely for the sake of completeness. It is 

Fij = v&k 

with i, j, k as in Model 2 and with these constraints: 

(3a) same as (la); 
(3b) same as (1~); and 
(3~) same as (2~). 

(3) 

It has (R - 2) (C - 1) degrees of freedom; in the parametric form, 
& = 1 and yR = 1 will permit estimation of 7) and the other /3’s and y’s. 

The fourth model is the complete age x period x cohort model, given 
as Model 4: 

F, = r]%&k (4) 
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for i, j, and k as above and these constraints: 

(4a) same as (la): 
(4b) same as ( 1 b); 
(4~) same as (1~); and 
(4d) same as (2~). 

It has (R - 2) (C - 2) degrees of freedom. A parametric form is developed 
by assigning four values of the parameters or functions thereof. For this 
purpose we assign ffl = & = yR = 1 and any specific value of r in the 
following three equations: 

ai (r) = &V-l for all i. (5) 

pj (r) = &W’ for all j. 

yk (r) = yk*rkVR for all k. 

The set {(Y?; pf; y$} are obtained as the unique parameters subject to ~1~ = 
/%=YR=YR+l= 1. 

The reasons for going into these details on the parametric solutions will 
become evident later. 

The cohort terms in Eq. (4) may be viewed as a special variety of terms 
representing the interaction between age and period. It is well known that 
an R x C table of frequencies has (R - I) (C - 1) degrees of freedom 
remaining after the main effect, row effects, and colunn effects have been 
estimated. The same is true for an R x C table of odds: a model with 
(R - 1) (C - 1) unconstrained elements in the set [a,; i = 1, . . . , R andj 
= )...) 1 C] can always be estimated to provide an exact fit with 

Fij = qct$$i*. (6) 

The use of cohort effects yk is equivalent to the assumption that the set 
(6,) in the saturated model (6) has a simpler representation, namely, that 
the interaction effects are the same along each diagonal corresponding to 
a cohort, so that Sij = yk for all combinations of i and j and k = j - i + R. 

APPLICATION OF THE MODELS 

The present application of these models will be to population data 
rather than sample data. Consequently, testing will be inappropriate. x2 
values will be reported (the maximun likelihood definition of x2 will be 
used), but only because these may be converted into certain measures of 
association, such as phi-square, and may describe the relative quality of 
fit of the various models. Another measure of association will be the index 
of dissimilarity, A = (*%N)&k - fiiik( (, where N is the total case base. 
This may be interpreted as the minimum proportion of the N cases which 
would have to be shifted for the observed R x C x 2 table of frequencies 
to perfectly match the expected table (or vice versa). 
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The denominators of the rates we shall use do not seem to be available 
in published form. Rather than forego the analysis or attempt to estimate 
the missing denominators, we shall follow the argument that the age- and 
period-specific fertility rates are entities that should be given equal 
weight-as indeed they are in the calculation of the Total Fertility Rate 
(TFR) for a specific year of time or the Cohort Total Fertility Rate (CTFR) 
for a specific cohort. That is, from a nonsampling point of view, the 
relative numbers of women for whom the rates are calculated are unim- 
portant. We shall arbitrarily assume exactly 1000 woman-years for each 
cell. The procedures followed will not depend at all upon this decision, 
but any use whatever of the calculated x2 must take into account the size 
of the case base and the fact that it has been set arbitrarily. The choice of a 
uniform cell size will considerably simplify comparisons between models 
and between different intervals of time. For more comments on the effect 
of cell sizes on the estimates, see Pullum (1977). 

