Age Structure, Growth, Attrition, and Accession: A New Synthesis Samuel H. Preston; Ansley J. Coale Population Index, Vol. 48, No. 2 (Summer, 1982), 217-259. Stable URL: http://links.jstor.org/sici?sici=0032-4701%28198222%2948%3A2%3C217%3AASGAAA%3E2.0.CO%3B2-W Population Index is currently published by Office of Population Research. Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/about/terms.html. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/journals/opr.html. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is an independent not-for-profit organization dedicated to creating and preserving a digital archive of scholarly journals. For more information regarding JSTOR, please contact support@jstor.org. # AGE STRUCTURE, GROWTH, ATTRITION, AND ACCESSION: A NEW SYNTHESIS Samuel H. Preston Population Studies Center University of Pennsylvania Ansley J. Coale Office of Population Research Princeton University This paper shows that each of the equations describing relationships among demographic parameters in a stable population is a special case of a similar and equally simple equation that applies to any closed population. An equation almost as simple applies to any population defined in most general terms as a collectivity classified by an index analogous to age. The paper then demonstrates some implications of these new equations for demographic theory and practice. Our work on this subject has precursors in the efforts of Von Foerster (1959), Trucco (1965), Langhaar (1972), Hoppensteadt (1975), and Bennett and Horiuchi (1981). In particular, these works recognize that there is a necessary relationship in a closed population between a population's age distribution at time \underline{t} , its age-specific force of mortality function at time \underline{t} , and its set of age-specific growth rates at time \underline{t} . From this recognition, we take the short step required to rewrite the mathematics applying to stable populations in a more general form. The extension to more general conditions of the relations found in stationary and stable populations can be understood by considering the expression for the relative rate of change of the number of persons at each age as age advances. If the number of persons in a population is assumed to be a continuous function of age, then the relative change in number as age increases is $$\frac{1}{N(a)} \frac{dN(a)}{da}$$, or $\frac{d \log N(a)}{da}$ Here N(a) refers to N(a,t), the number of persons aged a at time t; we have Our work on this subject grew out of a collaborative project with Neil Bennett and Shiro Horiuchi, and their contribution to the present paper has been very considerable. The paper has benefited from comments by Brian Arthur, Doug Ewbank, Griffith Feeney, Gary Pickens, Toni Richards, and Allen Schirm. We are also grateful to Charles Mode and Graham Lord for pointing out earlier references to related material, and to Ozer Babakol for his skilled and accurate programming. This research was supported by National Institute of Health grants HD 10379 to the University of Pennsylvania, and HD 11720 to Princeton University. omitted the \underline{t} identifier for convenience. A <u>stationary</u> population is a population with the same number of births every year and an unchanging schedule of mortality rates. In a stationary population, the number of persons at each age does not change with time. In such a population $$\frac{1}{N(a)} \frac{dN(a)}{da} = -\mu(a)$$ where $\mu(a)$ is the age-specific mortality rate (or force of mortality) at exact age \underline{a} . A <u>stable</u> population is a population in which the number of births changes with time at a constant rate \underline{r} , and the mortality schedule is the same from year to year. The number of persons at each individual age also changes with time at the rate \underline{r} . As a result, each successively younger cohort is larger (or smaller if \underline{r} is negative) at every age than its older predecessor by a constant multiple. If we imagine a growing stable population in which there is no mortality, the relative number at age \underline{a} would diminish at a rate \underline{r} , or $$\frac{1}{N(a)} \frac{dN(a)}{da} = -r .$$ Since the stable population is in general subject to a fixed mortality schedule $\mu(a)$, the relative number changes with age as the result of the independent effects of mortality at age \underline{a} and the relative difference in size of adjacent cohorts r, or $$\frac{1}{N(a)} \frac{dN(a)}{da} = -\mu(a) - r \tag{1}$$ as can be verified by differentiating the well-known expression for the age distribution of a stable population $(N(a) = Be^{-ra}p(a))$. The extension to less restricted conditions in which mortality and fertility change with time is simple. In any closed population, the relative number at age \underline{a} changes as age advances because of mortality; it also changes as a large or small cohort advances in age, replacing one different in size. To make equation (1) applicable to any closed population at any moment in time, one can express the rate of increase in the number at age \underline{a} as a function of age. Thus, at any moment $$\frac{1}{N(a)} \frac{dN(a)}{da} = -\mu(a) - r(a)$$ (2) when r(a) is defined as $$\begin{array}{ccc} \lim & \frac{N(a, t + \Delta t) - N(a, t)}{N(a, t) \Delta t} \end{array}$$ The validity of equation (2) can be justified intuitively by noting that the number at a slightly greater age than \underline{a} at time \underline{t} , or N(a + Δ a, t), equals the number at age \underline{a} at a slightly earlier time, or N(a, t- Δ t), less the number of deaths the cohort has experienced in this short period (note that Δ t is necessarily equal to Δa). The number of deaths is N(a,t) $\mu(a,t)$ Δt , if the effect of the difference in cohort size on the number of deaths is ignored, as it may be as $\Delta t (= \Delta a)$ approaches zero. Hence $$\frac{N(a + \Delta a, t) - N(a, t)}{N(a, t)\Delta a} = \frac{N(a, t - \Delta t) - N(a, t)}{N(a, t)\Delta t} - \frac{\mu(a, t)\Delta t}{\Delta a} ;$$ the limit of this expression as Δa (= Δt) approaches zero is equation (2). More simply, equation (2) expresses the relative change in numbers with age as the sum of two independent terms, the change that would occur as the result of mortality alone, and the change that would occur as the number at age a changed with time, in the absence of mortality. Since (2) can be written as $\frac{d \log N(a)}{da} = -\mu(a) - r(a)$, it follows by integration that $$\begin{array}{c} a \\ -\int r(x)dx \\ N(a) = Be^{O} p(a). \end{array} (3)$$ Equation (3) is the basis of much of the rest of this paper. So that the elements of this equation are as clearly understood as possible, let us reiterate that - N(a) = number of persons age <u>a</u> at time <u>t</u>, i.e., height of the N(a,t)surface at some point a at some time t. - p(a) = probability of surviving from age 0 to age \underline{a} according to the $-\int\limits_{-\int}^{\overline{a}}\mu(x)dx$ life table prevailing at time \underline{t} , or p(a) = e^{0} where $\mu(x)$ is the mortality function at time t. r(x) = annual growth rate of persons aged x evaluated at time t. Unless otherwise noted, all functions in this paper pertain to some particular time t; all relations among functions pertain at each and every time t. It seems likely that equation (3) has been derived many times in many different contexts. But its implications for demographic analysis do not appear to have been fully developed. Part of the neglect may result from the belief that the r(x) series is theoretically uninteresting, since it is clearly a function of past patterns of mortality and fertility. But to a demographer, the r(x) series is a very widely observed datum, calculable whenever a country has taken two censuses not too widely separated. With that datum, many relations among other demographic parameters can be clarified. We will now show how it leads to a simple generalization of the equations characteristic of a stable population. The birth rate of the population is $$b = \frac{B}{\sum_{0}^{\infty} N(a)da} = \frac{B}{\sum_{0}^{\alpha} r(x)dx} = \frac{1}{\sum_{0}^{\alpha} r(x)dx}$$ $$\int_{0}^{\infty} Be^{0} p(a)da = \int_{0}^{\infty} e^{0} p(a)da$$ (4) The proportion of the population that is age \underline{a} is $$c(a) = \frac{N(a)}{\int_{0}^{\infty} N(a)da} = \frac{\int_{0}^{a} r(x)dx}{\int_{0}^{a} P(a)dx}, \text{ or } \int_{0}^{a} Be^{0} p(a)da$$ $$c(a) = be^{0} p(a) .$$ (5) Finally, the birth rate can also be represented as $b = \int_{\alpha}^{\beta} c(a)m(a)da$, where m(a) is the rate of bearing female children for women aged $\frac{a}{a}$ and α and β are the lower and upper ages of childbearing. Substituting (5) into this last equation, we have $$b = \int_{\alpha}^{\beta} be^{\circ} p(a)m(a)da, \text{ or } a$$ $$1 = \int_{\alpha}^{a} e^{-\int_{\alpha}^{\alpha} r(x)dx}$$ $$p(a)m(a)da .$$ (6) If age-specific growth rates are constant with age at a value of \underline{r} , equations (4), (5), and (6) become $$b = \frac{1}{\int\limits_{0}^{\infty} e^{-ra} p(a) da}$$ (4') $$c(a) = be^{-ra} p(a)$$ (5') $$1 = \int_{\alpha}^{\beta} e^{-ra} p(a)m(a)da . \qquad (6')$$ Equations 4', 5', and 6' are readily seen to be the classic equations characterizing stable populations (Lotka,
1939; Coale, 1972). Thus, the stable equations are a special case of a more general set of equations 4 - 6; the stable equations pertain whenever age-specific growth rates are constant. Equations 4 - 6 characterize every closed population at every moment in time. The existence of a set of such simple and general relations, in view of the large volume of work on stable population theory, is surprising. The development so far has assumed the population to be closed to migration. However, the formulation can be immediately generalized to an open population with an age-specific force of net out-migration function of e(x). It is only necessary to recognize that the force of migration function acts on the growth process in a fashion exactly analogous to the action of mortality. The age distribution does not recognize whether people are leaving the population by death or by out-migrating, and net in-migration will simply offset (sometimes more than completely) the impact of mortality. As shown in the Appendix, $$\begin{array}{ccc} & & & & & a \\ & -\int & r(x)dx & -\int & e(x)dx \\ N(a) & = & N(o)e & & e & & p(a) \end{array} \tag{7}$$ The three basic equations 4-6 can now be derived as from (3) above, simply by adding e(x) to r(x). With this correction for migration, any open population can be analytically converted into a closed one. In fact, nothing limits us to recognizing only one form of "migration" or even one form of mortality. Any form of attrition or accession can be introduced into (7) simply by recognizing that it must act analogously to migration or mortality from all combined causes. Equation (7) is the basis of a surprisingly general set of relations. In particular, one can see that the age composition of any population at any moment (assuming only that age composition and its change through time are continuous) is completely determined by the rate of increase in the number at each age at the given moment, together with the rate of attrition (including negative attrition) at each age from each of a number of independently operating factors. To be more specific, if the rate of increase, r(x), is known for each age x from zero to the highest age attained, and if the values of ${f i}$ different attrition factors, $\mu_i(x)$, are also known, the age composition is completely determined and can readily be calculated; conversely, if the age distribution and all but one of the attrition factors are known, the rate of attrition for the omitted factor can readily be calculated. This set of relations is known in demography, for particular instances, and the basic equation in differential form is familiar in mathematical biology and actuarial work, but the full (though simple) generalization seems to have escaped attention. The basic equation is as follows: where N(a,t) is the population density at age \underline{a} , time \underline{t} ; r(x,t) is the instantaneous rate of growth of the population at age \underline{x} , time \underline{t} ; and $\mu_i(x,t)$ is the rate of attrition from the operation of the i^{th} among the several factors that diminish (or increase; the attrition can be negative) the number of members of the population at age \underline{x} . Because all of the variables are defined at the same moment (t), the time variable can be suppressed, and the equation expressed as: Note how wide is the universe to which the equations apply. To be consistent with these equations, members of a collectivity must have a defined duration of existence in a given state, a defined duration analogous to age. Conventional chronological age of humans is duration of life since birth, but duration of marriage, duration of residence, duration of existence in the single state, and duration of stay in a hospital are other examples from human experience. The attrition factors — mortality, or mortality from each of several independent causes, out—migration (or immigration, which is negative out—migration), divorce (attrition from the married state), or marriage (attrition from the single state or negative attrition into the married state) — cause a specified proportionate rate of decline (or increase) in numbers at each age for a defined collectivity. For the relation to hold, the distribution of numbers and the force of each attrition factor must be continuous functions of age. Although r(x) is formally defined as $\frac{\partial N(a,t)}{N(a,t)\partial t}$, it can be viewed and manipulated as a function of age, and not of time at a given moment. analog is the speed of an automobile, which is properly defined as the time derivative of the automobile's position, but can also be viewed as a characteristic of the vehicle at a given moment, indicated by the speedometer reading. A speed of 60 miles per hour has no implication that the car will cover 60 miles in an hour nor that it has covered 60 miles in the past hour. The speedometer is usually a voltmeter showing the voltage produced by a generator mounted on the driveshaft, a generator producing a voltage (ideally) proportional to the rate of rotation of the shaft. One can imagine a "speedometer" that reads r(x) at each moment in a given population. fact, if the attrition factors and the age distribution in equation (8) are known, r(x) can be calculated without any record of the change in number at the same age from one moment to the next. Note further that any of the age functions in equation (8) -- r(x), $\mu_i(x)$, or N(a) -- can be calculated from a full listing of all of the others. In equation (8) r(x) is formally analogous to any one of the i attrition factors. Mathematically, it could be included as the $(i+1)^{th}$ form of attrition: a population subject to no external attrition factors decreases with age to a degree that is proportional to the rate of increase at each age. However, the rate of increase is distinctive in that it is a built-in form of attrition, the result of differences in cohort size that in turn arise from the past history of the population -- from past rates of entry and attrition -- whereas the other sources of "attrition" are exogenous. Any population can be thought of as a stationary population subject to multiple "decrements", one of which is growth. As in the conventional multiple decrement situation, it is possible to ask what the population structure would be like if one of the decrements were not operating. If the eliminated "decrement" is growth, we are left with the stationary population produced by the activity of the exogenous decrements , $\mu_i(x)$. If mortality is the only remaining source of decrement, the stationary population is the conventional stationary population of life table literature. In other words, to convert the age distribution at time \underline{t} into the age distribution of a hypothetical stationary population subject to current forces of attrition and a radix of today's births, it is only necessary to multiply the current number of persons aged \underline{a} by $\exp\{\int\limits_0^x r(x,t) \, dx\}$. This conversion factor appears in virtually every formula in this paper because it transforms any population into its corresponding stationary population, from which many demographic functions can be derived. #### The Age Distribution of Births and Deaths The frequency distribution of mothers' ages at childbearing at time \underline{t} is $$v(a) = \frac{N(a)m(a)}{\int\limits_{\alpha}^{\beta} N(a)m(a)da} = \frac{\int\limits_{\beta}^{a} r(x)dx}{\int\limits_{\alpha}^{\beta} r(x)}, \text{ or }$$ $$\int\limits_{\alpha}^{\beta} \int\limits_{\beta}^{\beta} r(x)dx$$ $$\int\limits_{\alpha}^{\beta} \int\limits_{\beta}^{\beta} r(x)dx$$ $$\int\limits_{\alpha}^{\beta} \int\limits_{\beta}^{\beta} r(x)dx$$ $$v(a) = e^{\int\limits_{\beta}^{\alpha} r(x)dx}$$ $$v(a) = e^{\int\limits_{\beta}^{\alpha} r(x)dx}$$ $$v(a) = e^{\int\limits_{\beta}^{\alpha} r(x)dx}$$ It is because the term on the right-hand side of this expression is the frequency distribution of mothers' age at childbearing that it must sum to unity, as in equation (6). An intuitive understanding of this formula may derive from the following considerations. Rewriting the above equation as $$\int_{0}^{a} r(x)dx$$ $$v(a)e^{0} = p(a)m(a),$$ we observe that the right-hand side is the expected number of births at age \underline{a} per newborn child subject for all her life to today's p(a) and m(a) schedules. The left-hand side consists of two components: B(a)/B, or births occurring today at age \underline{a} per newborn child; and exp $\left\{ \int\limits_{0}^{a} r(x) dx \right\}$, which expresses the factor by which births at age \underline{a} would grow over the next \underline{a} years, under current fertility and mortality rates, as persons now aged \underline{a} are replaced by the larger (or smaller) cohort just now being born. Thus, both sides of the equation are exact representations of the expected number of births \underline{a} years hence per woman in the cohort just now being born, if she is subject to current p(a) and m(a) schedules. We may now integrate both sides of this equation to derive a new expression for the net reproduction rate: $$NRR = \int_{\alpha}^{\beta} p(a)m(a)da = \int_{\alpha}^{\beta} v(a)e^{-\alpha} da . \qquad (9)$$ This expression says that the net reproduction rate in any closed population can be estimated exactly from information on the distribution of mothers' ages at childbirth and from age-specific growth rates. The corresponding relation in a stable population seems to have escaped comment, probably because the normal analytic problem is to estimate \mathbf{r}_{I} from $\mathbf{p}(\mathbf{a})\mathbf{m}(\mathbf{a})$ and not the reverse. But if $\mathbf{r}(\mathbf{x})$ is observed and $\mathbf{v}(\mathbf{x})$ is known or can be approximated, the net reproduction rate can be estimated from the set of growth rates, rather than customary estimation of the intrinsic rate of increase from the net