The four models will be applied to data on white women in the United 
States for single years of age 15-44 (at time of childbirth) during the 
half-century 1920-1970 (Heuser, 1976). The data are represented 
graphically in Figs. 1, 2, and 3. They will first be applied to five 1 l-year 
intervals, 1920-1930, 1930-1940, 1940-1950, 1950-1960, and 1960-1970, 
and to four intervals of 21 years each, 1920-1940, 1930-1950, 1940-1960, 
and 1950-1970. Thus, for the 1 l-year intervals, each model is applied to a 
30 x 1 I (or 330-cell) table of odds, all equally weighted, that a woman- 

FIG. I. First view of the plot of fertility rates of white U.S. women, age 15-44, from 
1920 to 1970. The rates are proportional to the heights of the intersections above the age x 
time plane. (The maximum rate is .2552 for age 23 in 1957.) Source: U.S. Department of 
Health, Education, and Welfare, 1976. 
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I 

FIG. 2. Second view of the plot of fertility rates of white U.S. women, age 15-44, from 
1920 to 1970. The rates are proportional to the heights of the intersections above the age x 
time plane. (The maximum rate is .2552 for age 23 in 1957). Source: See Fig. 1. 

year of exposure will produce a live birth. The 21-year intervals yield 
tables of size 30 x 21, with 630 cells. The bulk of the discussion will deal 
with the 11-year intervals. 

The results of applying the four models to the successive 11-year 
intervals are given in Table 1. The most important observation from this 

0 

FIG. 3. Third view of the plot of fertility rates of white U.S. women, age 15-44, from 
1920 to 1970. The rates are proportional to the heights of the intersections above the age x 
time plane. (The maximum rate is .2552 for age 23 in 1957.) Source: See Fig. I. 
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TABLE 1 
Measures of the Quality of Fit for Each Model and Each 1 I-Year Interval of Data0 

Model 

Interval of time 
df 

for x2 1920-1930 1930-1940 1940-1950 1950-l%O 1960-1970 

Age x period 290 18.9 45.7 130.7 44.5 34.4 
(1) .0016 JO22 .0042 JO30 .0021 

Age x cohort 261 22.8 30.8 217.7 34.5 58.0 
(2) .0020 .0019 .0058 .0026 .0030 

Period x cohort 280 4775.6 3990.6 5757.4 7593.0 6581.6 
(3) .0246 .0205 .0276 .0352 .0301 

Age x period 252 2.8 6.5 84.4 4.6 23.3 
x cohort (4) .0006 .0009 .0032 .0008 .0019 

0 First entry: maximum-likelihood x2 based on artificial case base of 330,000 woman-years 
for each interval. Second entry: index of dissimilarity. 

table is that in all intervals Models 1, 2, and 4 furnish remarkably good 
fits. The values of x2, calculated for an artificial case base of 330,000 
woman-years of exposure and 290, 280, and 252 u”, respectively, are so 
low that virtually any experienced researcher would believe that a compu- 
national error had been made. However, careful checking reveals no er- 
rors. All indicators of fit are in agreement. Consider, for example, the best 
fit, Model 4 for 1920-1930. When the observed odds are compared with 
the expected odds in each of the 330 cells, it is found that the relative 
deviation exceeds 2% in only 22 cells. 

The Index of Dissimilarity provides a second measure of the high 
quality of fit by Models 1, 2, and 4. For example, Model 4 describes the 
data so well that no more than .23 of 1% of the outcomes in any table 
would have to be shifted to establish perfect agreement between the 
observed and expected tables. 

If these were sample data based on specified sample sizes, it would be 
possible to use x2 to test for the significance of adding the third type of 
effect to the respective two-effect models. (See, for example, Goodman, 
1972a.) A formal test is not possible here, as was mentioned earlier. 
However, the relative sizes of the calculated x2 values will indicate the 
relative importance of the effects. In this sense, the improvement in fit 
which results from the inclusion of each of the three types of effects will 
be given, per degree of freedom, by 

2 - Xm Xi 
Me = df, - df4 . 

(7) 

Here the subscript e refers to the type of effect being measured (A for age, 
P for period, and C for cohort); the subscript m refers to the number of the 
model as described above (1, 2, or 3). Thus e = A when m = 3; e = P 
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when m = 2; and e = C when m = 1. M, is the reduction in x2. per degree 
of freedom, when Model 4 is obtained by adding effect e to Model ~1. 
More precisely, it describes the importance of the explicit addition of a 
third set of parameters to a two-effect model. 

(If the three single-effect models were calculated, then it would also be 
possible to evaluate the importance of period effects, for example, by 
comparing the age x period model, Model 1, with the age-only model, or 
by comparing the period x cohort model, Model 3. with the cohort-only 
model. The decline in x2 should be the same for both of these simpler 
comparisons, but it would differ from the comparison between the two- 
effect and three-effect models because the three-effect model is not di- 
rectly estimable; i. e., it requires iteration. It is more appropriate for 
present purposes to use the comparison with the three-effect model rather 
than this simpler comparison.) 

The calculated values of M, are given in Table 3 for each interval of 
fertility data. The appropriate comparison of these values is within col- 
umns rather than within rows. It is clear that for every interval of data, the 
age effects are by far the most important, and the cohort effects are less 
important than the period effects, per degree of freedom. 

To sum up our observations from Table 1: 
(1) Models 1, 2, and 4 all fit the data extremely well. 
(2) The period and cohort effects are not nearly as important as the 

age effects. 
(3) For some decades (1920-1930, 1940-1950, 1960-1970) the age x 

period model fits better than the age x cohort model, and for 
alternating decades the reverse is true. 

(4) As a consequence of observation (3), there is no evidence of a trend 
in the relative importance of period and cohort effects. 

(5) Per effect, cohorts are statistically much less explanatory than 
are periods. 

(6) Although all of the measures of fit for 1960-1970 are poorer than 
those for the first decade, 1920-1930, there is a good deal of 
variation from one decade to the next, suggesting that the models 
generally continue to be appropriate. 

(7) The decade 1940-1950, when the Baby Boom began, was the only 
decade in which the neasures of fit for Models 1,2, and 4 showed 
markedly worse values. 

Overlapping 21-year intervals were also employed, with results given in 
Table 2 and the lower part of Table 3. Most of the observations about 
Table 1 continue to hold; the x2 values are still remarkably small for 
Models 1, 2, and 4. 

The preceding comments refer to arrays which may be described as 
rectangles, drawn from the full rectangular data set with 30 rows repre- 
senting ages 15-44, 51 columns representing years 1920-1970, and 80 



WHITE U.S. FERTILITY 235 

TABLE 2 
Measures of the Quality of Fit for Each Model and Each 21-year Interval of Data” 

Model 

Interval of time 
df 

for x2 1920- 1940 1930-1950 1940-1960 1950-1970 

Age x period 580 148.1 330.2 411.3 93.3 
(1) .0028 .0048 .0054 .0027 

Age x cohort 551 90.2 397.8 411.6 800.2 
(2) GO026 .0053 .0057 .0088 

Period x cohort 560 13,306.8 14,952.4 20,603.5 21,130.l 
(3) .0301 .0323 .0419 .0427 

Age x period x 532 21.6 133.1 98.0 40.8 
cohort (4) ,001 I .0028 .0023 .0017 

o First entry: maximum likelihood of x2 based on an artificial case base of 630,000 cases 
for each interval. Second entry: index of dissimilarity. 

diagonals (aligned from upper left to lower right) representing the birth 
cohorts 1886-1955. We shall not consider any rectangles with a width 
greater than two decades because of the evidence of increasing interac- 
tions between age and period which cannot be described as cohort effects. 

The final application will be to the largest parallelogram which can be 
drawn from the full 30 x 51 array, comprising the 22 birth cohorts 
(1905- 1926) on which we have complete data. This parallelogram is ob- 
tained by removing the lower-left and upper-right triangles from the full 
array, and consists of 30 x 22 = 660 fertility rates or odds, with an 
artificial case base of 660 x 1,000 = 660,000 woman-years of exposure. A 
parallelogram of this sort is fully oriented toward the cohort as a dimen- 
sion for structuring the collection, representation, and analysis of time- 
series data. 