reproduction rate. The frequency distribution of ages at death in a closed population likewise bears a simple relationship to the corresponding frequency in the underlying life table that is generating the data. As Bennett and Horiuchi (1981) have shown, the number of deaths at age \underline{a} (time \underline{t}) is $$D(a) = N(a)\mu(a) = N(0)e^{O} p(a)\mu(a), or$$ d(a) = deaths at age \underline{a} in the life table prevailing at time \underline{t} (with radix of one). So the frequency distribution of ages at death is $$\frac{D(a)}{\int_{0}^{\infty} D(a)da} = \frac{\int_{0}^{a} r(x)dx}{\int_{0}^{a} d(a)e^{0}}$$ Normally, the analytic problem will be to infer life table deaths from the observed age distribution of deaths. For this purpose, one would use $$\frac{d(a)}{\infty} = d(a) = \frac{D(a)e^{0}}{a r(x)dx}$$ $$\int_{0}^{a} d(a)da$$ $$\int_{0}^{\infty} D(a)e^{0} da$$ From the life table death function, d(a), all other mortality functions of interest can be reconstructed. # Population at Age a Determined by Accessions and Departures at Ages from Zero to a, or from a to $\boldsymbol{\omega}$ This section shows how the number of persons at a particular age is related to the contemporaneous accessions and exits occurring below that age, as well as to accessions and exits above that age. Denote accessions at age x as A(x), the number of exits as E(x), the rate of accession A(x)/N(x) as $\mu^{+}(x)$, and the rate of exit as $\mu^{-}(x)$. The rate of increase at \underline{x} is r(x). If we imagine a hypothetical cohort of N'(o) original members subject to μ^- (x) and $\mu^{+}(x),$ then the number at age $\underline{a},\;N^{\prime}\left(a\right),$ would be a $$\int_{0}^{a} (\mu^{+}(x) - \mu^{-}(x)) dx$$. N'(o)e $\int_{0}^{0} (\mu^{+}(x) - \mu^{-}(x)) dx$ A'(x) would equal N'(x) $\mu^+(x)$, and D'(x) would equal N'(x) $\mu^-(x)$. In the actual population (assuming N'(o) = N(o)), N(x) = N'(x)e $\stackrel{x}{\circ}$ r(y)dy ; hence $$-\int_{-}^{x} r(y)dy \qquad -\int_{-}^{x} r(y)dy$$ the number of accessions and departures in a hypothetical cohort is to make use of two identities that apply to a cohort: the number of persons at age a equals the number at zero plus the sum of accessions, less the sum of departures, in the interval from zero to a; the number at a also equals the number of departures less the number of accessions, in the interval from \underline{a} to the highest age attained, ω , at which age the cohort is extinct. Thus: $$N'(a) = N'(o) + \int_{0}^{a} (A'(x)-D'(x))dx; \text{ also}$$ (10) $$N'(a) = \int_{a}^{\omega} (D'(x)-A'(x))dx.$$ (11) Now we recall the relations listed above between numbers at each age, and numbers of accessions and departures, in the actual population, and in the hypothetical cohort. Substituting from the equations in the preceding paragraph for N'(a), A'(x), and D'(x) the corresponding values of N(a), A(x), and D(x) in (10) and (11), we find $$N(a) = \{N(o) + \int_{0}^{x} (A(x)-D(x))e^{0} - \int_{0}^{x} r(x)dx$$ $$N(a) = \{N(o) + \int_{0}^{x} (A(x)-D(x))e^{0} - \int_{0}^{x} r(y)dy$$ $$-\int_{0}^{x} r(x)dx - \int_{0}^{x} r(y)dy$$ $$N(a) = N(o)e^{0} + \int_{0}^{x} (A(x) - D(x))e^{x} dx,$$ or, counting N(o) as A(o), $$N(a) = \int_{0}^{a} (A(x) - D(x))e^{-\int_{0}^{a} r(y)dy} dx$$ (12) and $$N(a) = \int_{a}^{\omega} (D(x)-A(x))e^{-\frac{x}{a}} r(y)dy$$ (13) These equations can also be expressed in a form that facilitates calculation, namely and $$\int_{a-n}^{a} r(x)dx \qquad \int_{a-n}^{x} r(y)dy$$ $$N(a-n) = N(a)e \qquad + \int_{a-n}^{a} (D(x)-A(x))e \qquad dx. \qquad (15)$$ As an experiment, these equations were used to calculate the number of currently married women at each age in Sweden in 1976, counting accessions as the number of marriages plus the number of immigrant married women at each age, and departures as emigration of married women, divorce, death, and loss of husband. The only use of data on the number of resident women is to calculate the crucial age-specific growth rates for the married population. The calculated numbers duplicate the recorded number of married women by single years of age with an average error (from age 17 to age 30) of 1.3 percent. # Particular Features of the New Equations Equations (5) and (6) can be puzzling to anyone habituated to traditional demographic analysis, including those at home with the mathematics of stable populations. Equation (6) presents a relation that must hold between the net maternity function, p(a)m(a), experienced by the populations at a given time, and the set of age-specific growth rates, r(x), found at the same time. Conventionally, the net maternity function is thought of as having implications for growth in the long run, when the "intrinsic" growth rate has time to manifest itself. It is not obvious why (in terms other than found in the formal proof) the set of contemporaneous growth rates must also • necessarily be consistent with the net fertility function. The puzzle is solved by recognizing that r(x) for all ages above zero is, as common sense suggests, causally independent of the net fertility function of the moment, but not of the growth rate at age zero. If the net fertility function is changing from year to year because of changes in the rate of childbearing, it is the role of the growth rate in the neighborhood of age zero to be modified in such a way as to ensure that equation (6) continues to hold. This outcome can be clarified by separating the integral $\int\limits_0^a r(x)dx$ in equation (6) into $\int\limits_0^1 r(x)dx+\int\limits_1^a r(x)dx$, a separation that is permissible because the range of \underline{a} begins at α , well above age 1. $\int\limits_0^1 r(x)dx$ is part of a $\int\limits_0^4 r(x)dx$ for all relevant \underline{a} . It follows that $$\int_{0}^{1} r(x) dx$$ can be factored from equation (6) as follows: $$\beta = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ \int_{0}^{a} e^{0} & p(a)m(a)da = \begin{cases} \int_{0}^{a} e^{0} & e^{0} \\ \int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \end{cases} = \begin{cases} -\int_{0}^{a} r(x)dx & -\int_{0}^{a} r(x)dx \\ -\int_{0}^{a}$$ If we call $\int_{0}^{1} r(x)dx \, _{1}r_{0}$, it follows from equation (6) and this decomposition that $$\int_{1}^{\beta} r(x) dx$$ $$\int_{a}^{\beta} e^{\int_{1}^{a} r(x) dx} p(a)m(a)da . (6a)$$ Thus, $_1r_0$ has a determinate form that depends on the net fertility function and r(x) from x=1 to β . In a stable context, of course, all of the values of r(x) above age one are the same, and $_1r_0$ will be found to have this value as well. If the net reproduction rate of a formerly stable population is reduced by 50 percent in one year, the value of $$\begin{cases} \beta & -\int_{1}^{a} r(x) dx \\ \ln \int_{a}^{b} e^{1} & p(a)m(a) \end{cases}$$ will be approximately $\ln(\frac{1}{2})$; $_1r_0$ will be approximately $\ln(\frac{1}{2})$; and $_e^{-1}r_0$ will be about two, maintaining the validity of equation (6). In short, it follows from equation (6a) that each year the growth rate at age zero, being fully determined by the growth rates of older cohorts and the current net fertility schedule (no matter how aberrant), maintains the consistency of the full set of growth rates with net fertility. The connection between current growth rates and the intrinsic growth rate corresponding to the p(a) and m(a) schedules can be seen by rewriting equation (6) as $$\int_{\alpha}^{\beta} e^{-(\bar{r}_{a} - r_{I})a} e^{-r_{I}a} = p(a)m(a)da = 1.$$ We have denoted $\int_0^a r(x)dx/a$ as \overline{r}_a , the mean of age-specific growth rates below age
\underline{a} in the population; r_1 is the intrinsic rate. Since $e^{-r_1 a}$ p(a)m(a) is the frequency distribution of ages at childbirth in the stable population, it simply acts as a set of weights applied to the exp $\{-(\overline{r}_a - r_1)a\}$ schedule. The weighted sum of this latter schedule must be unity; therefore, \overline{r}_a cannot lie perpetually above (or below) r_1 in the childbearing interval. The two values must be equal for at least one age between α and β . Thus, the intrinsic growth rate in any closed population must equal the average current age-specific growth rate below some age that lies within the childbearing interval. In Japan, the intrinsic growth rate for 1960-1964 was -.0033, which equals the mean age-specific growth rate during the 1960-1963 period below age 29.26. $\frac{1}{\alpha}$ Of the new expressions, (5) is perhaps the most puzzling. Why should the proportion of the population that is aged <u>a</u> at time <u>t</u> be a simple function of the birth rate at <u>t</u>, the life table at <u>t</u>, and age-specific growth rates at <u>t</u>? It seems intuitively compelling that information on the history of birth and death rates would have to be introduced in order to determine the value of c(a). But in this case, all of the pertinent history is contained in the contemporaneous age-specific growth rate function. To gain a better idea of the basis of (5), first imagine that mortality is constant. The size of the cohort of births in year \underline{t} relative to the size of population is, by definition, b(t). With constant mortality, however, the only possible source of age-specific growth is growth in the numbers entering successive birth cohorts. So the number of births a years earlier must have been smaller (or larger) than the number at \underline{t} by the factor $\exp\{-\int\limits_{0}^{a}r(x)dx\}$. Thus, the size of the cohort of births born at time (t-a), relative to the size of population at time \underline{t} , is $b \cdot \exp\{-\int\limits_{0}^{a}r(x)dx\}$. However, only the fraction p(a) from that cohort born \underline{a} years earlier has survived, so that the proportion of the population now aged \underline{a} is $b \cdot \exp\{-\int\limits_{0}^{a}r(x)dx\}$ p(a). The basis for (5) is thus clear when mortality is constant. To generalize this result to the case of changing mortality, suppose that mortality among the cohort now aged a was higher than that pertaining at time \underline{t} by amount $\Delta u(j)$ at age $j \le a$. Then for the cohort, $p_c(a) = \frac{1}{2} \sum_{i=1}^{n} a_i + \sum_{i=1}^{$ p(a, t)e $^{-\Delta u(j)}$. But if mortality was higher by $\Delta u(j)$ at time t-j, then its subsequent reduction must have raised the growth rate by $\Delta u(j)$ at some age between \underline{j} and \underline{a} at time \underline{t} , relative to the growth rate under constant mortality conditions. A gradual reduction of $\Delta u(j)$ would spread the growth boost over several ages by correspondingly smaller amounts. Which age received the growth boost is immaterial; what matters is that r(x) has risen by $\Delta u(j)$ at some age below a, so that the series $\exp\{-\int_{-1}^{a} r(x) dx\}$ is changed by the factor $exp{\Delta u(j)}$. This factor exactly offsets the effect of the altered mortality history for the cohort aged a, and the expression for c(a) is unaltered. Simply stated, any difference between the mortality history of a cohort and the current mortality regime will be completely reflected in the r(x) series. Likewise, any growth in the number of births will also be reflected completely in r(x). That is why no "history" is required in equation (5). The connection between the equations and a population's history can be made more explicit by recognizing that there are two expressions for N(a,t) in a closed population. From (3) we have $$\begin{array}{c} a \\ -\int r(x,t) \\ N(a,t) = N(0,t) e^{0} & p(a,t). \end{array}$$ But by definition the number of persons aged \underline{a} at time \underline{t} is equal to births that occurred \underline{a} years earlier times the proportion of that birth cohort who survived to age \underline{a} , $p_{\underline{c}}(a)$. Therefore, $$N(a,t) = N(0,t-a) p_c(a)$$. Combining these two expressions for N(a,t) gives $$\int_{0}^{a} r(x, t) = \overline{r}_{B} \cdot a + \int_{0}^{a} \Delta \mu(x) dx, \text{ where}$$ \bar{r}_B is the mean growth rate in number of births between time t-a and \underline{t} ; and $\Delta\mu(x)$ is the difference between the cohort and the period death rate at age \underline{x} , i.e., $\mu(x,t-a+x) - \mu(x,t)$. Thus, the sum of period age-specific growth rates up to age \underline{a} , time \underline{t} reflects both the growth rate of entrants to cohorts over the previous \underline{a} years and any changes in age-specific mortality that have occurred since a particular age was achieved by the cohort now aged \underline{a} . Arthur (1981) has explored stable population theory using cohort-specific mortality functions. ## Illustrative Applications to Sweden This section demonstrates empirically that with accurate demographic statistics it is possible to use the relations developed above to derive one demographic series — in this case the age distribution — from knowledge of certain other series. First, it will be shown that the basic equations can be extended to populations living through a time interval rather than defined at a moment, and to grouped age distributions rather than the population density at age <u>a</u>. Equation (2) is also valid if N(a) is defined as the number of persons reaching age <u>a</u> during a time period T (extending from t' to t"), rather than as the density of population at age <u>a</u> at a given moment. In this case r(a) is $\lim_{N(a+\Delta t)-N(a)} N(a+\Delta t)$ where N(a+ Δt) is the number arriving at $\Delta t + 0$ N(a) age <u>a</u> during the time interval t'+ Δ t to t"+ Δ t. (μ (a) is defined as the limit, as Δ a approaches zero, of the ratio of deaths to persons at ages <u>a</u> to a+ Δ a to person-years lived at these ages, during the period T.) Note that r(a) is $\frac{N(a,t") - N(a,t')}{N(a)}$, which equals $\log (N(a,t")/N(a,t'))/T$, the conventional basis for calculating r(a) during a period, if growth in the number reaching age <u>a</u> is constant during T. Equation (2) is extended to a population defined in finite age intervals as follows. Let $_{n}^{N}$ x, t be the number of persons at ages <u>x</u> to x + n at time <u>t</u>. $$n_{x+\Delta x,t} = n_{x,t-\Delta t} - (n_x)(n_x)(\Delta t)$$ where $_{n}^{M}{}_{x}$ is the death rate from $_{x}$ to x+n. Subtracting $_{n}^{N}{}_{x,t}$ from both sides of this equation, dividing by $(_{n}^{N}{}_{x,t}).(\Delta x)$, and letting Δx approach zero, we find $$\frac{d \log n^{N}}{dx} = -n^{r}x - n^{M}x,$$ where $_nr_x$ is the rate of increase of the population in the age interval \underline{x} to x+n. From integration and exponentiation of both sides, it follows that: $$n_{x}^{N} = n_{0}^{N} e^{-\int_{0}^{x} r_{y} dy - \int_{0}^{x} M_{y} dy}$$. Since in a stationary population $\frac{d \log L}{dx} = -m_x$, it follows that $$\begin{array}{c} x \\ -\int_n M_y dy \\ e \end{array} \stackrel{\stackrel{\star}{=}}{=} {_n}^L_x/{_n}^L_o.$$ Thus this equation can be written as By an extension of the argument in the first part of this section, it is clear that equation (3a) applies to the distribution of person-years lived during a time interval. The derivations of equations (3) and (3a) are repeated, in terms of differential and integral calculus of functions of two variables, in the Appendix. The following illustrative calculations are made in this section: 1) The single-year age distribution of the mean population of Swedish females in 1976 is calculated from the number of female births in 1976, the single-year female life table for 1976, the rate of increase in 1976 of females in each single-year age interval, and the rate of net migration at each age. The equation involved is where e(x) is the rate of net out-migration at age \underline{x} . Since the data are available at one-year age intervals, this equation is approximated by where $$\sum_{0}^{a+.5} {r_x + 1^e_x}$$ $1^{N_a} = B e$ $1^{L_a/\ell_0}$ $1^{L_a/\ell_0}$ Results are shown in Table 1. 2) The single-year age distribution of the mean population of Swedish females in 1976 is calculated from the 1976 growth rate, the number of female deaths in 1976, and the number of female net out-migrants at each age in 1976. The equation is: $$N(a) = \int_{a}^{\omega} \{D(x)+E(x)\}e^{-\frac{x}{a}} r(y)dy$$ With data by single-year intervals, this equation was approximated by an iterative calculation: $$N(a) = N(a+1)e^{1^r a} + (D(a)+E(a))e^{1^r a/2}$$. $_1$ N_a was calculated as $\sqrt{N(a) \cdot N(a+1)}$. Since growth rates above 100 can be determined only for the population above 100 as a whole, while deaths by Table 1: Number of females in Sweden in 1976, by single years of age, calculated from N(a) = Be p(a), p(a), compared with recorded mean population. | 0- 1 - 0.0956 - 1.09526 0.99325 4.0871 - 0.0954 - 0.00578< | Age | Rate of Increase in 1976 | Rate of