TABLE 3 
The Reduction in x2, per Degree of Freedom, When the Age x Period x Cohort Model is 

Obtained by the Addition of Age, Period, or Cohort to Models 3, 2, or I, 
Respectively 

Effect Interval of time 

1920-1930 1930-1940 1940-1950 1950-1960 I960- 1970 

Age 170.5 142.3 202.6 27 I .o 234.2 
Period 2.2 2.7 14.8 3.3 3.9 
Cohort 0.6 1.4 I.7 1.4 0.4 

1920-1940 1930-1950 1940-1960 I 950- 1970 

Age 474.5 529.3 732.3 753.2 
Period 3.6 13.9 16.5 40.0 
Cohort 2.6 4. I 6.5 1.1 

Note. Case bases are artificially fixed. 
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TABLE 4 
Measures of the Quality of Fit When the Models Are Applied to the Parallelogram of 

Complete Data on the 1905-1926 Birth Cohorts” 

Model 
4f 

for x” 

Measure of fit 

X’ A - 

Age x period 
(1) 

Age x cohort 
(2) 

Period x cohort 
(3) 

Age x period 
x cohort (4) 

580 96.1 .0023 

609 730.4 .0075 

588 15.846.8 .0325 

560 87.6 .0021 

” Based on an artificial case base of 660,000 woman-years. 

The measures of fit for the four models when applied to this array, are 
given in Table 4. Again, Models 1, 2, and 4 fit the data well, considering 
the large size of the artificial case base. However, in contrast to the 
previous applications to rectangular data, the inclusion of period effects 
appears much more useful than the inclusion of cohort effects. This is 
ascertained by comparing the three-factor model with the first two two- 
factor models. Thus, when Model 4 is obtained by adding cohort effects to 
Model 2, x2 is reduced from 96.1 to 87.6, a relative decline (which is 
independent of the artificial case base) of only 8.8%, alongside a cost of 
580-560 = 20 u’f. However, when Model 4 is obtained by adding period 
effects to Model 2, x2 declines from 730.4 to 87.6, a relative decline of 
88.0%, at a cost of 609-560 = 49~” Although we cannot attempt to assess 
levels of statistical significance, it is at least clear that the fertility of these 
22 cohorts varied much more along a period dimension than along a 
cohort dimension. There are far fewer cohorts than periods represented in 
the parallelogram, to be sure. But the measure Mc, given by Eq. (7), which 
takes the degrees of freedom into account, is only 0.4 for Table 4. That is, 
by any measure, the cohort identification adds virtually nothing to the age 
x period model for the 1905-1926 cohorts. The age x cohort model gives a 
much worse fit than the age x period model, primarily for the later births 
to the later cohorts, but also in all four corners of the parallelogram. 

INTERPRETING THE PARAMETER ESTIMATES 

Earlier researchers (see, for example, Glenn, 1976, 1977; and Palmore, 
1978) have emphasized the identification problem associated with estimat- 
ing the parameters in the age x period x cohort model. We intend to show 
here that the seriousness of this problem is not so great as to preclude all 
uses of the estimates. The invariance properties to be described in this 
section were alluded to in Pullum (1977) and were developed in detail 
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(independently) by Fienberg and Mason (1978). Our purpose here is to 
restate these properties for the present context. 

In the three-effect model, unique estimates may be obtained using 
iterative scaling if arbitrary values are assigned to four coefficients: one 
age effect, one period effect, one cohort effect, and one other effect from 
any of the three sets. In computational work, we have arbitrarily assigned 
a1 = p1 = yR = yR+l = 1 for this purpose. 

The estimates of all other parameters in all of the models will depend 
upon the choice of the constraints. However, in the two-effect models (1, 
2, and 3), which only require two constraints, it is easily shown that ratios 
of the form aidcrf, pj,Ipj and ykJyk do not depend at all upon the form of 
the constraints. Thus, in these models, the change from year to year, age 
to age, and cohort to cohort is invariant with respect to the form of the 
constraints. For example, working with the logarithms of the effects and 
adjacent values, in the two-way models theJirst differences are invariant: 

Aai E log ai+l - log ai, for i= l,..., R- 1, 
A/$ = log A+1 - log p,, forj=l,..., C-l, 

and Ayk = log ‘yk+l - log yk, for k=l,... R+C-2, 

do not depend at all upon how the constraints are made. 
In other contexts, analysts are content to work with first differences or 

equivalent sorts of deviations. For example, in many-way analysis of 
variance or multiple classification analysis, the estimated main effects are 
expressed as deviations from an overall mean. In multiple regressions in 
which the C categories of a classificatory variable are represented by a set 
of C- 1 binary or dummy variables, the estimated regression coefficients 
are well known to be simply deviations between pairs of effects which 
cannot themselves be estimated. In short, a limitation to differences and 
deviations is common with other procedures and has not prevented useful 
interpretations. 