Out- Migration e(x) | $-\int_0^a (r(x)+c(x)) dx$ | $1^{\mathrm{L}}_{\mathbf{a}}/1_{\mathrm{o}}$ | Estimated
Population | Recorded
Fopulation | Estimated
-Recorded | Proportionate
Error | |---|----------------|--------------------------|-----------------------------|----------------------------|--|-------------------------|------------------------|------------------------|------------------------| | 2 0.0557 -0.09926 51962 53371 -0409 4 -0.01052 -0.00446 1.13392 0.99165 53975 53937 -3187 6 -0.01052 -0.00418 1.13392 0.99165 53975 53971 -3187 7 0.023290 -0.00321 1.14263 0.99162 53772 5290 -2567 9 -0.05240 -0.0032 1.20119 0.99062 53772 -2597 -2597 10 -0.0324 -0.0322 1.20119 0.99062 53772 52900 -2567 11 -0.0324 -0.0322 1.20119 0.99062 53772 52900 -2567 11 -0.0324 -0.0322 1.20119 0.99042 53772 52900 -2567 11 -0.00324 -0.0322 0.9918 -0.9918 -0.9918 -0.9919 -2594 -2594 -2597 -2597 -2597 -2597 -2597 -2597 -2597 -2597 -2597 <td>0-1</td> <td>16870</td> <td> 00936</td> <td>1.02958</td> <td>0.99325</td> <td>48871.</td> <td>49054.</td> <td>-183.</td> <td>-0.00373</td> | 0-1 | 16870 | 00936 | 1.02958 | 0.99325 | 48871. | 49054. | -183. | -0.00373 | | 4 -0.01486 -1.13042 0.99188 53.844 53.53. -2910. 5 -0.0057 -1.13683 0.99181 53.875. 5340. -2910. 6 -0.003749 -0.00331 1.11327 0.99083 52673 52928. -2970. 9 -0.00320 -0.00220 1.20419 0.99083 526773 52940. -2567. 9 -0.00320 -0.00220 1.20419 0.99083 52977. 52940. -2567. 10 -0.00321 -1.20419 0.99083 52977. 52940. -2867. 11 -0.00320 -1.20419 0.99993 5897. 59940. -2897. 11 -0.00320 -1.20419 0.99993 5897. 5990. -2897. 11 -0.00320 -1.20419 0.99993 5897. 5997. -2890. 11 -0.00320 -1.20419 0.99993 5897. 5997. -2897. 11 -0.00320 -1.20419 0.99993 </td <td></td> <td>05537</td> <td>01096</td> <td>1.09577</td> <td>0.99226</td> <td>51962.</td> <td>52371.</td> <td>-400</td> <td>-0.00782</td> | | 05537 | 01096 | 1.09577 | 0.99226 | 51962. | 52371. | -400 | -0.00782 | | 6 -0.0699 -0.0 | | 0.01052 | 00646 | 1.13042 | 0.99188 | 53584. | 53901. | -317. | -0.00588 | | 6 0.033749 00421 111265 0.93139 54123 54127 297 7 0.02390 00421 1.11337 0.99083 52673 54240 267 9 06574 00224 00220 1.24918 0.99083 56977 5726 287 11 00244 00222 1.24918 0.99093 59976 59481 287 11 00244 00232 1.25512 0.99093 59976 59481 287 11 00244 00180 1.25618 0.99093 59976 59481 287 11 00244 00180 1.25618 0.99093 5976 59481 287 287 11 0.04686 00180 1.07267 0.99842 57420 5750 287 11 0.04686 1.07287 0.98848 50431 57441 287 11 0.01070 0.01070 0.01070 0.01070 0.01070 | | 00692 | - 00351 | 1, 13892 | 0.99165 | 53975. | 55033. | -270. | -0.00517 | | 7 0.05634 -0.0038 1,11237 0.99063 5.5673 5.5940 -2567 9 -0.5644 -0.0038 1,13171 0.99063 5.5677 5.5926 -2567 10 -0.0544 -0.0022 1,220419 0.99021 5.5977 -2594 -2594 11 -0.0024 -0.0032 1,22918 0.98979 59440 -2594 -2594 12 -0.00301 1.02591 0.98979 59440 -5187 -2587 13 -0.0047 1.0550 0.98849 59440 57120 -2387 14 0.0476 -0.0150 1.0550 0.98849 59440 57120 -2387 15 0.0150 1.0250 0.98849 59440 57120 -2387 -2487 16 0.0150 1.0250 0.98849 59741 5941 5941 -2561 -2487 -251 -251 -251 -251 -251 -251 -251 -251 -251 -251 <td></td> <td>0.03749</td> <td> 00421</td> <td>1,14269</td> <td>0.99109</td> <td>54123.</td> <td>54420.</td> <td>-297.</td> <td>-0.00546</td> | | 0.03749 | 00421 | 1,14269 | 0.99109 | 54123. | 54420. | -297. | -0.00546 | | 9 -055674 -010178 1,120419 0,99062 55572 55926 -2556 10 -005924 -00202 1,20419 0,99021 55977 57296 -2959 11 -002024 -00202 1,24918 0,99021 55917 57396 -2999 11 -00204 -00180 1,25922 0,98929 58516 -286 -299 11 -0034 -00180 1,26512 0,98829 58516 -286 -286 12 -00186 -00180 1,2652 0,98845 58740 -286 -287 15 -00219 -00198 1,07267 0,98845 58740 -281 -281 16 -00190 -00203 1,07267 0,98845 5871 -5941 -281 17 -0190 -00504 1,1310 0,98845 5871 -5941 -296 18 -0050 1,1310 0,98861 5810 -298 -299 19 </td <td></td> <td>0.02390</td> <td>00338</td> <td>1,11237</td> <td>0.99083</td> <td>52673.</td> <td>52940.</td> <td>-267.</td> <td>-0.00505</td> | | 0.02390 | 00338 | 1,11237 | 0.99083 | 52673. | 52940. | -267. | -0.00505 | | 905990000220 1.20419 0.99041 56997, 57286, -289. 11100024400022 1.24918 0.99021 59914, 59174, 59401, -2877 11200024400022 1.24918 0.99891 59914, 59174, 59401, -2877 113 0.0886800164 1.21467 0.98892 59944, 60127, -288. 114 0.0476500164 1.09029 0.98892 5976, 57120, 57120, -288. 115 0.003100018 1.09029 0.98894 59719, 57120, -288. 116 0.0131000181 1.07267 0.98894 59719, 57120, -288. 1170031100181 1.07267 0.98894 59719, 57120, -288. 1180031000183 1.07267 0.98894 59719, 57120, -288. 119 0.0002600183 1.07267 0.98894 59719, 57120, -286. 110 0.0002600183 1.07267 0.98894 59719, 57104, -296. 110 0.0002600031 1.12358 0.98806 59710, 57210, -296. 110 0.00027000972 1.13900 0.98806 59719, 57210, -296. 110 0.00026000972 1.13900 0.98804 55277 56035, -2979, -2979, -2970, - | | 05674 | 00178 | 1.13371 | 0.99062 | 53672. | 53928. | -256. | -0.00475 | | 10 | ٠, | 05990 | 00220 | 1.20419 | 0.99043 | 56997. | 57296. | -299. | -0.00521 | | 1. 0.0274 0.038999 59970 | - ' | #7600°- | 00202 | 1.24918 | 0.99021 | 59114. | 59401. | -787- | -0.00483 | | 13 0.08868 -00180 1.21417 0.98957 57420 57750 -330 14 0.02476 -00186 1.03608 0.98892 53719 55947 -241 16 0.02476 -001884 50591 55049 -241 17 -01330 -00503 1.07267 0.98846 50691 55049 -241 18 -00331 -00503 1.08649 0.98806 51304 -255 19 -00310 -100658 1.10623 0.98877 52210 52049 -256 20 0.00770 -01038 1.12623 0.98662 53104 -296 -255 21 0.0076 -11330 0.98662 5320 53849 -256 -257 22 0.0075 1.1330 0.98662 5330 53861 -596 23 0.0075 1.14900 0.98662 5330 53861 -596 24 0.0097 1.14900 0.98862 53 | | 00301 | 00161 | 1.26515 | 0.98979 |
595/0. | 60127. | -283 | 00000 | | 14 0.02745 00157 1,13608 0,98942 53719, 53987, -286. 15 0.02742 000148 1,07899 0,98844 50678. 50943, -286. 16 0.01936 00783 0,98844 50678. 50943, -252. 17 00310 00658 1,10623 0,98845 50678. 50943, -256. 20 0.00710 00658 1,10623 0,98757 52210. 52644. -840. 21 0.00726 01071 1,11308 0,98657 52210. 53494. -840. 22 0.00717 01071 1,13087 0,98657 53216. 53494. -199. 23 0.00717 113087 0,98671 53494. -199. -199. 24 0.0086 1,13087 0,98671 53494. -599. -5677. 25 0.00717 1,13087 0,98671 5349. -5677. -6677. 26 0.0 | | 0.08868 | - 00180 | 1.21417 | 0.98957 | 57420. | 57750. | -330. | -9.00571 | | 15 0.02742 00148 1.07267 0.98920 55691 55049 241 16 0.01336 00148 1.07267 0.98845 55678 55049 252 17 00136 00503 1.07287 0.98845 56678 55044 296 18 00131 00503 1.06849 0.98665 51040 55044 296 20 0.00710 10138 0.98665 55210 55240 994 21 0.00726 001071 1.1308 0.98651 54415 55864 994 22 0.00727 1.1308 0.98613 5527 56461 596 23 0033 00972 1.14900 0.98448 55527 56461 596 24 00036 1.17965 0.98448 55527 56462 598 25 00136 1.17965 0.98461 55937 56467 598 26 00127 1 | • | 0.04765 | 00157 | 1.13608 | 0.98942 | 53719. | 53987. | -268. | -0.00497 | | 16 0.01900 00210 1,07267 0.98884 51691 50943 252. 17 01336 00210 1,07283 0.98705 55078 55104 296. 18 00316 00568 1,10623 0.98705 55100 55264 994. 20 0.00710 01036 1,12358 0.98675 55100 55861 994. 21 0.00026 01071 1,13087 0.98675 55100 55861 5194. 22 0.00026 01077 1,13087 0.98675 55100 55861 5194. 22 0.0018 1,13087 0.98675 5510 5510 5194. 22 0.0018 1,13087 0.98640 5557 58610 5194. 24 0.0018 1,13087 0.98446 55527 56035 5194. 25 0.0405 1,13087 0.98405 57493 5194. 5194. 27 0.0406 | _ | 0.02742 | 00148 | 1.09590 | 0.98920 | 51808. | 52049. | -241. | 19100°0- | | 17 01336 00383 1.07283 0.98846 56678 59944 - 296. 19 00136 1.0653 1.0653 0.98757 52210 55604 - 840. 20 0.00710 01036 1.11358 0.98757 52210 55604 - 1999. 20 0.00770 01036 1.13087 0.98613 52395 53802 - 1999. 22 0.02217 00994 1.13087 0.98613 52395 53802 - 597. 23 00313 00997 1.19010 0.98649 55227 56035 - 597. 24 00080 1.17965 0.98448 55237 56035 - 507. 25 004017 00670 1.17910 0.98448 55237 56035 - 6037 26 04017 00670 1.2248 0.98446 55293 56452 - 4653 27 05212 00670 1.22486 0.98446 56230 59346 - | • | 0.01900 | 00210 | 1.07267 | 0.98884 | 50691. | 50943. | -252. | 161000-0- | | 19 00213 00203 1.106249 0.98875 52100 52644 9840 20 0.00710 000303 1.106249 0.98757 52310 52499 499 20 0.00070 000902 1.11336 0.98613 53295 5449 499 21 0.00117 1.11308 0.98613 53295 5449 499 22 0.02117 00992 1.11901 0.98613 5527 56640 597 23 00136 00670 1.11901 0.98649 5527 56490 597 24 00036 1.12010 0.98494 55237 56490 599 25 00136 1.12010 0.98494 55237 56490 599 26 00136 1.12010 0.98494 55237 56491 463 27 05212 00348 1.28658 0.98494 55237 56491 463 28 00105 < | | 01336 | 00383 | 1.07283 | 0.98845 | 50678. | 50974 | -296. | -0.00580 | | 2 0.00710 0.00030 0.00 | | 00310 | 50000- | 1.08649 | 0.98806 | 51304. | 52144. | -840 | -0.01612 | | 21 0.00026 01071 1.13130 0.98662 53342 53861 519 22 0.02317 00094 1.14087 0.98613 53295 53802 507 24 00080 00094 1.14906 0.98494 55527 56035 507 24 00080 00670 1.19010 0.98494 55527 56035 607 25 00407 1.22248 0.98405 57490 57493 653 27 00417 00547 1.22658 0.9836 60475 60927 453 29 00408 1.32658 0.98246 65230 6598 453 29 00782 00194 1.40709 0.98166 65230 65598 453 29 00782 00194 1.40099 0.98166 65230 65598 453 30 00184 1.40269 0.98124 65230 65598 452 31 | - (| 0.00710 | 01036 | 1.12358 | 0.98757 | 53000 | 53499 | - 661 | -0.00/49 | | 22 0.02117 -00994 1.11087 0.98613 53295 55802 -507 23 -0.0317 -00992 1.14990 0.98631 5440 -525 24 -00080 -00870 1.14900 0.98494 5527 50461 -507 25 -00013 -1.2248 0.98408 55293 56452 -508 27 -05212 -00447 1.22248 0.9836 60475 60927 -453 28 -04017 -00308 1.33268 0.9836 60475 60927 -453 29 -00076 -00308 1.38929 0.9836 65346 6598 -1226 30 -01659 -00194 1.40909 0.9818 66121 66194 -453 31 0.0086 -00194 1.40909 0.9818 66121 66194 -373 31 0.0186 1.40269 0.9818 66121 66194 -373 31 0.0186 1.4026 | 20- 21 | 0.00026 | 01071 | 1. 13130 | 0.98662 | 53342. | 53861. | -519. | 75600-0- | | 23 03333 00972 1.114900 0.98651 54415 54640 -525 24 00036 00080 1.17965 0.98449 55937 56452 -508 25 00136 00547 1.22248 0.98405 55937 56452 -658 26 04017 00547 1.22248 0.98405 57943 -653 -653 27 00417 00547 1.22248 0.98406 65230 63666 -126 29 04056 00195 1.33268 0.98246 65230 65598 -126 29 00186 1.40909 0.98246 65230 65598 -126 20 00186 1.40909 0.9814 66444 -126 31 0.00896 00166 1.40909 0.9814 65530 66559 -126 32 0.01496 00166 1.40909 0.9814 65530 65598 -126 33 0.01496 </td <td></td> <td>0.02117</td> <td>#6600*-</td> <td>1,13087</td> <td>0.98613</td> <td>53295.</td> <td>53802.</td> <td>-507.</td> <td>-0.00943</td> | | 0.02117 | #6600*- | 1,13087 | 0.98613 | 53295. | 53802. | -507. | -0.00943 | | 24 00080 1.17965 0.98494 55527 56035 -598. 25 00080 1.19010 0.98494 55527 56945 -658. 26 00407 1.22248 0.98405 57490 57943 -658. 27 00512 000445 1.28658 0.98306 60175 -652. -652. 29 00405 00194 1.49090 0.98246 65598 -1586 29 00782 00194 1.40209 0.98124 65598 -158 30 00782 00194 1.40209 0.98124 66494 -582 31 0.00896 00194 1.40269 0.98124 66454 66816 -382 32 0.01496 00196 1.40269 0.98124 66454 66816 -382 34 0.00896 00196 1.40269 0.978124 66454 66816 -382 34 0.01937 1.22860 0.97824 | | 03333 | 00972 | 1.14900 | 0.98551 | 54115. | 54640 | -525. | -0.00961 | | 25 00135 00670 1.19910 0.98448 55993 50472 -453. 27 00521 00644 1.2868 0.9856 60475 60927 -453. 28 00465 00308 1.28288 0.9836 60475 60927 -452. 29 00782 00308 1.38268 0.9836 60475 60927 -452. 30 01659 00194 1.40909 0.98246 66221 66494 -158. 31 00169 1.40709 0.98189 66121 66494 -158. 32 00169 1.40712 0.98189 66121 66494 -158. 31 0.01896 00164 1.40269 0.97818 66494 -158. 31 0.01896 00164 1.53480 0.97895 68494 -157. 32 0.0113 1.25860 0.97895 68448 66090 -157. 34 0.05237 00114 <td< td=""><td></td><td>00080</td><td>00880</td><td>1,17965</td><td>0.98494</td><td>55527.</td><td>56035.</td><td>-508.</td><td>-0.00907</td></td<> | | 00080 | 00880 | 1,17965 | 0.98494 | 55527. | 56035. | -508. | -0.00907 | | 2 - 05212 - 03034 - 1,28658 0,9836 0,9836 0,9836 - 0405 - 00308 1,28658 0,9836 6 0475 - 655 - 655 - 655 - 655 - 655 - 120 <td></td> <td>00135</td> <td>0.900-</td> <td>1.19010</td> <td>8 7 7 8 6 7 8</td> <td>55993.</td> <td>55452.</td> <td>1453</td> <td>-0.00814</td> | | 00135 | 0.900- | 1.19010 | 8 7 7 8 6 7 8 | 55993. | 55452. | 1453 | -0.00814 | | 29 04056 00195 1.3268 0.98246 65530 65566 120 29 00182 00195 1.33929 0.98246 65530 65598 1568 31 00182 00194 1.40909 0.98246 65530 65598 1568 32 00186 1.40269 0.98046 65530 66816 373 32 0.00896 00166 1.40269 0.98060 65734 66816 368 33 0.05771 00166 1.40269 0.99795 68448 68090 356 34 0.09237 00164 1.13800 0.97812 59249 357 35 0.0132 1.13800 0.97812 58897 351 36 0.0533 00144 1.04935 0.9789 58897 351 37 0258 00144 1.04935 0.9789 68449 551 38 0.04212 00144 1.04935 | | 04017 | 7 100 | 1 28658 | 0.98405 | 5/490. | 60927 | 1453 | -0.00781 | | 29 00782 00195 1.38929 0.98246 65230. 65598. 168. 30 00894 1.40209 0.98124 66454. 66816. 373. 31 0.00896 00184 1.40209 0.98060 66454. 66816. 362. 32 0.01896 00166 1.40269 0.98060 66734. 66816. 352. 34 0.00237 00154 1.25860 0.97919 63448. 66890. 357. 35 0.01937 00164 1.25860 0.97919 53249. 357. 35 0.0173 1.25860 0.97812 53206. 55547. 141. 37 02558 00144 1.04935 0.97817 48605. 243. 38 0.04212 00149 1.03632 0.9757 48909. 48350. 244. 40 0.0413 00149 1.03166 0.9757 48099. 48350. 224. 40 | | 04056 | -,00308 | 1,35268 | 0.98300 | 63546. | 63666. | -120. | -0.00188 | | 30 01659 001944 1,449909 0.98189 66421 66494 -373. 31 0.00896 00180 1,44712 0.98189 66454 66816 -352. 32 0.01496 00164 1,4712 0.98060 65734 66090 -352. 34 0.09277 00154 1,25860 0.97895 63448 68095 -357. 35 0.01138 00140 1,13800 0.97895 63448 68095 -357. 36 0.1138 00144 1,04935 0.977919 55249 -357. 37 0258 00144 1,04935 0.97791 5547 -204. 37 0258 00144 1,0363 0.97597 48019 -214. 39 0.04212 00149 1,0363 0.97597 48099 45340 -224. 40 0.01413 00149 0.99258 0.9734 44926 4514 41 0.0427 < | | 00782 | 00195 | 1,38929 | 0.98246 | 65230. | 65298. | -368. | -0.00561 | | 31 0.01896 000180 1.40269 0.98124 664544 668194 -352. 33 0.01896 00164 1.40269 0.97995 681484 66909. -352. 34 0.05771 00154 1.55860 0.97995 681484 66909. -357. 35 0.09237 00013 1.25860 0.97995 681497 55949. -357. 36 0.09237 00144 1.08495 0.97737 49014 49278. -564. 36 0.03740 00144 1.00435 0.97557 48069. -254. 39 0.03740 00149 1.03166 0.97557 48069. -254. 40 0.01413 00119 0.99258 0.97442 46246. -254. 40 0.01413 00080 0.99258 0.97318 44926. 45141. -214. 40 0.01413 00080 0.99738 0.97318 44926. 45141. -214. | | 01659 | 00194 | 1.40909 | 0.98189 | 66121. | . 46499 | -373. | -0.00561 | | 33 0.05771 00100 1.35480 0.97995 6.3448 6.8055 357. 34 0.09237 00104 1.2860 0.97995 6.3448 6.8055 357. 35 0.01138 00106 1.13800 0.97737 49014 49278 357. 36 0.05332 00144 1.04632 0.97650 48562 264. 37 02558 00149 1.01632 0.97650 48562 48605 244. 40 0.04212 00149 1.01652
0.97557 486099 48350 224. 40 0.04212 00149 0.99258 0.97442 46222 46446 224. 40 0.04113 00111 0.95597 0.97142 44926 45141 215. 41 0.04138 00189 0.9738 0.97191 42875 45141 215. 42 0.00456 00087 0.9178 0.971047 42875 42424 | | 0.00896 | 00180 | 1.41712 | 0.98124 | 66454. | 66816. | -362. | -0.00542 | | 34 0.09237 0013 1.25860 0.97919 58897 59249 352 35 0.1138 00106 1.13800 0.9783 53206 55347 352 37 02538 00104 1.01635 0.97737 48362 48605 243 38 0.03740 00119 1.03166 0.97557 480605 243 40 0.04212 00018 0.99258 0.97442 46222 46446 221 40 0.01413 0011 0.96597 0.97318 44926 45141 215 41 0.04428 00087 0.97393 0.97318 44926 42141 215 42 0.00465 00159 0.91165 0.96890 42213 42424 216 44 00128 0.93186 0.96890 42213 42024 216 44 00128 0.93186 0.96890 42213 216 217 44 <td< td=""><td></td><td>0.05771</td><td>- 00154</td><td>1 35480</td><td>0.99060</td><td>63448</td><td>63805.</td><td>-357.</td><td>-0.00560</td></td<> | | 0.05771 | - 00154 | 1 35480 | 0.99060 | 63448 | 63805. | -357. | -0.00560 | | 35 0.11138 00106 1.11800 0.97832 53206 55547 -341. 36 0.0533 00144 1.04935 0.97737 49014 49278 -244. 37 02558 00142 1.03632 0.97557 486092 48605 -224. 39 0.04212 00080 0.99258 0.97442 46222 46446 -224. 40 0.01413 0011 0.96597 0.97318 44926 45141 -215. 41 0.04478 00087 0.97318 0.97318 44926 45141 -215. 42 0.04478 00087 0.97318 0.97318 44926 42141 -216. 43 0.0120 0.91798 0.97107 4275 4275 42424 -216. 44 00128 0.9672 44184 44603 -227. -227. | | 0.09237 | 00123 | 1,25860 | 0.97919 | 58897. | 59249. | -352. | +6500°-0- | | 36 0.05332 00144 1.04935 0.97737 49914 49278 564 37 02558 00132 1.03162 0.97550 48362 48605 243 38 0.03740 00149 1.03166 0.97557 48099 48350 251 40 0.04212 00080 0.99258 0.97442 46222 46346 224 40 0.04713 00011 0.99258 0.97442 46222 45141 251 41 0.04376 00017 0.93933 0.97191 44256 45141 251 42 0.00456 00159 0.91798 0.97191 42575 42791 215 44 00124 00125 0.91165 0.96890 42213 42424 217 44 00128 0.9671 0.96531 441844 44603 217 | | 0,11138 | 00106 | 1.13800 | 0.97832 | 53206. | 53547. | -341. | -0.00637 | | 37 02558 00132 1.03632 0.97650 48665. -243. 38 0.03740 00149 1.03166 0.97557 48099. 46260. -251. 40 0.04212 00081 0.98259 0.97348 46222. 46446. -224. 40 0.04413 00081 0.96597 0.97348 44926. 45141. -215. 42 0.04378 00087 0.93933 0.97191 4256. 42791. -216. 42 0.00456 00159 0.91165 0.96890 42213. 4274. -216. 44 00127 0.93186 0.96890 42713. 42424. -216. 44 00128 0.93186 0.96731 44484. 44603. -227. | | 0.05332 | 00144 | 1.04935 | 0.97737 | 49014. | 49278. | -264. | -0.00537 | | 38 0.04212000149 1.03166 0.97557 48099; 48.5502251 | | 02558 | 00132 | 1.03632 | 0.97650 | 48362. | 48605. | -243. | -0.00500 | | 39 0.01413 00080 0.95598 0.97442 46252. 45441. 272. 40 0.01413 00111 0.96597 0.97318 44926. 45141. 275. 41 0.01478 00087 0.97338 0.97191 4350. 45339. 279. 42 0.00169 0.91798 0.97047 42275. 47791. 216. 43 0.01204 00175 0.91165 0.96794 42213. 42424. 216. 44 00125 0.9721 0.96731 441844. 44603. 277. | | 0.03740 | 00149 | 1.03166 | 0.97557 | 48099 | 48350 | -251. | -0.00520 | | 41 0.0437800011 0.9933 0.97191 44362. 4319203. 4204. 4319203. 420 0.00465000159 0.91798 0.97047 42575. 42791216. 43 0.0120400127 0.91165 0.96890 42213. 42424211. 440633600128 0.91318 0.96731 44384, 44603227. 45217. | | 0.04212 | 00080 | 0.99258 | 0.97442 | 46222. | 15446 | -224. | -0.00482 | | 42 0.0046500159 0.91798 0.97047 42553 42591216.
43 0.0120400127 0.91165 0.96890 42213. 42824211.
440533600127 0.93186 0.96890 42213. 42824211.
44050128 0.93186 0.96531 44384, 44603212. | | 0.01413 | - 00011 | 0.96597 | 0.97318 | 44926 | 1 78 70 | -200 | 7/ #(70 0 - | | 43 0.0120400127 0.91165 0.96890 42213. 42424211.
440513600125 0.991186 0.96734 43074. 433012272
450080300128 0.96721 44384. 44603219. | | 0.04370 | - 00067 | 0.93933 | 7 10 10 1 | 43630. | 42791 | -216 | 70.00477 | | 440533600125 0.93186 0.96724 43074, 43301227. 427. 4501. 4500128 0.96737 0.96531 44484, 44603219. | | 0.00 | - 00133 | 0.31150 | 1 10 10 0 | 42373 | 12121 | -211 | 00000 | | 45 - 00803 - 00128 0.96512 0.96531 44384 44603 - 219. | 04 - 24
03- | - 05336 | - 00125 | 0.91185 | 0.9699 | 12021 | 43301. | -227 | -0.00523 | | | | 00000 | 00128 | 0.93188 | 0.96531 | 4384 | 44603 | -219 | 0.00 00 | | -0.00628
-0.00475
-0.00489
-0.00465
-0.00465
-0.00465
-0.00434
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0.00408
-0. | -0.00439
-0.00576
-0.00578
-0.00788
-0.00789
-0.0119
-0.01417
-0.01920
0.01920
0.01920 |
---|---| | -240.
-217.
-217.
-217.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223.
-223. | - 10.
- 13.
- 13.
- 14.
- 14.
- 14.
- 17.
- 17. | | 45421
45641.
46641.
46673.
46673.
46673.
46673.
46673.
46673.
46673.
46673.
46673.
46673.
46673.
46673.
46667.
46673.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47828.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
47838.
478 | 7702.
6 207.
6 207.
8 1045.
2 312.
1622.
1622.
1732.
7 32.
3 47. | |
45424.
45424.
46453.
46453.
46453.
51049.
51049.
51049.
51049.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111.
61111. | 7692.
6177.
917.
1018.
1624.
1624.
1746.
252.
350.
214. | | 0,96335
0,96149
0,951455
0,95465
0,94465
0,94463
0,94366
0,94366
0,94364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93364
0,93347
0,93347
0,98347
0,98347
0,98347
0,98347
0,98347
0,98347
0,98347
0,7898
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7693
0,7744
0,7693
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0,7744
0, | 0.23415
0.19750
0.16398
0.18350
0.08304
0.08382
0.03352
0.03353
0.01634
0.01634 | | 0.98138
0.98856
1.00180
1.00511
1.00511
1.09283
1.11611
1.19543
1.19543
1.19543
1.19543
1.19543
1.19543
1.19550
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1.1658
1. | 0.68741
0.66782
0.66062
0.65902
0.58148
0.53242
0.46571
0.46571
0.4589
0.41400 | | - 00130
- 00069
- 0006 | 0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0 | | 02904
01687
01563
013563
013563
013563
01368
01369
0.01652
0.01652
0.01652
0.01652
0.01652
0.01652
0.01652
0.01652
0.01652
0.01652
0.01652
0.01652 | 0.02623
0.00202
0.04956
0.04797
0.0131
0.08884
0.08884
0.082046
0.033005 | | 3 3 3 3 C C C C C C C C C C C C C C C C | _ | single years of age above 100 are listed, N(100) was approximated by $$N(100) = D(100-101)e^{r(100^{+}, 1976)/2}$$ $$+ D(101-102)e^{r(100^{+}, 1976)+r(100^{+}, 1975)/2}$$ $$+ D(102-103)e^{r(100^{+}, 1976)+r(100^{+}, 1975)+r(100^{+}, 1974)/2}$$ $$+ D(103^{+})e^{r(100^{+}, 1976)+r(100^{+}, 1975)+r(100^{+}, 1974)}$$ Results are shown in Table 2. - 3) The single-year age distribution of the mean population of Swedish females in 1973-1977 is calculated from the number of female births in 1973-1977, the single-year female life table for the period, the average rate of increase in 1973-1977 of females in each single-year age interval, and the rate of net out-migration at each age. The mean population at each age is one-fifth the number of person-years lived in each single-year age interval during the five-year time period. The growth rate and
the net out-migration rate are the increase in the number of persons and the number of net out-migrants, divided by the number of person-years lived during the five years. With rates thus defined, the calculations are based on the same equations as in (1) above that were used for estimating the age distribution of Swedish females in 1976. Results are shown in Table 3. - 4) The five-year proportionate age distribution of the mean population of Swedish females in 1976 is calculated from the ${}_5\mathrm{L_X}$ function of the Swedish female life table for 1976, and the growth rate in 1976 of the mean population in five-year age intervals. The equation involved is: $$\int_{5}^{a} r_{x} dx$$ $$\int_{5}^{8} a = \int_{5}^{8} r_{0} e^{0} \int_{5}^{6} r_{x} dx$$ In this set of calculations, $5r_x$ is taken at five-year intervals, i.e., for x=0, 5, 10, etc., and the integral $\int\limits_0^a 5r_x dx$ is approximated by a trapezoid. Results are shown in Table 4. 5) The five-year proportionate age distribution is calculated as in (4), except that $_5\mathbf{r}_{\mathbf{x}}$ was taken at one-year intervals, i.e., $_5\mathbf{r}_0$, $_5\mathbf{r}_1$, $_5\mathbf{r}_2$, etc., in evaluating the integral $\int\limits_0^a {_5\mathbf{r}_{\mathbf{x}}} \mathrm{d}\mathbf{x}$. Results are shown in Table 5. The most striking feature of the calculations is the extremely close fit of the calculated data to the accurate Swedish population statistics. In Table 1 the difference between the calculated and recorded populations does not exceed one percent until age 94, and in Table 2 until age 85, with the exception of age 17. Incredibly enough, the relatively large discrepancy at age 17 is the result of an error in the Swedish yearbook for 1976. The mean population is listed in Table 4:15, which presents the life table for 1976. It is readily verified that the mean population at each age as listed in this table is simply the arithmetic average of the year-end populations for 1975 and 1976 listed elsewhere; the mean population at age 17-18 in 1976 calculated in this way is 51,644 instead of the listed 52,144. This is an error of 500 persons, which doubtless occurred as the result of a punching mistake of one digit in the thousands column for 17 year olds in year-end 1975 or 1976 when the mean population was calculated. The precision of these calculations thus proves to be sufficient to detect an isolated one percent error in the listing of the single-year mid-year population of Swedish females. A more significant result of the precision of the calculation is the close agreement of the calculated populations from 90 to 100 with the official figures. If the official Swedish life table is employed in calculating Table 1, the agreement is much poorer. The published life table for 1976 (and other years) is based on Wittstein's formula $(q_x = a^{-(M-x)^n})$ above age 91 rather than directly on recorded numbers of deaths and persons. The difference between the official table of 1976 and the table we constructed, and its effect on the estimated population from age 92-93 to 99-100, are as follows: | | 1 ^L x | /£ ₀ | Proportionate error i | | |----------|------------------|-----------------|-----------------------|------------| | <u>x</u> | <u>Official</u> | Calculated | Official life table | Calculated | | 92 | .08313 | .08304 | .003 | .002 | | 93 | .06314 | .06382 | 012 | 001 | | 94 | .04651 | .04713 | .007 | .014 | | 95 | .03308 | .03352 | 032 | 019 | | 96 | .02260 | .02371 | 059 | 013 | | 97 | .01474 | .01634 | 125 | 030 | | 98 | .00910 | .01083 | 181 | 025 | | 99 | .00526 | .00707 | 260 | 005 | We calculated a life table above age 91 by accepting the official ℓ_{91} , and from x = 91 to 99, estimating ℓ_{x+1}/ℓ_x as $e^{-1} \frac{M}{x}$, and $e^{-1} \frac{M}{x}$. The official life table produces estimates in which errors increase rapidly above age 95; evidently the unadjusted death rates are a more realistic basis for a life table than those calculated by the Wittstein formula. Table 2: Number of females in Sweden in 1976, by single years of age, calculated from $N(a) = \int_a^W (D(x) + E(x)) e^{a} dx$, compared with recorded mean population. | Age | Rate of
Increase
r(x) | Deaths
D(x) | Net
Emigrants
E(x) | Estimated Number at Recording Age at N(a) | Estimated Number a to a+1 $\frac{1}{1}$ $\frac{1}{a}$ | Recorded
Mean
Population | Estimated
-Recorded | Proportionate
Error | |-------------|-----------------------------|----------------|---|---|---|--------------------------------|------------------------|------------------------| | -0 | 16810 | 358. | -459. | 47841. | 49076. | 49054 | 22. | 0.00046 | | 1- 5 | 05537 | 25. | -574. | 50344. | 52031. | 52371. | -340. | 00650 | | 2-3 | 0.01052 | 15. | -348. | 53775. | 53659. | 53901. | -242. | 00450 | | <u>,</u> | 98410 | ٠, ۲ | -127 | 53543 | 51.01.1 | 55033 | -192 | 61600 - | | , <u>,</u> | 0.03749 | - 8 | -229. | 55120. | 54201 | 54420. | -219. | 00402 | | 6- 7 | 0.02390 | 10. | -179. | 53299. | 52759. | 52940. | -190- | 00359 | | 7- 8 | 05674 | 13. | -96- | 52207. | 53751. | 53928. | -177. | 00329 | | 8- | 05650 | 8. | -126. | 55340. | 57082. | 57296. | -214. | 00374 | | 9- 10 | 0092# | 17. | -120. | 58878. | 59202. | 59401. | -199. | 00334 | | 10- 11 | 00244 | 6, | -139. | 59528. | 59666. | 59880. | -214. | 00359 | | 11- 12 | 00301 | · : | -161 | 2,4804 | 53933. | 57750 | -242 | - 00420 | | 12- 13 | 0.00000 | - 4 | • 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 | . 50000
55058 | 53801. | 53987. | -186. | 77.00 | | 14- 15 | 0.02742 | 17. | -77- | 52573 | 51887. | 52049. | -162. | 00311 | | 15- 16 | 0.01900 | 20. | -107. | 51210. | 50770. | 50943. | -173. | -* 003 to | | 16- 17 | 01336 | 20. | -195. | 50333. | 50757. | 50974. | -217. | 00425 | | 17- 18 | 00310 | 21. | -260. | 51186. | 51384. | 52144. | -760. | 01457 | | 18- 19 | 02129 | 30. | -346. | 51584. | 52294. | 52604. | -310. | 06500- | | 19- 20 | 0.00710 | 26. | -554. | 53014. | 53089. | 53499. | -410. | 19/00- | | 20- 21 | 0.00026 | 20. | -577. | 53164. | 53435 | 53861. | -470. | - 00762 | | 27 -12 | 0.02117 | 33. | -535 | 53076 | 53392 | 54640 | -421 | 00771 | | 23-24 | 08000 | 28. | -493. | 55383 | 55637 | 56035 | -398. | 00711 | | 24- 25 | 00135 | 23. | -378. | 55892. | 56107. | 56452. | -345. | 00611 | | 25- 26 | 04017 | 27. | -317. | 56323. | 57610. | 57943. | -333. | 00575 | | 26- 27 | 05212 | 32. | -271. | 58927. | 60602. | 60927. | -325. | 00533 | | | 04056 | 38. | -197. | 62325. | 63681. | 63666. | 15. | 0.00024 | | | 00782 | 33. | -128. | 65067. | 65370. | 65598. | -228. | - 90348 | | 29- 30 | 95910- | , t | -129. | 66859 | . p. | 66816 | -219. | 00327 | | 31- 37 | 0.0000 | 42. | -110. | 66338 | 65877. | .06099 | -213. | 00322 | | , | 0.05771 | 7 77 | -98 | 65420. | 63586. | 63805. | -219. | 00343 | | | 0.09237 | 50. | -73. | 61804. | 59026. | 59249. | -223. | 00376 | | | 0.11138 | 50. | -57. | 56373. | 53323. | 53547 | -224. | 00419 | | 35- 36 | 0.05332 | .64 | -71. | 50438. | 49122. | 49278. | -156. | 0031/ | | | 02558 | 37. | -19- | 47840. | -69484 | 48605. | -136. | 00780 | | | 0.03740 | , çç | -17. | 49107. | 48205 | 48350 | -140 | - 00261 | | 38- 39 | 0.04212 | ٠,٥ | . 6.7. | 4/321. | 46327. | 15141 | -115 | 00255 | | | 0.01413 | . 25 | | 40000 | 43727 | 43839. | -112. | 00255 | | | 0.040.0 | 72. | -68, | 42772 | 42670- | 42791 | -121. | 00282 | | | 0 01204 | 52, | -54. | 42569 | 42308 | 42424. | -116. | 00273 | | | 05336 | 82. | -54 | 42049 | 43171. | 43301. | -130. | 00299 | | 94 - 45 | 00803 | 93. | -57. | 44325. | 44485. | 44603. | -118. | 00265 | | | | | | | | | | | | | - 000466
- 000854
- 000854
- 01095
- 01081
- 01181
- 01181 |
--|--| | 137.
1114.
1116.
1116.
1116.
1116.
1116.
1117.
1117.
1117.
1117.
1120.
1120.
1120.
1120.
1120.
1131.
1131.
1131. | 131.
131.
123.
123.
172.
172.
173.
173.
174.
175.
176.
176.
176.
176.
176.
176.
176.
176 | | 45421. 46613. 46673. 46673. 46976. 49764. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. 51617. | 14005.
11302.
11318.
11318.
11318.
11319.
5207.
5207.
6425.
5207.
1090.
732.
545.
347. | | 45284, 465638, 465638, 465638, 465638, 465638, 465638, 465638, 465633, 465638, 46563, 46663, 466643, 466643, 466643, 466643, 466 | 17321.
15182.
11262.
11266.
1269.
6356.
6356.
5135.
3059.
1053.
1053.
348.
348. | | 44646, 445931. 45931. 45931. 45931. 45931. 45159. 47591. 451659. 47591. 45169. 47591. 45169. | 18367.
16335.
14111.
12386.
10248.
84118.
6952.
6952.
4569.
1935.
1935.
1935.
1935.
456.
265. | | 259
131
132
132
133
133
134
135
136
137
137
137
137
137
137
137
137 | | | 89.
87.
109.
1124.
152.
152.
152.
200.
200.
200.
200.
200.
200.
200.
2 | 1565.
1562.
1520.
1658.
1128.
1128.
1128.
1128.
1285.
144.