With the three-effect model, the first differences no longer satisfy the 
condition above, but Theorem 1 in the Appendix shows that the second 
differences are invariant: 

A2~i G Aoi+l - Aai = log (~++2 - 21Og (Yi+* + log (Yip 

A24 = APj+l - 4% = log I$+2 - 2log Pj+l + log PJ, 

and A2Yk = AYk+l - AYk = log yk+2 - 21% Yk+l + log Yk, 

for i=l,..., R-2, 
forj=l,..., C-2, 
for k=l,..., R+C-3, 

do not depend on the form of the constraints. 
Analysts are only rarely limited to second differences or their equiva- 

lent, and may well feel uncomfortable with them. Nevertheless, second 
differences are interpretable. Goldberg (1958), for example, provides 
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examples and discussion of differences of various orders, and relates 
them to corresponding derivatives of continuous functions. 

Our own discussion will employ a variant of the usual form (given 
above) for second differences. Above, i\“pj was given as the change in 
period effects from yearj+l to yearj+2 less the change from yearj to 
year j-t 1. Thus, A”pj > 0 implies acceleration in the period function 
(concave upward) and AZ& < 0 implies deceleration (concave downward). 
The (first) difference between two adjacent period effects is compared 
with the immediately preceding difference. 

We believe that it is easier to interpret the following alternative: the 
differences between two adjacent period (or other) effects as compared 
with the average annual change across a long interval such as a decade. 
This is also a second difference, and by Theorems 1 and 2 in the Appendix 
may be shown to be invariant across alternative parametrizations. We 
shall call such a quantity a relative difference, and define 

io+l-1 

D(q) = Acri - (l/t) c Aa, 
m=iO 

= Aai - [log(a,,+J - log(ai,)]lt for i, 5 i I i, + t - 1 

and similarly 

Wp,) = 43, - [log(Pjo+J - bs(&,)1~~ for& % 5 j. +I - 1 
D(yk) = Ayk - [log(y,,+J = log(@llt for k, 5 k 5 k, + t - 1. 

Here t refers to a unit of age or time, as appropriate. Note that 

i()+t-I jo+t-1 tc()+t-1 

1 ma,) = c &%n) = 1 my7J = 0. 

m=io m=50 m=kg 

Thus, for example, D(pj) > 0 implies that the change from yearj to the 
yearj + I was more positive than the average annual change across the 
interval j, to j, + t. The largest value of D(&) in the t-year range will 
indicate that the most positive change occurred from year j to year j + I. 
The smallest value of D(pj) in the t-year range will indicate that the 
smallest positive change (or most negative change) occurred from yearj to 
year j + 1, and so on. Analogous statements apply to the values of the 
D(yk) differences within a t-year range of cohorts. 

Despite this invariance property of the second differences in the age x 
period x cohort model, there need not be a direct correspondence across 
different data sets. For example, if Model 4 is applied to the arrays of 
rates for 1920-1940, 1930-1940, and 1930-1950, and the second differ- 
ences of period effects are calculated, then one has three different sets of 
estimates for the years 1930-1940. These three sets will agree if and only 
if Model 4 gives a perfect fit for the entire combined array of data for 
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1920-1950. As we have seen, the age x period x cohort model does 
provide an excellent fit across this range, but it is not perfect; there is 
some interaction between ages and periods which cannot be expressed in 
terms of cohorts. 

Similarly, for example, the 1900-1910 birth cohorts are represented in 
the arrays for 1920-1930 (when they were included in ages 15-30), for 
1930-1940 (in ages 20-40), and for 1940-1950 (in ages 30-44). The three 
sets of estimates of second differences in effects for the 1900-1910 
cohorts will not agree because, again, Model 4 does not give a perfect fit 
for the entire 1920-1950 array. 