144. | | - 02904
- 01687
- 01167
- 01543
- 03263
- 02136
- 02136
- 02136
- 02136
- 02136
- 0406
- 0160
- 01 | 0.04350
0.04350
0.04350
0.05489
0.03983
0.02623
0.08788
0.08788
0.08788
0.08788
0.08788 | | 45-46-47 48-49-49
48-49-49 48- | - | Table 3: Number of person-years lived by females in Sweden, 1973-1977, calculated from $N(a) = Be^{-\int_0^a (r(x) + e(x)) dx} p(a)$, compared with recorded mean population, by single years of age. | 0.99289
0.99181
0.99181
0.99181
0.99112
0.99086
0.99086
0.99028
0.99028
0.99923
0.98992
0.98992
0.98992
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.98899
0.97899
0.97899
0.97899 | Estimated
-Recorded | Proportionate
Error | |--|------------------------|--| | 00594 1.01870 0.99289 | | | | 00886 1.05544 0.99181 | -526. | -0.00206 | | 00333 1.079566 0.99138 00353 1.03303 1.03303 0.99138 0.99138 00152 1.00568 0.99086 0.99087 000151 1.105698 0.99083 0.99083 1.11498 0.99083 0.99083 1.11498 0.99083 0.99083 1.11498 0.99083 0.99083 1.11498 0.99863 | -1087- | -0.00411 | | 00038 1.08303 0.999112 00152 1.08401 0.99086 00182 1.11498 0.99086 00082 1.11498 0.99088 00081 1.16499 0.98882 00097 1.1857 0.98882 00184 1.12789 0.98842 00184 1.12789 0.98842 00184 1.12789 0.98842 00184 1.12789 0.98842 00184 1.12789 0.98842 00184 1.12789 0.98842 00184 1.12789 0.98842 00184 1.12789 0.98842 00184 1.10411 0.98848 00187 1.08561 0.98677 00187 1.08356 0.98677 00187 1.18672 0.98848 00187 1.18672 0.98448 00187 1.18672 0.98448 00187 1.18672 0.98448 00187 1.18672 0.98448 00187 1.18672 0.98448 00187 1.1258 0.98188 00187 1.12593 0.98188 00189 1.32871 0.98088 0019 1.32871 0.98088 00071 1.25203 0.98789 00071 1.1255 0.97790 00073 0.94534 0.97780 00073 0.94534 0.97780 00073 0.94534 0.97780 00073 0.94534 0.97780 00073 0.98576 0.97780 00073 0.98576 0.97780 00073 0.98576 0.97780 00073 0.98576 0.97780 00073 0.98586 0.97780 00073 0.98586 0.97780 00073 0.98587 0.98880 0.97889 | .000- | -0.00184 | | 00162 1.09491 0.99028 | -456. | -0.00169 | | | -523. | -0.00191 | | 00037 1.1657 0.99003 1.16499 0.99003 1.16499 0.99842 1.00084 1.18789 0.98842 1.00084 1.18789 0.98842 1.00084 1.10223 0.98842 1.0023 1.00233 0.98879 1.00233 1.00233 0.98879 1.00234 1.00234 1.00234 1.00234 1.00234 1.00234 1.003310 0.98795 1.00331 1.00431 1.00431 1.00431 1.00431 1.00644 1.1640 0.98794 1.00032 1.00561 0.98795 1.00244 1.11411 0.98444 1.00022 1.20232 0.98444 1.00022 1.20232 1.20232 1.20232 0.98795 1.00022 1.20232
1.20232 | -460. | -0.00165 | | 00081 1.16499 0.9898200087 1.18037 0.9898200187 1.18037 0.9888200187 1.18730 0.9882300136 1.10233 0.9882300136 1.10233 0.9882300136 1.10233 0.9882300117 1.004019 0.9882300117 1.004019 0.9882300281 1.004611 0.9870300837 1.00835 1.00817 0.9865700805 1.00835 1.00836 1.00887 1.00837 1.00835 1.00836 1.00882 1.008836 1.30881 0.9881846 1.000039 1.30881 0.980884 1.000039 1.30881 0.980884 1.000039 1.30881 0.980884 1.000039 1.30881 0.980884 1.000039 1.308836 0.977869 1.000039 0.98336 0.977869 1.000039 0.98336 0.977869 1.000039 0.98336 0.977869 1.000039 0.98356 0.977869 1.000039 0.98559 0.97782 1.000039 0.98559 0.97782 1.000039 0.98856 0.97782 1.000039 0.98856 0.97782 1.000039 0.98859 0.96816 1.000039 0.90889 0.96816 1.000039 0.90889 0.96816 1.000039 0.90889 0.96816 1.000039 0.90889 0.96816 1.000039 0.90889 0.96816 1.000039 0.90889 0.90889 0.90889 0.90889 0.90889 0.90889 0.90889 0.90889 0.90889 0.90889 0.90889 0.90889 0.90889 0.908996 0.90889 0.90889 0.90889 0.90889 0.90889 0.908996 0.90889 0.908996 0.90899 0.90889 0.908996 0.908996 0.908996 0.908996 0.9089996 0.908996 | -448. | -0.00158 | | | -567. | -0.00195 | | 00102 1.16730 0.98942 00104 1.13789 0.98923 00117 1.00239 0.98879 00117 1.00419 0.98879 00117 1.00419 0.98879 00131 1.00547 0.98879 00298 1.00567 0.98785 0031 1.00510 0.98796 0031 1.00510 0.98796 0031 1.00510 0.98797 0031 1.00510 0.98797 0032 1.00510 0.98797 0043 1.10572 0.98798 0043 1.10572 0.98444 0043 1.11672 0.98444 0043 1.12573 0.98796 0007 1.132841 0.98255 0007 1.132841 0.98296 0007 1.18196 0.97790 0007 1.1825 0.97790 0007 1.1825 0.97790 0007 1.1825 0.97790 0007 0.988820 0.97786 0007 0.988820 0.97787 0007 0.988820 0.97787 0007 0.98966 0.97787 0007 0.98966 0.97787 0007 0.98966 0.97787 0007 0.98966 0.97787 0007 0.98966 0.97787 0007 0.98966 0.97787 0007 0.98969 0.96816 0007 0.98959 0.96816 0007 0.988870 0.96816 0007 0.988870 0.96816 0007 0.988870 0.96816 0007 0.988870 0.96816 0007 0.988870 0.96816 0007 0.988870 0.96816 0007 0.988870 0.96816 0007 0.988870 0.96816 0007 0.988870 0.96816 0007 0.988870 0.96816 0007 0.988870 0.96816 | -621. | -0.00211 | | - 00084 1.13789 0.98923 | -652. | -0.00224 | | - 00136 1,10223 0,98992 - 00121 1,06547 0,98853 - 00145 1,004019 0,98853 - 00145 1,03310 0,98853 - 00145 1,03510 0,98853 - 00143 1,04611 0,98785 - 000431 1,04611 0,98756 - 000431 1,04611 0,98757 - 000437 1,08356 0,98857 - 00487 1,14771 0,98402 - 00187 1,14771 0,98402 - 00182 1,22732 0,98404 - 00182 1,22732 0,98402 - 00182 1,22732 0,98408 - 00182 1,22732 0,98408 - 00183 1,28741 0,98108 - 00184 1,11225 0,98146 - 00187 1,14711 0,98146 - 00187 1,14125 0,98146 - 00187 1,14125 0,97869 - 00187 1,11225 0,97790 - 00187 1,11225 0,97790 - 00187 1,11225 0,97790 - 00187 1,11225 0,97790 - 00187 1,11225 0,97790 - 00187 0,98384 0,977613 - 00187 0,98384 0,977613 - 00187 0,98384 0,977613 - 00187 0,98384 0,977613 - 00187 0,98599 0,99859 - 00187 0,98599 0,99859 - 00187 0,988870 0,99859 - 00187 0,988870 0,99859 - 00187 0,988870 0,99859 - 00187 0,988870 0,99859 0,99881 | -650. | -0.00229 | | 00121 1.06547 0.98879 00117 1.00547 0.98879 00117 1.004019 0.98853 00117 1.00298 1.03407 0.98853 001310 1.03401 0.98853 001311 1.04611 0.98705 00264 1.05601 0.98577 0.98577 00865 1.06816 0.98577 0.98577 0.98577 0.98703 1.0028 1.15640 0.98788 0.98703 1.0028 1.2273 0.98444 00022 1.22732 0.98444 0.98257 1.00022 1.22532 0.98355 0.98706 1.32841 0.98203 1.32841 0.98203 1.32841 0.98203 1.32841 0.98203 1.32841 0.98203 1.32841 0.98203 1.32841 0.98708 0.97708 1.00071 1.1825 0.97790 1.00071 1.1825 0.97790 1.00071 0.98759 0.97780 1.00071 0.98759 0.97780 1.00071 0.98759 0.97781 0.97780 1.00071 0.98759 0.97781 0.97780 | -111. | -0.00261 | | -, 00117 1, 04019 0, 98853 -, 00145 1, 03310 0, 98823 -, 00045 1, 03667 0, 98785 -, 00043 1, 03667 0, 98785 -, 00043 1, 03667 0, 98786 -, 00631 1, 036611 0, 98746 -, 00805 1, 06816 0, 98657 -, 00837 1, 08836 0, 98657 -, 00487 1, 11640 0, 98657 -, 00487 1, 11771 0, 98657 -, 00487 1, 11771 0, 98486 -, 00487 1, 11771 0, 98486 -, 00487 1, 11771 0, 98486 -, 00049 1, 22637 0, 98365 -, 00079 1, 22637 0, 98366 -, 00070 1, 122503 0, 97869 1, 200050 1, 30811 0, 98084 -, 00071 1, 122503 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 11725 0, 97790 1, 97790 | -668. | 76700.0- | | 00145 1.03310 0.9882300298 1.03667 0.9882300298 1.03667 0.9878500298 1.03667 0.9878500298 1.03667 0.9878500305 1.06611 0.9870300805 1.06611 0.9870300872 1.08767 0.9867700847 1.11640 0.9867500847 1.11640 0.9867500847 1.11647 0.9867500829 1.22732 0.9848400229 1.22732 0.9848400229 1.22732 0.98484 0.9825500093 1.32841 0.9825500009 1.32841 0.9825500007 1.22503 0.9801800070 1.18196 0.97780 0.9778000071 0.98956 0.9778000073 0.98966 0.9778000073 0.98966 0.9778200073 0.98966 0.97262 0.9726200073 0.98959 0.9761300073 0.98959
0.9681600073 0.98959 0.9681600074 0.99599 0.9681600074 0.99859 0.9681600074 0.99859 0.9681600076 0.99859 0.96816 | -6-3- | 16200-0- | | -,00298 1,03667 0,98785 -,000431 1,04611 0,98785 -,00560 1,05601 0,98703 -,00805 1,06816 0,98577 -,00805 1,06816 0,98577 -,00437 1,09767 0,98575 -,00432 1,1640 0,98444 -,00432 1,18672 0,98444 -,00222 1,22732 0,98444 -,00222 1,22732 0,98444 -,00032 1,26577 0,98444 -,00000 1,3081 0,98255 -,00000 1,3081 0,982084 -,000071 1,25203 0,98786 -,00071 1,25203 0,97790 -,00071 0,9835 0,97786 -,00071 0,9835 0,97786 -,00071 0,9835 0,97786 -,00071 0,9835 0,97786 -,00071 0,98356 0,97786 -,00071 0,98356 0,97787 | -613 | 0.00240 | | 00431 1.04611 0.98736
00564 1.05601 0.98673
00637 1.06816 0.98677
00437 1.09767 0.98677
00487 1.10767 0.98675
00487 1.11640 0.98488
00487 1.11640 0.98488
00229 1.25732 0.98488
00229 1.25732 0.98486
00029 1.26957 0.98355
00076 1.32841 0.98203
00076 1.32841 0.98203
00071 1.25203 0.98146
00071 1.25203 0.97869
00031 1.2259 0.97869
00031 1.2259 0.97869
00031 0.96356 0.97760
00050 0.9262 0.97384
00073 0.94534 0.97613
00070 0.89566 0.97262
00060 0.88826 0.97262
00070 0.89569 0.96816 | - 1003 | 400000 | | -,00564 1,05601 0,98703 -,00805 1,06816 0,98677 -,00805 1,06816 0,98677 -,00817 1,08356 0,98677 -,00814 1,11640 0,98677 -,00844 1,11640 0,98678 -,00844 1,11640 0,98848 -,00828 1,18672 0,98484 -,00728 1,22573 0,98489 -,00109 1,30281 0,98255 -,00109 1,30281 0,98255 -,00009 1,30281 0,98084 -,00070 1,18196 0,9789 0,97894 1,11225 0,9789 0,9789 0,90007 0,98262 0,97899 0,9859 0,98859 0,98818 0,9789 0,98859 0,98818 0,97891 | 1004 | 00000 | | - 00805 1.06816 0.98657
- 000837 1.08356 0.98617
- 000837 1.08356 0.98617
- 00437 1.11640 0.98848
- 00432 1.18672 0.98448
- 00282 1.22732 0.98449
- 00282 1.25732 0.98355
- 00109 1.20681 0.98305
- 00109 1.30841 0.98203
- 00076 1.32841 0.98208
- 00076 1.32841 0.98084
- 00071 1.25203 0.97394
- 00071 1.25203 0.97394
- 00071 1.25203 0.97394
- 00073 0.9935 0.97708
- 00050 0.9262 0.97384
- 00070 0.89366 0.97262
- 00070 0.89559 0.96816 | -1285 | -0.00466 | | - 000837 1.08356 0.98617 - 000487 1.1640 0.98575 - 000487 1.11640 0.98575 - 000487 1.11640 0.98488 - 000282 1.22732 0.98404 - 00029 1.20587 0.98402 - 000079 1.20587 0.98203 - 000079 1.20581 0.98203 - 00070 1.1225 0.98084 - 00071 1.1225 0.97847 - 00034 1.205935 0.97847 - 00034 0.99355 0.97790 - 00050 0.98266 0.97262 - 00050 0.99356 0.97262 - 00060 0.88206 0.97262 - 00007 0.99359 0.99784 - 00007 0.99359 0.97262 - 00007 0.99359 0.99784 - 00007 0.99264 0.97262 - 00007 0.99264 0.97262 - 00007 0.99599 0.99584 - 00007 0.99599 0.99784 - 00007 0.99599 0.99786 - 00007 0.99599 0.99786 - 00007 0.99599 0.99786 - 00007 0.99599 0.99786 - 00007 0.99599 0.99778 - 00007 0.99599 0.99778 - 00007 0.99599 0.99778 - 00007 0.99599 0.99878 - 00007 0.99599 0.99878 - 00007 0.99599 0.96816 - 00007 0.99680 0.998810 - 00007 0.99680 0.998810 - 00007 0.99680 0.996816 - 00007 0.90680 0.996816 - 00007 0.90680 0.906816 - 00007 0.90680 0.90680 0.906816 - 00007 0.90680 0.90680 0.90680 0.90680 0 - 00007 0.90680 0.90680 0.90680 0.90680 0 - 00007 0.9060 0.9060 0.90680 0.90680 0 - 00007 0.9060 0.9060 0.9060 0.9060 0.9060 0.9060 0 - 00007 0.9060 | 11000 | 100000 | | - 000762 1,09767 0,98575 - 000644 1,11440 0,986372 - 000844 1,11440 0,98638 - 0.986444 - 0.00432 1,26957 0,984844 - 0.00229 1,26957 0,98484 0,98484 1,26957 0,98484 0,9823 1,26957 0,9823 1,26957 0,98203 1,32841 0,98203 1,32841 0,98084 1,22603 1,32841 0,98084 1,22603 1,2263 0,97869 1,00051 0,99559 0,97613 1,00051 0,98559 0,97613 1,00051 0,98559 0,97613 1,00051 0,98559 0,98581 0,97812 1,00051 0,98559 0,96816 1,900861 0,99559 1,900861 0,99559 1,900861 0,99559 1,900861 0,99559 1,900861 0,99559 1,900861 0,99559 1,900861 0,99559 1,900861 0,99681 0,996 | -1774 | 0000-0- | | - 00664 1,11640 0,98534 - 00684 1,11640 0,98448 - 00432 1,18672 0,98448 - 00282 1,22732 0,98448 - 00282 1,22732 0,984602 - 00109 1,26957 0,98355 - 001076 1,32841 0,98255 - 000076 1,32841 0,98255 - 000071 1,25203 0,98264 0,98684 - 000071 1,25203 0,98684 - 000071 1,25203 0,97790 - 00059 0,9935 0,97784 0,97262 0,97384 - 00060 0,88826 0,97384 - 000070 0,88559 0,96816 - 000040 0,98559 0,96816 - 000041 | -1677 | -0-00603 | | 00487 1.14711 0.9849000487 1.18672 0.9844400289 1.26732 0.98402001099 1.26857 0.9835500109 1.30881 0.9820300070 1.32871 0.9814600071 1.22871 0.9814600071 1.1225 0.9784700034 1.05035 0.9784700034 1.05035 0.9784700034 0.99355 0.9779000050 0.98264 0.9726200060 0.88820 0.9726200070 0.89559 0.99680 | -1547 | -0.00542 | | -,00432 1,18672 0,99444 -,00229 1,26957 0,98355 -,00109 1,30881 0,98256 -,00009 1,32841 0,98203 -,00009 1,32841 0,98203 -,00001 1,32841 0,98146 -,00071 1,18196 0,98146 -,00071 1,18196 0,97869 -,00071 1,1825 0,97869 -,00051 0,9935 0,97869 -,00050 0,98966 0,97262 -,00070 0,88820 0,97262 -,00070 0,88820 0,978127 -,00070 0,88820 0,96816 -,00061 0,98559 0,96816 | -1578 | -0.00535 | | - 000229 1.26557 0.98355 | -1410. | -0.00463 | | 001029 1.2059 0.98306 001029 1.30681 0.98255 000076 1.32841 0.98203 0.98203 00006 1.32841 0.98203 0.98203 000070 1.1225 0.97081 00034 1.225 0.97391 0.97262 00034 1.1225 0.97396 00034 0.96336 0.97262 00051 0.96236 0.97262 000070 0.92262 0.97262 0.97262 000070 0.89559 0.96816 000070 0.89559 0.96816 000061 0.99559 0.96816 000061 0.99559 0.96816 000061 0.99559 0.96816 000061 0.99559 0.96816 000061 0.99559 0.96816 000061 0.99559 0.96816 000061 0.99559 0.96816 000061 0.99559 0.96816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.996816 000061 0.96816 000061 000061 0.96816 000061 0.96816 000061 000061 0000 | -1406. | -0.00446 | | 00076 1.32841 0.98255
00076 1.32841 0.98255
00071 1.32841 0.98253
00071 1.32831 0.980846
00071 1.31996 0.980818
00031 1.11225 0.97867
00051 0.9935 0.97867
00051 0.9635 0.97788
00051 0.9635 0.97788
00051 0.98586 0.97613
00072 0.8956 0.97847
00072 0.8956 0.97847
00070 0.8956 0.97262
00040 0.8956 0.97267
00040 0.89569 0.96816 | -945. | -0.00291 | | 00093 1.32871 0.99203
00071 1.32871 0.98146
00071 1.25203 0.98084
00071 1.18196 0.98018
00071 1.1825 0.97869
00059 0.9935 0.97789
00073 0.94534 0.97789
00073 0.94534 0.97613
00073 0.9856 0.97613
00073 0.88820 0.9784
00060 0.8956 0.9784
00070 0.89866 0.97262
00070 0.8956 0.97264
00070 0.89569 0.96816 | -1189. | -0.00361 | | 00060 1.30381 0.9814600070 1.18196 0.9808400071 1.125203 0.9808400031 1.1225 0.9786900059 0.9935 0.9779800051 0.96636 0.9779800073 0.9434 0.97561300073 0.9262 0.9758400073 0.88826 0.9728400060
0.88876 0.9726200073 0.89596 0.9726200073 0.89596 0.9726200060 0.89859 0.96816 | -1199. | -0.00364 | | 00071 1.25203 0.98084
00071 1.1252 0.98084
00031 1.1125 0.97869
00051 0.9935 0.97869
00051 0.9635 0.97708
00073 0.94534 0.97713
00073 0.94534 0.97713
00072 0.8966 0.97784
00072 0.8966 0.97784
00040 0.88620 0.97784
00040 0.88764 0.97787
00040 0.89559 0.96816 | -1117. | -0.00346 | | -, 00070 1,18196 0,98018 -, 00070 1,1825 0,9947 -, 00034 1,05035 0,97869 -, 00059 0,9935 0,97788 -, 00073 0,94534 0,97613 -, 00073 0,92262 0,97562 -, 00070 0,92262 0,97384 -, 00060 0,88820 0,97262 -, 00040 0,888764 0,96816 -, 00061 0,90880 0,96816 | -1139. | -0.00358 | | 00031 1.1122 0.97847
00059 0.9935 0.97796
00051 0.96636 0.97798
00073 0.94534 0.97613
00073 0.9262 0.975612
00070 0.9262 0.97562
00060 0.88820 0.97262
00073 0.8956 0.97262
00073 0.8959 0.978147
00073 0.8959 0.96816 | • 0 0 0 | -0.00338 | | -,00034 1,0535 0,97369 -,00054 0,09935 0,97790 0,99935 0,97790 -,00051 0,96536 0,97708 0,97708 0,97708 0,9262 0,97784 -,00060 0,9262 0,9784 0,9080 0,9786 0, | -970- | -0 00323 | | -, 00059 0,9935 0,97708 -, 00073 0,94534 0,97708 -, 00073 0,94534 0,97613 -, 00072 0,92262 0,97784 -, 00072 0,898620 0,97262 -, 00040 0,898764 0,90880 0,96816 -, 00061 0,90880 0,96816 | | -0.00325 | | -,00051 0,96636 0,97/U8
-,00073 0,94534 0,97613
-,00060 0,92262 0,97584
-,00060 0,88820 0,97262
-,00073 0,8956 0,97262
-,00073 0,8959 0,96816
-,00061 0,8959 0,96816 | - 708 | -0.00297 | | - 00073 0.94534 0.94514 - 0.97613 - 0.00072 0.92262 0.97502 - 0.0072 0.8956 0.97384 - 0.0060 0.88764 0.97782 - 0.00040 0.89559 0.96816 - 0.00661 0.90880 0.96816 | -718 | -0-00309 | | - 00060 0.92282 0.94784
- 00060 0.8986 0.97384
- 00073 0.88764 0.97262
- 00073 0.89764 0.97127
- 00061 0.89559 0.96816
- 00061 0.90880 0.96816 | -692 | -0.00305 | | 00072 0.89946 0.97384
000073 0.88820 0.97262
00040 0.89559 0.96980
00061 0.90860 0.96816 | -663- | -0.00300 | | 00060 0.88820 0.97622
00073 0.88764 0.9127
000040 0.89559 0.96980
00061 0.90880 0.96816 | -616. | -0.00283 | | 00040 0.88164 0.56712
00040 0.89559 0.96980
00 <u>0</u> 61 0.90880 0.96816 | -646. | -0.00297 | | -,00040 0,89539 0,96816
-,00061 0,90880 0,96816 | -611. | -0.00279 | | | -652. | -0.00294 | | 224783 20056 0 92585 0-96630 224783 | -681. | -0.00302 | | 33. | | - 652.
- 663.
- 663.
- 663.
- 663.
- 663.
- 663.
- 663.
- 663.
- 1104.
- 1 | | -0,00315 | -0.00299 | -0.00294 | -0.00305 | -0.00312 | -0.00314 | -0.00307 | -0.00332 | -0.00297 | 0.00310 | 60.00.0- | -0.00329 | -0.00309 | -0.00299 | -0.00306 | -0.00309 | -0.00329 | -0.00309 | -0.00328 | -0.00329 | -0.00336 | -0.00376 | -0.00374 | -0.00384 | -0.00401 | -0.00423 | 71 0000-0- | -0.00444 | -0.00390 | -0.00518 | -0.00483 | -0.00481 | -0-00497 | -0.00611 | -0.00571 | 56900 | -0.00681 | -0.00722 | -0.00773 | -0.00508 | 04 / 00 • 01 | 06 900 -0- | -0-01064 | 67600"0- | -0.00088 | 60000 | 0.03634 | -0.05871 | -0.08718 | -0,15025 | -0.24205 | | |----------|----------|----------|----------|----------|----------|----------|----------|----------|---------------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|----------|------------|----------|----------|----------|----------|----------|----------|----------|----------|---------|----------|----------|----------|----------|--------------|------------|----------|----------|----------|---------|---------|----------|----------|----------|----------|--| | -721. | -693 | -690 | -729. | -159. | -779. | -784- | -878- | -191- | -818- | -79% | -821. | -758. | -737. | -758- | -765. | -814. | -761. | -800 | -191. | -190- | -865. | -833. | -822. | -823. | -835. | -/81. | -801. | -127 | -773. | -666 | -610- | -578. | -645. | -243 | -513 | -435, | -394 | -354. | -191. | -230. | -170. | -504· | 130 | | 100 | . 06- | -143. | -137. | -146. | -140. | | | 228941. | 231413. | 234574. | 238770. | 243365. | 248323. | 255273. | 264318. | 266239 | 263418 | 258419 | 249536 | 245120 | 246508 | 247408. | 247733. | 247506. | 246362 | 244119. | 240250. | 235284. | 229733. | 222421. | 213/51. | 205446. | 197592. | 189418 | 170016 | 160701 | 149379 | 137930. | 126944. | 116212. | 105647. | 45075 | 73840 | 63813. | 54539 | 45810. | 37684. | 20010 | 24654. | 19152 | 14 358. | 7636 | 5370 | 3566 | 2438. | 1567. | 970. | 580. | | | 228220. | 230721. | 233884. | 238041. | 242606. | 247544. | 254489. | 267440 | 265216. | 262600 | 257621. | 248716. | 244362. | 245771. | 246650. | 246968. | 246692. | 245601. | 243319. | 239459. | 234495 | 228868. | 241288. | 212930. | 106767 | 199737 | 179680 | 170249 | 159927. | 148606. | 137264. | 126334. | 115634. | 105002. | 83860 | 73327 | 63378 | 54145. | 45456. | 37493. | -0000 | 24484. | 10740. | 10501 | 7521 | 5181. | 3476 | 2295. | 1430. | 824. | *011 | | | 0.96438 | 0.96247 | 0.96025 | 0.95769 | 0.95497 | 0.95198 | 0.94887 | 0.94173 | 0.93771 | 0.93342 | 0.92871 | 0.92361 | 0.91822 | 0.91248 | 0.90621 | 0.89926 | 0.89180 | 0.88368 | 0.87452 | 0.86449 | 0.85354 | 0.84140 | 0.020.0 | 0.000 | 0.19130 | 0 75061 | 0.73803 | 0.71445 | 0.68838 | 0.65965 | 0.62856 | 0.59544 | 0.56025 | 0.52547 | 0.44462 | 0.40364 | 0,36261 | 0.32118 | 766/70 | 0.24050 | | 0.17002 | 0 11313 | 0 08847 | 0 06767 | 0.05007 | 0.03628 | 0.02541 | 0.01694 | 0.01072 | 0.00622 | | | 0.94188 | 0.95409 | 0.96941 | 0.98928 | 1.01112 | 1.03494 | 1.10893 | 1. 13029 | 1.12570 | 1.11971 | 1,10406 | 1.07177 | 1.05919 | 1.07201 | 1.08328 | 1.09306 | 1, 10097 | 1.10618 | 1.10737 | 1,10246 | 1.09345 | 1 06493 | 1 04175 | 1 021116 | 1.00472 | 0.98838 | 0.96898 | 0.94842 | 0.92466 | 0.89662 | 0.86916 | 777778 | 0.82148 | 0.77588 | 0.75067 | 0.72303 | 0.69564 | 0.67097 | 0.63031 | 0.59748 | 7100 | 0.5/316 | 0.0400 | 0-47242 | 0.44238 | 0.41183 | 0.38142 | 0.35940 | 0.33602 | 0.30606 | 0.28151 | | | 00085 | 00054 | 00038 | 9 1000 | 00042 | 00039 | 00018 | 00024 | 00024 | 00020 | 00021 | 00034 | 00015 | 00011 | 00017 | - 00008 | - 00005 | 0.0000 | 00000- | 00019 | - 00011 | - 00012 | 0000 | - 00012 | - 00005 | - 000020 | - 00018 | 00026 | 00031 | 00017 | - 00014 | - 00022 | -, 00020 | 20000 - | 00018 | +00000 | 0.0 | 00026 | 1000 | -,00010 | 00000 | 0.00005 | - 00007 | 60000 | 0.0 | 0.0 | 00084 | 0.0 | 0.0 | 00206 | 0.0 | | | 0.00970 | 01467 | 01627 | 02346 | 01934 | 02642 | 04483 | 0.00324 | 0.00538 | 0.00572 | 0.02285 | 0.03706 | 01297 | 01083 | 00981 | 00792 | 00639 | 00303 | 0.00084 | 0.00825 | 0.00847 | 0.0155 | 0 02283 | 0 01682 | 0.01662 | 0.01663 | 0.0342 | 0.01991 | 0.03141 | 0.03065 | 0.03187 | 0.02620 | 0.02936 | 0.02010 | 0.03709 | 0.03815 | 0.03913 | 0.03335 | 0.04.93 | 0.03408 | 0.04932 | 0.06882 | 0.06721 | 0.06554 | 0.06597 | 0.07715 | 0.07712 | 0.04266 | 0.09190 | 0.09691 | 0.0/241 | | | 94 -54 | 46- 47 | 84 -/4 | 64 -84 | 49-50 | 51-51 | 52-53 | 53- 54 | 54- 55 | 55- 56 | 56- 57 | 57- 58 | 58- 59 | 29- 60 | 60- 61 | 61- 62 | 62- 63 | 63-64 | 64-65 | 60-00 | 19 -00 | 68-69 | 69-70 | 70- 71 | 71- 77 | 72 73 | 73- 74 | 74- 75 | 75- 76 | 76- 77 | 77- 78 | 78- 79 | 80- 80 | 81-82 | 82-83 | | | 85- 86 | 97- 90 | | | 90- 91 | 91- 92 | | | 94- 95 | 96 -56 | 26 - 96 | 97- 98 | 98-99 | 99-100 | | Table 4: Proportionate distribution of female population in Sweden in 1976, by five-year age intervals, calculated from | distribution. | |---| | recorded | | with | | compared with rec | | x
5 ^L a/5 ^L o, | | $(\mathbf{r} + \mathbf{e})\mathbf{d}$ | | 5°°°° | | 5°a = . | | | Growth Rate
(x Five) | Rate of Out-Migration (x Five) | | | Estimated | Recorded | Estimated | Proportion | |---------------|-------------------------|--------------------------------|--|---------|-----------|------------------|-----------|-------------| | Age | 5. 5 ^r x | 5.ex | $\frac{5^{\mathrm{La}}}{5^{\mathrm{a}}}$ | 5°a/5°0 | 5°a | 5 ^C a | -Recorded | of Recorded | | † -0 |
-,11185 | 1.00000 | 1.00000 | 1.00000 | 0.06176 | 0.06399 | -0.00222 | -0.03600 | | 5- 9 | 06716 | 1.00677 | 0.99854 | 1.11829 | 0.06907 | 0.06722 | 0.00185 | 0.0000 | | 10- 14 | 0.15488 | 0.99417 | 6 7 6 6 7 6 6 | 1.08119 | 0.06678 | 0.06863 | -0.00185 | -0 02766 | | 15- 19 | 01180 | 1.00148 | 0.99587 | 1,02368 | 0.06323 | 0.06279 | 0.00044 | 0.00689 | | 20- 24 | 01436 | 1,02013 | 0.99340 | 1.07352 | 0.06630 | 0.06645 | -0.00014 | -0.00217 | | 25- 29 | 15421 | 1.01423 | 0.99083 | 1.20175 | 0.07422 | 0.07615 | -0.00193 | 0.050.0- | | 30-34 | 0.26978 | 0.99497 | 0.98767 | 1.14428 | 0.07067 | 0.07484 | -3.00417 | -0.05898 | | 35-39 | 0.12165 | 0.98983 | 0.98319 | 0.94298 | 0.05824 | 0.05751 | 9-00073 | 0 01259 | | th -0t | 06000 | 0.98926 | 0.97649 | 0.88718 | 0.05480 | 0.05246 | 0.00233 | 0.04256 | | 45- 49 | 07114 | 0.98833 | 0.96682 | 0.91544 | 0.05654 | 0.05583 | 0.00071 | 0.01257 | | 20- 54 | 17321 | 0.99642 | 0.95245 | 1.02243 | 0.06315 | 0.06148 | 0.00167 | 0.02638 | | 22- 59 | 0.11577 | 0.98501 | 0.93075 | 1.03021 | 0.06363 | 0.06215 | 0.00148 | 0.02324 | | t9 -09 | 04301 | 0.98386 | 0.89807 | 0.95924 | 0.05925 | 0.05935 | -0.00010 | -0.00170 | | 65- 69 | 0.04364 | 0.98354 | 0.84714 | 0.90493 | 0.05589 | 0.05602 | -0.00013 | -0.00235 | | 70- 74 | 0.08447 | 0.98385 | 0.76448 | 0.76653 | 0.04734 | 0,04648 | 0.00087 | 0.01829 | | 75- 79 | 0.15347 | 0.98410 | 0.63254 | 0.56365 | 0.03481 | 0.03435 | 9,00046 | 0.01328 | | 80-84 | 0.13461 | 0.98346 | 0.44501 | 0.34347 | 0.02121 | 0.02114 | 0.00007 | 0.00329 | | 85-89 | 0.18350 | 0.98300 | 0.23948 | 0.15763 | 0.00974 | 0.00970 | 0000000 | 0.00368 | | ₹ -06 | 0.29375 | 0.98291 | 0.08733 | 0.04527 | 0.00280 | 0.00294 | -0.00015 | -0.05278 | | 95- 99 | 0.05377 | 0.98272 | 0.01844 | 0.00803 | 0.00050 | 0.00047 | 0.00002 | 0.04817 | | 100 + | 0.41825 | 0.98313 | 9900000 | 0.00112 | 0.00007 | 0.00004 | 0.0003 | 0.45726 | 100 $^{\Sigma}$ $_{\circ}^{\zeta}$ $_{\circ}^{\zeta}$ $_{\circ}^{\zeta}$ = 16.191; $_{\circ}^{\zeta}$ = 1/16.191 $_{\circ}$ (In this table $\int_{0.5\,\mathrm{x}}^{a} r_{\mathrm{d}}^{}$ is estimated from values of $\int_{\mathrm{x}}^{r} at \ \mathrm{x=0,\ 5,\ 10,\ etc.}$) Table 5: Proportionate distribution of female population in Sweden in 1976, by five-year age intervals, calculated from $_5 c_a = _5 c_o e^{-\int_0^a (_5 r_a + _5 e^*) dx}$ $_5 L_a /_5 L_o$, compared with recorded distribution. | Age | $-\int_0^a \int_x^a d$ | -/a e d | 5 ^L a/5 ^L o | 5 ca / 5 co | Estimated 5 a | Recorded 5 a | Estimated
-Recorded | Proportion
of Recorded | |-----------|------------------------|---------|-----------------------------------|-------------|---------------|--------------|------------------------|---------------------------| | th -0 | 1,00000 | 1.00000 | 1.00000 | 1.00000 | 0.06400 | 0.06398 | 0.0000 | 7.000 | | 2- 9 | 0.97438 | 1.09433 | 0.99854 | 1.05110 | 0.06727 | 0.06722 | 0.00005 | 0.00081 | | 10- 14 | 0.95636 | 0.99342 | 0.99749 | 1.07305 | 0.06868 | 0.06862 | 0-00006 | 0.00080 | | 15- 19 | 0.85279 | 0.99712 | 0.99587 | 0.97991 | 0.06272 | 0.05291 | -0.00019 | -0.00307 | | 20- 24 | 0.95904 | 1.02596 | 0.99340 | 1.03454 | 0.06621 | 0.06644 | -0.00023 | -0.00352 | | 67 - 67 | 1.05601 | 1.01421 | 0.99083 | 1.18877 | 0.07608 | 0.07608 | 0.00001 | 0.00007 | | 30- 34 | 0.92354 | 0.99352 | 0.98767 | 1,16955 | 0.07485 | 0.07484 | 0.00001 | 9,00018 | | 35- 39 | 0.72551 | 0.98964 | 0.98319 | 0.89916 | 0.05755 | 0.05751 | 0.0000 | 0_00073 | | n t - 0 t | 0.86355 | 0.98891 | 0.97649 | 0.82034 | 0.05250 | 0.05246 | 0.0000 | 0.00080 | | 45-49 | 1.01062 | 0.98881 | 0.96682 | 0.87307 | 0.05588 | 0.05583 | 0.00005 | 0.00091 | | 50- 54 | 1.05410 | 0.98622 | 0.95245 | 0.96178 | 0.06156 | 0.06148 | 0.0007 | 0.00122 | | 55- 59 | 0.97650 | 0.98501 | 0.93075 | 0.97243 | 0.06224 | 0.06215 | 60000 0 | 0_00143 | | 60- 64 | 0.93520 | 0.98393 | 0.89807 | 0.92872 | 0.05944 | 0.35934 | 0,00010 | 0.00160 | | 69-69 | 0.94584 | 0.98326 | 0.84714 | 0.87637 | 0.05609 | 0.05602 | 0.00007 | 0.00123 | | 70- /4 | 0.86828 | 0.98375 | 0.76448 | 0.72664 | 0.04651 | 0.04548 | 0.0003 | 0.00066 | | 15- 79 | 0.84254 | 0.98427 | 0.63254 | 0.53632 | 0.03433 | 0.03435 | -0.00092 | -0.00070 | | 80-84 | 0.82487 | 0.98339 | 0.44501 | 0.32922 | 0.02107 | 0.02114 | -0.00007 | -0.00342 | | 85-89 | 0.80220 | 0.98315 | 0.23948 | 0.15030 | 0.00962 | 0.00970 | -0.00008 | -0-00834 | | 6 - 06 | 0.78191 | 0.98281 | 0.08733 | 0.04531 | 0.00290 | 0.00294 | +0000°0- | -0.01513 | | 95- 99 | 0.72685 | 0.98320 | 0.01844 | 0.00735 | 0.00047 | 0.00047 | -0.0000 | 10000 | | 00-104 | 0.53501 | 0.98313 | 9900000 | 0.00074 | 0.00005 | 0.0000 | 0_00001 | 0.20163 | | | | | | | | | | | 100 ${}^{\Sigma}_{5}c_{a}/{}^{5}c_{o} = 15.62; \quad {}^{5}c_{o} = 1/15.62$ (In this table $\int_{0.5\,\mathrm{x}}^{\mathrm{r}} \mathrm{x}_{\mathrm{x}}^{\mathrm{d}}$ is estimated from values of $_{5\,\mathrm{x}}^{\mathrm{r}}$ at x=0, 1, 2, 3, 4, 5, etc.) Note that the proportionate age distribution is even more accurately estimated than the absolute numbers. The estimated population is consistently smaller than the recorded by about 0.005 times the recorded number in Table A-1, and about .0035 times the recorded number in Table A-2. The estimation of the single-year age distribution of person-years lived in 1973-1977 is equally precise, with a typical proportionate underestimate of about 0.003 times the recorded number, until ages above 90. Calculation of the age distribution by five-year age intervals produces an estimate of substantially less precision than the single-year estimates, when growth rates of five-year age groups are utilized only at intervals of five years. (See Table 4, where the error reaches almost six percent of the true proportion.) The reason for this greater error is that the proper identity is $$\int_{0}^{a} (5^{r}x^{+}5^{e}x) dx$$ $$5^{N}a = 5^{N}0^{e} \qquad 5^{L}a/5^{L}0^{o},$$ so that the precise calculation calls for the evaluation of the integral of a function $({}_5r_x + {}_5e_x)$ that is a continuous function of age. The integral of ${}_5r_x$ from o to \underline{a} is really something like $$\frac{5^{r}}{20} + \frac{5^{r}}{10} + \frac{5^{r}}{10} + \frac{5^{r}}{20} + \frac{5^{r}}{20}$$ In constructing Table 4, $\int_0^a {_5r_x} dx$ was approximated by a trapezoidal formula using values of $_5r_o$, $_5r_5$, etc., as $_2.5(_5r_o)+5(_5r_5+\ldots_5r_{a-5})+2.5(_5r_a)$, analogous to estimating the integral of any continuous function by five-year wide trapezoids. Since, in Sweden, the irregular age distribution caused by past variations in fertility causes an erratic sequence of age-specific growth rates, the trapezoidal approximation at five-year intervals is not a very close approximation. In Table 5 the age distribution by five-year intervals has been calculated on the basis of the same equation, but with five-year growth rates (and emigration rates) taken at starting ages only one year apart. In other words, $\int\limits_0^a 5^r x dx$ is calculated by a trapezoidal approximation, but with one-year wide trapezoids; namely $\int\limits_0^a 5^r x dx \approx 5^r o^{2} + 5^r 1 + 5^r 2 + \dots 5^r a - 1 + 5^r a^2$. Note that in Table 5 this calculation has produced an age distribution that fits the recorded distribution with extraordinary precision. As a last point in this illustrative use of Swedish data, we have calculated the net reproduction rate for each year from 1973 to 1977 from the formula NRR = $$\int_{\alpha}^{a} r(x)dx$$ $\int_{\alpha}^{\beta} e^{-x} v(a)da$, where $v(a)$ is the proportion of the total number of births occurring to women at age \underline{a} . The sequence is 0.889, 0.896, 0.849, 0.809, 0.792, compared with the official calculations of 0.896, 0.899, 0.851, 0.806, 0.785 — an error of less than one percent in every year in calculating the net reproduction rate without explicit use of mortality data, or of the level of fertility. #### Applications for Estimation from Limited Data ## a) Mortality The formulation in (3) for a closed population can be used to infer intercensal mortality conditions from two census age distributions. Recognizing that life expectancy at birth is $$e_0^0 = \int_0^a p(a)da$$, one can simply integrate both sides of equation (3) to estimate e_0^0 as $$e_{o}^{o} = \int_{0}^{\infty} \frac{N(a)}{N(0)} e^{o} da .$$ Generally, estimates of N(0) will be poor. Higher starting points can usually be more accurately estimated by averaging successive segments of the age distribution. For example, life expectancy at age 5 is $$e_5^0 = \int_5^\infty \frac{N(a)}{N(5)} e^{\int_5^a r(x) dx} da .$$ N(5) can be estimated as one-tenth of the total population between ages 0 and 10. Preston and Bennett (1982) have shown that this estimation system gives good results in Sweden, India, and the Republic of Korea. It is always subject to the quality of census data, of course, and seems to work substantially less well in Kenya (Hill, 1981). Directly inferring mortality from two age distributions means that errors in the latter will often affect the former. Partly for this reason, demographers have developed "model" life tables that impose regularity on the age sequence of p(a)'s and thus help to smooth out distortions in the age distributions. All of the estimation methods that combine model life tables and stable population analysis can be adapted to the more general case. For example, Coale and Demeny (1967) recommend using the cumulative proportion below certain ages, in combination with the stable growth rate, to identify the correct level of mortality within a model life table system. Age 35 is often considered a good choice for estimation purposes. The new formula for the proportion below age 35 is $$C(35) = \frac{\int_{0}^{a} r(x)dx}{\int_{0}^{a} e^{0}} p(a)da$$ $$\int_{0}^{a} r(x)dx$$ $$\int_{0}^{a} e^{0} p(a)da$$ Solving for the current level of mortality thus involves substituting trial values of the p(a) function among candidates drawn from a model life