Because the model does fit quite well for the U.S. data, different 
estimates of the relative differences for specific periods, D(&), are gener- 
ally strongly positively correlated, regardless of the arrays from which 
they were estimated. They are also strongly correlated with fluctuations in 
the TFR for the specific periods (or in TFR/(30-TFR), the marginal odds to 
which the fitting was done). These fluctuations in the TFR give an approx- 
imation of any estimates of fluctuations in the period effects, at least in 
terms of direction and relative magnitude. Similarly for the adjusted 
second differences across specific cohorts, D(yk); different estimates are 
correlated with one another and with the diagonal sums of the arrays 
(partial cohort fertility totals) and the corresponding marginal odds. 

Because of this variability, and because the selection of arrays to begin 
and end on multiples of ten years is essentially arbitrary, we shall not 
present any estimates here. The purpose of this section has been simply to 
show that any parametrization of Model 4 for a given array of data will 
lead to a unique set of second differences in the age, period, and cohort 
effects, and to describe their interpretation. 

THE USE OF COHORT EFFECTS TO IMPROVE PROJECTIONS 

The cohort effects provide a continuity across time which may be useful 
in improving the quality of short-term projections of fertility rates for 
those cohorts represented in the earlier observations. We shall briefly 
indicate the nature of such a refinement in the following context: 11 years 
of observed rates (10 year-to-year changes) are to be used to project 5 
years ahead, extrapolating across the last 6 years (5 year-to-year changes) 
of observations. It would be possible, of course, to use a longer or shorter 
period of observation, to have a different base for the extrapolation, to 
assume nonlinear trends, etc. We simply wish to indicate how Model 4 
may be employed as a refinement of Model 1. 

Note that the actual projection, in all cases, will be of the odds rather 
than the rates. 

From Eq. (1) for Model 1, we have 

Fi,j+I = F&+I /PJ 

Let rj be defined to be the ratio &+IIp,. Proceeding as in Theorem 1 of 
the Appendix, it may be shown that the ratio T+ is invariant across all 
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parametrizations of Model 1. However, it cannot be estimated for values 
ofj beyond the last year of observation, except by some form of extrapo- 
lation. For example, one could calculate the geometric mean of the last 
five values of rj during the period of observation, defined to be 7, and let ij 
= 7 for the following 5 years. That is, 

F?,C+t = .fidr)‘t i = I ,..., R; t = l,..., 5 

would be the projected odds for age i and year C + t extrapolating from 
the final year (C) of observed rates, fit. The age-specific rate for year j 
would be F&l + F,). 

How might the improved fit of Model 4 over Model 1 be incorporated 
into such a projection? From Eq. (4) for Model 4, we have 

Fi,j+l = F,(P,+,lp,)(~k+lI~k). 

The product of the two ratios on the right hand side is invariant across 
parametrizations, as shown in the Appendix. This product may be ex- 
trapolated by separate extrapolations of the /3’s and y’s under any 
parametrization. However, consider only the continuation of cohorts for 
which we have been able to estimate the effects during a period of 
observation; then, as above, only the /3’s require extrapolation. As be- 
fore, let F be the geometric mean of the last five values of rj = flj+llPj 
(estimated with Model 4) and let ij = F for years j beyond the period of 
observation. Then 

Fi’Tc+, = ficCr)“(rc+t-~+R)/(Yc-~+R), 

i = t + l)...) R; t = I)...) 5 

would be the projection based on Model 4 which corresponded to Fir,c+t 
based on Model 1. 

Projections employing cohort effects will be superior to those not 
employing them, in the same sense that calculations with a calculator are 
superior to those with a slide rule: they make more thorough use of the 
data. However, there is little reason to expect that the refined projections 
will be any closer to actual subsequent fertility. 

As an exercise to evaluate the refinement, each of the ll-year 
applications-1920-1930, 1930-1940, 1940-1950, 1950-1960, and 1960- 
1970-was projected to the following 5 years (excluding 1974 and 1975), 
for a total of 23 pairs of projections. Comparisons between the projections 
and with observations were limited to cohorts which were included during 
the years of observations. Comparisons were based on partial total fertil- 
ity rates for the projected years. Generally, the two projections were 
within 1% of each other. For 11 out of the 23 pairs the refined projection 
was closer. If the comparison was further limited to cohorts which ap- 
peared in the whole decade of observation, the refined projection was 
closer in 18 out of the 23 pairs. The simpler projection was an average of 
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8.8% away from the observed partial total fertility rate (ignoring signs) 
and the refinement was off by an average of 8.0%. 