table system until a set is found that equates the right-hand side to the observed value of C(35). Higher levels of life expectancy will produce lower values of C(35), given the observed set of r(x)'s. An alternative procedure is to use Brass's (1975) one-parameter transformation of age-specific death rates. Assume that $$\frac{q(a)}{p(a)} = \kappa \frac{q_s(a)}{p_s(a)} ,$$ where q(a) = 1 - p(a) $q_s(a)$, $p_s(a) = q(a)$ and p(a) functions in the model life table adopted as a standard κ = parameter representing level of mortality in the population. After substituting into (5) and simplification, we find that $$\frac{e^{o}}{c(a)} = \frac{1}{b} + \frac{\kappa}{b} \cdot \frac{q_{s}(a)}{p_{s}(a)}.$$ This is now a simple linear equation whose intercept is the reciprocal of the birth rate and whose slope is the product of the intercept and κ . Preston (1982) applies this procedure in several countries with promising results. By generalizing stable population relations the new equations seem certain to displace the estimation procedures based upon quasi-stable methods (e.g., Coale and Demeny, 1967). These involved simulations of the effect of mortality change on population age structures and growth rates. The analyst then attempts to locate the simulation appropriate to his situation by referring to the growth history of the population under study. But we have seen that all of the features of that history that are pertinent to demographic estimation are contained in the series of contemporaneous agespecific growth rates. Another data situation pertains when registered deaths are available by age. If death registration is complete, of course, no indirect estimation of mortality is required. But often the level of completeness is unknown. As Bennett and Horiuchi (1981) have shown, it is possible to use the system to estimate the completeness of registration. As demonstrated above, $$d(a) = \frac{\int_{\infty}^{a} f(x)dx}{\int_{\infty}^{a} f(x)dx}.$$ $$\int_{0}^{\infty} D(a)e^{0} da$$ D(a) is simply observed deaths at age \underline{a} , and d(a) = p(a) μ (a) is deaths in the underlying life table at age \underline{a} corresponding to current mortality conditions (with radix of one). Integrated from 0 to ∞ , the d(a) function must equal unity. Thus $$\begin{array}{cccc} & & & & & \\ & & & & & \\ \int D(a) & e & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline & & & & \\ & & & & \\ \hline &$$ However, the left-hand side of equation (16) will equal unity only if deaths are completely registered. If they are registered with completeness C at all ages, then the value of the left-hand side will equal C. Therefore, its value provides a direct estimate of registration completeness. Equation (16) can be implemented from any starting age and need not begin at zero, since the probability of dying above age \underline{y} (the arbitrary starting age) for someone who survived to that age is always unity. Estimates are less vulnerable to error in the N(0) or N(y) series if the registered deaths are compared with the total population above 0 or \underline{y} . This improvement can be introduced by integrating over age for a second time. In this case the formula for C starting from arbitrary age \underline{y} is Bennett and Horiuchi (1981) have shown that equation (17) gives very good results in Sweden and the Republic of Korea. Note that, after solving for C in the more robust formula (17), one can then take the estimated value, insert it into (16) to correct the D(a) series, and use (16) to estimate the "true" number of births, N(0). Thus, registered deaths by age and agespecific growth rates are sufficient to estimate the birth rate. Using them in this fashion requires the assumption that C is invariant to age, which may be untenable for infancy. The system in (17) can give different and hence inconsistent estimates of C for different starting ages. A fitting procedure is available to produce a synthetic estimate. If deaths are registered with completeness C relative to the completeness of population enumeration, then in a life table produced from the data, $$p_{T}(a) = p_{R}(a)^{1/C}$$ where $p_R(a)$ is the probability of surviving to age \underline{a} in the life table produced by the data and $p_T(a)$ is the true probability under prevailing mortality conditions. Substituting this expression into equation (5), taking logs and rearranging, we have fing, we have $$\ln (a) - \int_{0}^{a} r(x) dx = \ln b + \frac{1}{C} \ln p_{R}(a)$$ $$= \ln b - \frac{1}{C} \int_{0}^{a} \mu_{R}(x) dx .$$ This is again a simple linear equation whose intercept is the log of the birth rate and whose slope is the reciprocal of registration completeness. The independent variable is simply the sum of recorded age-specific growth rates up to age a. While this system of equations is useful for estimating registration completeness, it can also be used to infer mortality (and fertility) conditions directly from two sets of deaths by age. If we are prepared to assume that mortality is constant over the period of observation, then $$r(x, t \text{ to } t+n) = \ln \left[\frac{D(x, t+n)}{D(x, t)} \right]$$ The age-specific growth rates can be inferred from the changes over time in numbers of deaths by age. Deaths in the prevailing life table (with radix one) are simply $$d(a) = \frac{\int_{\infty}^{a} r(x)dx}{\int_{\infty}^{a} r(x)dx}$$ $$\int_{0}^{\pi} D(a)e^{-O} da$$ Thus, from nothing more than two sets of age-specific numbers of deaths it is possible to construct a life table and to estimate birth rates (via equation 16). The required assumption is that mortality is constant during the interval of observation (and, of course, that the population is closed to or adjusted for migration). Since countries often collected and tabulated deaths by age before they conducted censuses, this procedure may find application in historical demographic research. In this section and the succeeding one, it is assumed that the population is closed to migration, or, what is equivalent, that age-specific rates of net out-migration have been added to age-specific growth rates before the formulas are applied. ### b) Birth rates and fertility Estimating the birth rate from intercensal growth rates and a life table believed to prevail for the intercensal period can be done straightaway with equation (4). It is only necessary to substitute appropriate values into the equation. A particular advantage of this procedure is that it makes no use of the reported age distribution, which is often very seriously distorted at the young ages that are critical for many estimates of birth rates (e.g., through back-projection of age distributions). Instead, only age-specific growth rates are required, which would be unaffected by constant proportionate distortions at the first and second censuses. The age-specific growth rates could be combined with estimates of mortality made by Brass-type procedures based on reported numbers of children ever born and children surviving. We have already shown how an estimate of the birth rate can be produced if the life table is unknown but is assumed to belong to a one-parameter set of model life tables, or if (not necessarily completely) registered deaths by age are available. We also observed above that it is possible to estimate the net reproduction rate directly from the set of r(x)'s and the reported age distribution of mothers at childbirth. The proportion of births occurring to mothers aged a, v(a), at any time t is $$a - \int r(x)dx$$ $$v(a) = e^{0} p(a)m(a) .$$ A survey question on births in the past year, or information facilitating the selection of a model fertility schedule, will provide an estimate of v(a). Then the net reproduction rate can be estimated by rearranging this expression and integrating. $$NRR = \int_{\alpha}^{\beta} p(a)m(a)da = \int_{\alpha}^{\beta} v(a)e^{O} da.$$ By its simplicity, what this expression (and certain earlier ones) seems to be telling us is that estimates of the net reproduction rate and the net maternity function are more readily and robustly inferred from age-specific growth rates than are either fertility or mortality conditions separately. This is analogous to relations among crude rates, since the crude rate of natural increase gives us directly the difference between crude birth and crude death rates but no separate information on either. Armed with an estimate of the net reproduction rate, one can determine the approximate value of the gross reproduction rate (and the total fertility rate) by the use of two well-known approximations: NRR = GRR $p(\overline{m})$ (where $p(\overline{m})$ is the probability of surviving to the mean age of the net maternity function), and TFR = GRR (1+SRB), where SRB is the ratio of male to female births. The proportion surviving to \bar{m} can be approximated from Brass-style estimates of $\ell(3)$ or $\ell(5)$ plus estimates of survival from childhood to \bar{m} from some form of model life table, and 1+SRB can be taken as about 2.05. If the whole series of p(a) can be estimated, age-specific fertility rates can be estimated by $m(a) = v(a) e^{0}$ /p(a) Like other demographic series, age-specific growth rates are subject to error. When estimated from intercensal population change, they are subject to error from differences in coverage completeness between the censuses and from intercensal changes in the patterns of age misreporting. Age misreporting tends to have a large geo-culture component; patterns have apparently been very constant over a half century in India, for example (Zlotnik, 1979). Age tends to be quite well reported in countries of the Chinese-Japanese cultural sphere. There is usually little reason to expect that
patterns of age misreporting will change radically from one census to the next, although the wording of age questions and instructions to If changes in the pattern of age enumerators can provoke such changes. misreporting involve only transfers between two adjacent age groups, the effect on the equations should not be large since they all involve the cumulative sum of growth rates up to a particular age. Differences in census coverage completeness may be more problematic than the changes in age misreporting for most countries. A 2 percent improvement or deterioration in coverage between censuses separated by 10 years will evoke a change in all age-specific growth rates by .002. This is not a trivial magnitude in terms of its effect on the $\exp\left\{-\int_{\Gamma}(x)dx\right\}$ function, which will change by the factor .951 by age 25. No single strategy can be enunciated for dealing with an erroneous series of growth rates. If all other demographic information is accurate, it is of course possible to estimate the error in the age-specific growth series directly by applying equation (5) to successive ages. This set of error estimates would then provide a direct way of correcting the second census to make it comparable in completeness and age misreporting to the first. But it will be rare that other information can be assumed completely accurate. The general situation is one where nothing is known for certain. Here the new equations at least provide tests of consistency additional to those normally used. The most common consistency test compares estimated crude birth and death rates with recorded population growth from censuses. We can add to that test one in the form of equation (6) that displays a necessary relationship among age-specific growth rates and age-specific fertility and mortality rates prior to the end of childbearing. Because the Brass procedures for estimating age-specific mortality and fertility are widely used, opportunities for such an application are abundant. Equation (5) is also a strong check of consistency among estimated birth rates, agespecific mortality, and age-specific growth. It is also possible to estimate the degree of differential coverage in the two censuses, providing that one is willing to assume it to be invariant to age or to follow some other pre-specified functional form. If the second census is uniformly in error relative to the first by a ratio constant with age, then all computed age-specific growth rates will be in error by the same absolute amount γ . In the presence of such an error, all of the r(x)'s in formulas 4-6 must be replaced with $r_R(x) + \gamma$, where $r_R(x)$ is the observed (i.e., erroneous) growth rate at age \underline{x} . Equation (5) now becomes $$c(a) = be^{0} r_{R}(x)dx - \gamma a$$ $$c(a) = be^{0} e p(a).$$ One may estimate γ by taking logs of both sides and rearranging: $$lnc(a) - lnp(a) + \int_{0}^{a} r_{R}(x)dx = lnb - \gamma a.$$ (18) The value of γ can now be estimated as the slope of a line. If registered deaths are available but the completeness of registration is an unknown, designated C as before, then $$lnc(a) + \int_{0}^{a} r_{R}(x)dx = lnb - \gamma a - \frac{1}{c} \int_{0}^{a} \mu_{R}(x)dx$$ (19) Equation (19) is now a linear equation with two independent variables that should not be highly colinear, so that identification of γ and C should be possible. Still other procedures can be devised for use with model life table systems (e.g., Preston and Bennett, 1982). We cannot hope to be exhaustive here, and each of the procedures described needs much more careful attention to detail (e.g., treatment of open-ended age intervals) than we have provided. The new equations provide numerous fresh points of entry for demographic estimation, and we have only scratched the surface of possibilities as well as problems. It should be noted that in virtually all of the measurement procedures described here, a corrected age distribution is an important by-product. The true age distribution of the population is itself an object of interest, and demographers can play a useful role in identifying it more accurately. #### c) Migration The conventional way to estimate net migration rates in the absence of a count of migrants is to forward project a population age distribution at time \underline{t} by an "appropriate" life table and compare the projected population with that recorded at some time t+n (United Nations, 1970). Differences between actual and projected numbers of persons are ascribed to net surviving migrants. Back-projections of these survivors are then required in order to estimate the volume of net migration. The migration of persons who were below age $\underline{\mathbf{n}}$ at time t+n requires special treatment. The procedure is awkward to implement unless censuses are separated by an integer multiple of five years because census age distributions are normally tabulated in five-year age categories. A simple alternative is to use the equations for an open population. Since $$\frac{a}{-\int_{0}^{a} r(x)dx} - \int_{0}^{a} e(x)dx$$ $$N(a) = N(0)e^{0} e^{0} p(a),$$ $$\frac{\int_{0}^{a} r(x)dx}{\int_{0}^{a} r(x)dx} - \int_{0}^{a} e(x)dx$$ $$\frac{N(a)e^{0}}{N(0)p(a)} = e^{0}, \text{ and}$$ $$-\int_{0}^{a} e(x)dx = \ln \frac{N(a)}{N(0)p(a)} + \int_{0}^{a} r(x)dx.$$ (20) Implementing equation (20) again requires an "appropriate" life table to give p(a), plus census age distributions and age-specific growth rates. If implemented from age 0, it also requires intercensal births; if these cannot be estimated, the process could begin at age 5, with N(5) estimated by averaging numbers in the adjacent 5-year intervals. Applying equation (20) to successive ages gives the sum of age-specific net migration rates at different ages; age-specific net migration rates could then be estimated by subtraction. It is likely that imposing a "model" schedule of migration rates of the kind proposed by Rogers and Castro (1981) would improve estimates in developing countries. The procedure is clearly applicable to all forms of migration, whether internal (in which case the N(a)'s would pertain to a particular region of a country) or international. The advantage of using (19) relative to existing techniques is likely to be more of convenience than of methodological soundness. It does, however, provide an opportunity for improved estimates below age 10. #### Estimates of Marital Survival By analogy to previous results, $$\int_{-r}^{a} f(x) dx$$ $$M(a) = M(0)e^{-r} \qquad \pi(a), \text{ where} \qquad (21)$$ - M(a) = number of marriages intact at duration a - r(x) = growth rate of number of married couples - $\pi(a)$ = probability that a marriage will survive to duration <u>a</u> according to conditions of divorce and death of the period. To estimate the life expectancy of a marriage from the time it was contracted according to period-specific conditions of dissolution, it is only necessary to rearrange this equation and integrate: $$e_{O}(M) = \int_{O}^{\infty} M(a)e^{O}$$ This provides a simple method of estimating the life expectancy of a marriage, which is otherwise so laborious a process that it is rarely undertaken. All that is required are two surveys giving the number of intact marriages by duration and an estimate of the number of intervening marriages that have occurred (M(0)). There are many other processes that could be similarly modelled: length of time spent in school, in prison, in parity two, in the divorced state, in the major leagues, in the priesthood, etc. The above relationship does not indicate the likelihood of leaving the state of marriage from any of the multiple sources of exit. Now suppose that we have data on the number of divorces by duration of marriage, X(a). Multiplying both sides of (21) by $\mu^D(a)$, the force of decrement from divorce at duration a, we have $$-\frac{a}{-\int r(x)dx}$$ $$X(a) = M(a)\mu^{D}(a) = M(0)e^{0} \pi(a)\mu^{D}(a).$$ (22) The function, $\pi(a)\mu^D(a)$, integrated over all durations from 0 to ∞ , is simply the probability that a marriage will end in divorce, p^D . Thus, rearranging (22) and integrating, we have $$\begin{array}{ccc} & & & & \\ & & & & \\ & & & & \\ &