Although certainly not conclusive, this exercise suggests that more 
elaborate projection procedures may also be improved marginally (and at 
trivial cost) by incorporating effects for those cohorts which have been 
observed for several years. 

CONCLUSION 

We have offered two types of answers to the underlying, motivating 
question, “Did cohort effects apply to white U.S. fertility during the 
half-century 1920-1970?” By comparing age x period, age x cohort, and 
age x period x cohort multiplicative models on the odds, it was inferred 
that the cohort identification was less important than the period identifica- 
tion. Considering rectangles of data corresponding to decades of time, 
there is no evidence of a long-term trend, such as any increase or decrease 
in the relative importance of the cohort identification. Within a parallelo- 
gram corresponding to the complete histories of the 1905-1926 cohorts, the 
identification of the cohorts added virtually nothing to our ability to 
replicate the specific rates. The probable explanation of the nore extreme 
conclusions from the parallelogram than from the rectangles is the disrup- 
tion in cohort continuities stemming from the postwar baby boom. 

We also referred to specific parametrizations of these models, and 
described interpretations of the parameters. In particular, each two-effect 
model has invariant first differences in log effects, and the three-effect 
model has invariant second differences in log effects. Projection models 
may be improved slightly by the use of cohort parameters. 

Despite the great theoretical appeal of the notion that continuities exist 
in the behavior of cohorts, we have found that the explanatory gain per 
cohort parameter is far less than the gain per period parameter. This 
statement applies approximately equally well to both the 1920s and the 
1960s. The implications for our understanding of U.S. fertility are that, as 
a set, changes in those temporal variables which cut across cohorts, such 
as economic cycles, appear to be more important than changes in those 
variables which distinguish cohorts, such as shared socializing experi- 
ences. In extending these conclusions, it would be useful to apply these 
models to order-specific fertility rates. 

COMMENT ON DATA PROCESSING 

All calculations were performed by a Fortran program written by the 
author, but may be replicated with more general programs for log-linear 
models. ECTA was used to verify the low values of x2. 

The so-called parallelogram of data on the 1905-1926 cohorts was 
processed by conforming it to a rectangular shape, in which the rows 
represent age, the columns represent cohorts, and the diagonals aligned 
from lower left to upper right represent periods. 
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APPENDIX 

THEOREM 1. Ler the expectations Fij, 

Fij = q@jykt for all i andj, k =j - i + R, 

be any parametric jit to the data. Then 

%+1%-l 

(a) &.2 ’ 
for all i, 

1 

for all j, 

and 

Yk+lYk-1 

(4 yk2 ’ for all k, 

will be invariant with respect to any alternative parametrizations of the 
model. 

Proof. The model implies the following, for all i, j, and k: 

a = Fi--1,,--I = 7)%-1&--1Ykr 

b = Fi-1.j = r)%-d?jYk+l, 

C = Fi,j-1 = r)@&IYk-l, 

d = Fij = r)aipjyk, 

e = Fi,j+l = q%@j+lYk+l, 

f = Fi+l,j = qffi+@jYk-1. 

The letters a, b, c, d, e, andfare used to simplify the notation. These odds 
correspond to six cells in a 3 x 3 subtable of the table of expected odds, as 
follows: 

j-l j j+l 

i-l a b 

i 

lza 

C d e 

i+l f 

Now, the ratio 

af N+lai-1 
-= for all i. 
cd (Yj2 
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Since the left hand side will be the same for all parametrizations, the right 
hand side is invariant. Similarly, 

ae Pj+dL -= 
bd P5 

for all j 

and 

ad YkflYk-t 
-= for all k. 
bc Yk2 

THEOREM 2. Functions of the parameters of the form (ai,+J(aiz)l 
(ai,)(aiz+J will be invariant across parametrizations for all choices of 
subscripts iI, iz, and h such that iI, iI + h, iz, and i, + h are in the range 
l,... 8. Similarly, for 

and 

Proof. By applications of Theorem 1; products of invariant functions of 
the parameters will also be invariant. 
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