& & \\ & & &$$ Equation (23) provides an extremely simple procedure for estimating the probability that a marriage will end in divorce. It generalizes one given in Preston (1975) that assumed stability. Again, it is widely applicable beyond the case of marriage and divorce. In the case of fertility, p^D is equivalent to a parity progression ratio, the probability of eventually leaving a particular parity by the route of having another child. With two surveys on the duration since achieving a particular parity (including zero) and the number of intervening births by order and duration since last birth, one can estimate all of the parity progression ratios and hence the total fertility rates without any reference to age. This generalizes some recent work of Griffith Feeney (1981). The multiple decrement results pertain when duration in a state is the indexing variable. They are directly analogous to age relations in a population because one can only enter the duration hierarchy at zero, just as one enters the age hierarchy at birth. If one is interested in the expected years of life spent before the occurrence of some event, or the probability that some event will occur in the course of life, one would return to age as the indexing variable. Analogous versions of (23) exist, for example, to estimate the probability that an individual would marry, become a mother, enter the labor force, or move from place of birth. Only a slight modification is required to estimate the length of life before an individual enters one of these states. ## Summary and Conclusion Much of formal demography deals with functions that pertain to individuals passing through life, or, equivalently, to a stationary population in which the births of individuals are evenly distributed over time. These functions include life expectancy, probabilities of surviving between two ages, net and gross reproduction rates, expected years spent in various states, and the probability that particular events will occur in the course of life. The stable population model has proven very useful in part because it permits the translation of population structure or processes in a more general type of population — one with constant growth rates — back into equivalent functions for a stationary population. Here we have developed a method for translation that is more general still, since it applies to any population. The only ingredient required for the translation is a set of age-specific growth rates. These are also useful for performing the reverse translation, e.g., between a population's life table and its birth rate, or its age distribution. Table 6 summarizes the basic relations among certain functions in a stationary population, a stable population, and any population. The r(x) function used in the table is the age-specific growth rate plus the age-specific rate of net emigration. If the population is closed to migration, r(x) is simply the age-specific growth rate. The meaning of the functions and variables has been previously defined. Once the basic principle of this translation is recognized, its implementation becomes routine. We have described certain applications of the new equations, particularly to demographic estimation from incomplete data. The equations can be applied to many other issues: the two-sex problem, increment-decrement tables, convergence of a population to its stable form, cyclical changes in vital rates, and density dependence of population processes, to name a few. Stable population models will no doubt continue to occupy a central place in demonstrating the long-term implications of changes in mortality and fertility. However, in demographic estimation and measurement, it seems likely that the new procedures will supplant most of those based upon stable or quasi-stable assumptions. The existence of these procedures strongly underscores the value of repeated census operations for demographic measurement. | | | | Formula for | | |--|--|---|--|---| | Function | Notation | Stationary
Population | Stable
Population | Any
Population | | Proportionate age distribution | c(a) | bp(a) | be ^{-ra} p(a) | $ \begin{array}{ccc} a \\ -\int r(x) dx \\ be & p(a) \end{array} $ | | Ratio of population at two ages | $\frac{c(a+n)}{c(a)}$ | nPa | e ^{-rn} nPa | - d+n
- dx
e a nPa | | Life expectancy at birth | $e_0^0 = \int_0^\infty p(a)da$ | $\frac{\int_{0}^{\infty} c(a) da}{b} = \frac{1}{b}$ | $\int_{0}^{\infty} c(a) e^{ra} da$ | a
∫r(x)dx
∫c(a)e ^o
0
b | | Birth rate | ь | $\frac{1}{\int_{0}^{\infty} p(a) da}$ | $\frac{1}{\int\limits_{0}^{\infty}p(a)e^{-ra}da}$ | $\frac{1}{\int_{0}^{\infty} -\int_{0}^{1} r(x) dx}$ | | Proportionate age distribution of mothers at childbirth | v(a) | p(a)m(a) | p(a)m(a)e ^{-ra} | a
-/r(x)dx
p(a)m(a)e | | Net reproduction rate | $NRR = \int_{\alpha}^{\beta} p(a)m(a)da$ | β
∫v(a)da = 1
α | $\int\limits_{\alpha}^{\beta}\!\!v(a)e^{\mathbf{r}a}\mathrm{d}a$ | $ \beta \int_{\mathbf{r}}^{\mathbf{a}} \mathbf{fr}(\mathbf{x}) d\mathbf{x} $ $ \beta \mathbf{v}(\mathbf{a}) \mathbf{e}^{0} \qquad d\mathbf{a} $ | | Expected years of life to be spent in state G with incidence at age \underline{a} g(a) | $G'_L = \int_0^\infty g(a)p(a)da$ | $\frac{\int_{0}^{\infty} g(a)c(a)da}{b}$ | $\int_{0}^{\infty} g(a)c(a)e^{ra}da$ | $\int_{0}^{\infty} g(a)c(a)e^{\int_{0}^{a} r(x)} da$ | | Number of persons at age a^* in terms of deaths above age a^* | n
N(a*) | $\int_{a}^{\infty} D(a) da$ | $\int_{a^*}^{\infty} D(a) e^{r(a-a^*)} da$ | $ \begin{array}{ccc} & & & a \\ & & & \int \\ & & & \int \\ & & & D(a)e^{a*} & da \\ & & & & & a* \end{array} $ | | Number of persons at age a* in terms of deaths below age a* | n
N(a*) | N(0) - \$\int D(a) da 0 | $e^{ra^*} \left[N(0) - D(a) e^{ra} da \right] e^{a^*}$ | $ \begin{cases} \mathbf{a}^* \\ \int_{\mathbf{C}} \mathbf{c}(\mathbf{x}) d\mathbf{x} \\ \mathbf{n}(0) - \int_{\mathbf{D}} \mathbf{c}(\mathbf{a}) e^{\mathbf{c}} \end{cases} $ | | Probability of survival from a* to a*+n in terms of deaths | nPa* | ∫ D(a) da
<u>a*+n</u>
∫ D(a) da | $\int_{D(a)e^{r(a-a^*)}da}^{\infty} \frac{e^{r(a-a^*)}da}{\int_{D(a)e^{r(a-a^*)}da}^{\infty}}$ | $ \frac{\int_{0}^{\infty} D(a)e^{ax}}{\int_{0}^{\infty} D(a)e^{ax}} \frac{\int_{0}^{\infty} D(a)e^{ax}}{da} $ | Table 6: Formulas for certain functions in stationary, stable, and any population. #### Footnotes - 1. Calculated from Keyfitz and Flieger (1968, pp. 30-1, 230-2) and Population Index, April 1977, p. 374. - 2. As Shiro Horiuchi has shown in correspondence, an expression for the agespecific growth rate itself, rather than its cumulation from age zero, can be derived by differentiating the second expression for N(a, t), giving $$r(a,t) = r_B(t-a) - \int_0^a \frac{\partial \mu(x,y)}{\partial y} dx$$, where $y = t-a+x$ and $$r_B(t) = d\ln B(t)/dt$$. 3. More generally, if completeness varies with age, the left-hand side of (16) will equal a weighted mean value of age-specific completeness, where weights are supplied by the d(a) function, life table deaths at age a. #### References - Arthur, Brian. 1981. The Ergodic Theorems of Demography: A Simple Proof. Working Paper, No. W8-81-52. Laxenburg, Austria: International Institute for Applied Systems Analysis. - Bennett, Neil G. and Shiro Horiuchi. 1981. "Estimating the Completeness of Death Registration in a Closed Population." <u>Population Index</u> 42(2): 207-21. Summer. - Brass, William. 1975. Methods for Estimating Fertility and Mortality from Limited and Defective Data. Occasional Publication. Chapel Hill, N.C.: University of North Carolina, Carolina Population Center, Laboratories for Population Statistics. - Coale, Ansley J. 1972. <u>The Growth and Structure of Human Populations.</u> Princeton, N.J.: Princeton University Press. - Coale, Ansley J. and Paul Demeny. 1967. Methods for Estimating Basic Demographic Measures from Incomplete Data. Population Studies, No. 42. New York: United Nations. - Feeney, Griffith. 1981. "Population Dynamics Based on Birth Intervals and Parity Progression." Manuscript, East-West Population Institute, Honolulu, Hawaii. - Hill, Kenneth. 1981. Unpublished correspondence. - Hoppensteadt, Frank. 1975. Mathematical Theories of Populations: Demographics, Genetics, and Epidemics. Philadelphia: Society for Industrial and Applied Mathematics. 72 pp. - Keyfitz, Nathan. 1968. <u>Introduction to the Mathematics of Population</u>. Reading, Mass.: Addison-Wesley. - Keyfitz, Nathan and Wilhelm Flieger. 1968. World Population: An Analysis of Vital Data. Chicago: University of Chicago Press. - Langhaar, Henry L. 1972. "General Population Theory in the Age-Time Continuum." Franklin Institute Journal 293:199-214. - Lotka, Alfred J. 1939. <u>Théorie Analytique des Associations Biologiques.</u> Part II. Analyse <u>Démographique avec Application Particulière à 1'Espèce Humaine.</u> Actualités Scientifiques et Industrielles, No. 780. Paris: Hermann & Cie. - Preston, Samuel H. 1975. "Estimating the Proportion of American
Marriages that End in Divorce." <u>Sociological Methods and Research</u> 3(4):435-60. May. - Preston, Samuel H. 1982. "An Integrated System for Demographic Estimation from Two Censuses." Manuscript, University of Pennsylvania, Philadel-phia. - Preston, Samuel H. and Neil Bennett. 1982. "A Census-Based Method for Estimating Adult Mortality." Population Studies. Forthcoming. - Rogers, Andrei and Luis J. Castro. 1981. "Age-Patterns of Migration: Cause-Specific Patterns." In <u>Advances in Multiregional Demography</u>, edited by Andrei Rogers, pp. 125-59. Laxenburg, Austria: International Institute for Applied Systems Analysis. - Trucco, E. 1965. "Mathematical Models for Cellular Systems. The Von Foerster Equation, Part I." <u>Bulletin of Mathematical Biophysics</u> 27:285- - United Nations. 1970. Methods of Measuring Internal Migration. Population Studies, No. 47. New York: United Nations. - Von Foerster, H. 1959. "Some Remarks on Changing Populations." In <u>The Kinetics of Cellular Proliferation</u>, edited by F. Stohlman, Jr., pp. 382-407. New York: Greene and Stratton. - Zlotnik, H. 1979. "Age Reporting in India." Presented to National Academy of Sciences, Committee on Population and Demography, Panel on India, New Delhi (November 1979). #### Appendix Derivation of the Basic Equation Linking Age Distributions to Period Mortality, Migration, and Growth Rates Samuel H. Preston,* Ansley J. Coale,** and Michel Garenne* The proof of equation (3) is a straightforward application of multivariate calculus. What we present here is basically an expanded and elaborated version of an appendix in Bennett and Horiuchi (1981). Imagine a surface representing the number of persons alive by age and time period and define N(a, t) as the number of persons aged \underline{a} at time \underline{t} . The number of persons aged \underline{a} at time \underline{t} . The number of persons aged \underline{a} at time \underline{t} that \underline{t} is \underline{t} for present purposes we will assume that \underline{t} a \underline{t} to that \underline{t} and \underline{t} and \underline{t} that \underline{t} the change in the size of this cohort between time \underline{t} and \underline{t} that can be ^{*} Population Studies Center, University of Pennsylvania **Office of Population Research, Princeton University denoted as dN(a, t). Assuming existence and continuity of the partial derivatives, it can be shown that as da = dt approach zero, $$dN(a, t) = \frac{\partial N(a, t)}{\partial t} dt + \frac{\partial N(a, t)}{\partial a} da , \qquad (A.1)$$ where $\frac{\partial N(a, t)}{\partial t}$ is the partial derivative of N(a, t) with respect to t; and $\frac{\partial N(a, t)}{\partial a}$ is the partial derivative of N(a, t) with respect to \underline{a} . Dividing both sides of A.1 by N(a, t), we have $$\frac{dN(a, t)}{N(a, t)} = \frac{\partial N(a, t)}{\partial t} dt + \frac{\partial N(a, t)}{\partial a} da$$ $$(A.2)$$ $$= r(a, t)dt + \frac{\partial N(a, t)}{\partial a} da .$$ r(a,t) is the growth rate of the population aged <u>a</u> at time <u>t</u>, or the proportionate change in the number of persons aged <u>a</u> per unit of time. The left-hand side of A.2 is the proportionate change in the size of the cohort aged <u>a</u> at time <u>t</u> in the small interval of age <u>a</u> to a + da (or time <u>t</u> to t + dt). There are only two sources of change in a cohort's size, death and migration. Using $\frac{1}{4}$ D(a) to denote deaths in the interval <u>a</u> to a + da to the cohort aged <u>a</u> at time <u>t</u> and $\frac{1}{4}$ M(a) to denote net migrants (in-migrants minus out-migrants) during this same interval, we have $$dN(a, t) = daM(a) - daD(a)$$. It is conventional to define the force of mortality function for a cohort at age \underline{a} as (Keyfitz, 1968, p. 5) $$\mu(a) = \lim_{da \to 0} \frac{da}{N(a)da},$$ where $_{\rm d\,a}^{\rm D(a)}$ is understood to pertain to the age interval $_{\rm a}^{\rm a}$ to a + da. We can analogously define the force of migration function as $$\gamma(a) = \lim_{da \to 0} \frac{da^{M(a)}}{N(a)da}$$ Dividing both sides of A.2 by da = dt and substituting, we have, as da = dt + 0, $$-\mu(a, t) + \gamma(a, t) = r(a, t) + \frac{\partial N(a, t)}{\partial a}$$. (A.3) This is the equation linking ages, periods, and cohorts that is required in order to derive the remaining expressions. A.3 can also be written as $$\frac{\partial \ln N(a, t)}{\partial a} = \gamma(a, t) - \mu(a, t) - r(a, t) .$$ Holding \underline{t} constant and omitting it in the notation, we integrate both sides between specific ages 0 and x: $$\int_{0}^{x} \frac{d \ln N(a)}{da} da = \int_{0}^{x} \gamma(a)da - \int_{0}^{x} \mu(a)da - \int_{0}^{x} r(a)da, \text{ or } a = 0$$ $$lnN(x) - lnN(0) = \int_{0}^{x} \gamma(a)da - \int_{0}^{x} \mu(a)da - \int_{0}^{x} r(a)da .$$ Taking exponentials and rearranging we have $$\int_{0}^{x} \gamma(a)da - \int_{0}^{x} \mu(a)da - \int_{0}^{x} r(a)da$$ $$N(x) = N(0)e^{0} \qquad e^{0} \qquad e^{0}$$ This is the basic equation (7) in the text, with $\gamma(a)$ defined to equal -e(a). In a closed population, of course, $\gamma(a) = 0$ at all \underline{a} . To develop the equivalent formulas for dealing with discrete time and age groups in a closed population, we return to equation A.3 and write it as $$\mu(a,t) = -\frac{\frac{\partial N(a,t)}{\partial a}}{N(a,t)} - \frac{\frac{\partial N(a,t)}{\partial t}}{N(a,t)}, \text{ or }$$ $$D(a, t) = -\frac{\partial N(a, t)}{\partial a} - \frac{\partial N(a, t)}{\partial t} .$$ We now integrate between specific ages \underline{x} and x+n and periods t_1 to t_2 : $$\int_{t_{1}}^{2} \int_{x}^{x+n} D(a, t) dadt = -\int_{t_{1}}^{t_{2}} \int_{x}^{x+n} \frac{\partial N(a, t)}{\partial a} dadt - \int_{x}^{x+n} \int_{t_{1}}^{t_{2}} \frac{\partial N(a, t)}{\partial t} dtda$$ $$= -\int_{t_{1}}^{t_{2}} \{N(x+n, t) - N(x, t)\} dt - \int_{x}^{x+n} \{N(a, t_{2}) - N(a, t_{1})\} da.$$ Now dividing both sides by the sum of person-years lived in the age and time interval, we have $${}_{n}^{M}{}_{x} = \frac{-d \ln \left[\int_{1}^{2} \int_{x}^{x+n} N(a, t) da dt}{\int_{1}^{x} \int_{x}^{x+n} N(a, t) da dt} \right]}{\int_{1}^{x} \int_{x}^{x+n} N(a, t) da dt} - \int_{n}^{x} r_{x}, \text{ or }$$ $$\int_{1}^{x} \int_{1}^{x} \int_{x}^{x+n} N(a, t) da dt$$ The term inside the brackets, $_{n}P_{x}$, is the sum of person-years lived in the discrete time-age interval. $_{n}M_{x}$ is the death rate for that interval as conventionally defined: total deaths divided by total person-years lived. $_{n}r_{x}$ is the growth rate of the population in the interval as conventionally defined: the difference between the end period population aged \underline{x} to x+n and the beginning period population in the age interval, divided by total personyears lived in the age interval during the period t_1 to t_2 . Now integrating this expression between specific ages 0 to K, we have $$\int_{0}^{K} M_{x} dx = - \ln n^{p}_{K} + \ln n^{p}_{0} - \int_{0}^{K} r_{x} dx , \text{ or }$$ $${}_{n}^{P}{}_{K} = {}_{n}^{P}{}_{0} e {}_{0}^{K} {}_{n}^{d}{}_{x}^{d} {}_{x} - \int_{0}^{K} {}_{x}^{d} {}_{x}$$ (A.4) This is the discrete analogue of equation (3) and the similarity is quite close. Person-years lived in discrete intervals of age and time have replaced N(a, t); mortality and growth defined on discrete age-time intervals have replaced $\mu(a,\,t)$ and $r(a,\,t).$ Note that the exp $\{ \begin{subarray}{c} \beg$ $$\frac{d}{dx} L_x = \ell_{x+n} - \ell_x = d_x.$$ Hence, $-m_x = \frac{(d \log_n L_x)}{dx}$; and on the assumption that $$\underset{n \to \infty}{\overset{+}{\underset{n \to \infty}{-}}} \underset{n \to \infty}{\overset{+}{\underset{n \to \infty}{-}}} , \ e^{\overset{K}{\underset{0}{-}}} \ \underset{n \to \infty}{\overset{M}{\underset{x}{+}}} \overset{dx}{\underset{n \to \infty}{-}} = \underset{n \to \infty}{\overset{+}{\underset{K}{-}}} \underset{n \to \infty}{\overset{+}{\underset{N}{-}}} \underset{n \to \infty}{\overset{+}{\underset{N}{-}}} \underset{n \to \infty}{\overset{+}{\underset{N}{-}}} .$$ $$\frac{\int_{n}^{K} r_{x} dx}{\int_{n}^{L} r_{x} dx}$$ Thus, $C_{K} = C_{0} e^{C_{0}} \int_{n}^{L} r_{x} dx$ (A.5) Note that A.5 shows the proportions at all age intervals (except the first) relative to ${}_{\rm n}{}^{\rm C}{}_{\rm o}$, which is in principle the first observation of grouped data. No precise relation to the number of births can be derived in this context. However, since $$({}_{n}{}^{C}{}_{o} + {}_{n}{}^{C}{}_{n} + \dots {}_{n}{}^{C}{}_{\omega-n}) = 1.0,$$ it follows that $${}_{n}^{C} c_{o} \left(1 + \frac{{}_{n}^{C} c_{o}}{{}_{n}^{C} c_{o}} + \dots + \frac{{}_{n}^{C} c_{o} c_{o}}{{}_{n}^{C} c_{o}}\right) = 1.0$$ (A.6) Since all of the terms but ${}_{n}C_{o}$ in A.6 can be calculated (when ${}_{n}L_{x}$ is known at n-year intervals, and when ${}_{n}r_{x}$ is known as a continuous variable), ${}_{n}C_{o}$ can be determined, and the other ${}_{n}C_{K}$'s as well. Note that (except for the generally accepted approximation that $_{n}^{m}{}_{x} = _{n}^{M}{}_{x}$) equation A.5 is exact. It is approximate only if $_{n}^{r}{}_{x}$ itself is known at n-year intervals, rather than continuously. (See the calculations of the Swedish age distribution by five-year intervals as an illustration of this point.) The relation between age structures of deaths and person-years in discrete time and age segments can be readily derived. Denoting ${}_n D_{\mathbf{x}}$ as deaths in the age interval $\underline{\mathbf{x}}$ to \mathbf{x} + n during the time period \mathbf{t}_1 to \mathbf{t}_2 , we have $$D_{n x+y} = P_{n x+y} \cdot M_{n x+y}.$$ Substituting for $P_{n x+y}$ from A.4, $$\sum_{\substack{n \\ n} P_{x+y}}^{x+y} e^{x+y} = \sum_{\substack{n \\ n} P_x}^{x+y} e^{x+y} = \sum_{\substack{n \\ n} P_x}^{x+y} e^{x+y}$$ Integrating both sides of this expression from y=0 to y = ∞ , we have But the value of the integral on the right-hand side is
unity, as can be shown by integrating by parts. Therefore, This equation is exactly analogous to one in the text except that ${}_nP_{\mathbf{x}}$ has replaced N(a), ${}_nD_{\mathbf{x}}$ has replaced D(a), and ${}_n\mathbf{r}_{\mathbf{x}}$ has replaced r(a).