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AGE STRUCTURE, GROWTH, ATTRITION, AND ACCESSION:
A NEW SYNTHESIS

Samuel H. Preston
Population Studies Center
University of Pennsylvania

Ansley J. Coale
Office of Population Research
Princeton University

This paper shows that each of the equations describing relationships
among demographic parameters in a stable population is a special case of a
similar and equally simple equation that applies to any closed population.
An equation almost as simple applies to any population defined in most
general terms as a collectivity classified by an index analogous to age. The
paper then demonstrates some implications of these new equations for
demographic theory and practice.

Our work on this subject has precursors in the efforts of Von Foerster
(1959), Trucco (1965), Langhaar (1972), Hoppensteadt (1975), and Bennett and
Horiuchi (1981). In particular, these works recognize that there is a
necessary relationship in a closed population between a population's age
distribution at time t, its age-specific force of mortality function at time
t, and its set of age-specific growth rates at time t. From this
recognition, we take the short step required to rewrite the mathematics
applying to stable populations in a more general form.

The extension to more general conditions of the relations found in
stationary and stable populations can be understood by considering the
expression for the relative rate of change of the number of persons at each
age as age advances. If the number of persons in a population is assumed to
be a continuous function of age, then the relative change in number as age

increases is

1 dN(a) d log N(a)
N(a) ~da ’ or da

Here N(a) refers to N(a,t), the number of persons aged a at time t; we have
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The paper has benefited from comments by Brian Arthur, Doug Ewbank,
Griffith Feeney, Gary Pickens, Toni Richards, and Allen Schirm. We are also
grateful to Charles Mode and Graham Lord for pointing out earlier references
to related material, and to Ozer Babakol for his skilled and accurate
programming. This research was supported by National Institute of Health
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omitted the t identifier for convenience. A stationary population is a
population with the same number of births every year and an unchanging
schedule of mortality rates. In a stationary population, the number of

persons at each age does not change with time. In such a population

1 dn(a)  _ _
Y&y @ - M@

where u(a) is the age-specific mortality rate (or force of mortality) at
exact age a.

A stable population 1is a population in which the number of births
changes with time at a constant rate r, and the mortality schedule is the
same from year to year. The number of persons at each individual age also
changes with time at the rate r. As a result, each successively younger
cohort is larger (or smaller if r is negative) at every age than its older
predecessor by a constant multiple. If we imagine a growing stable
population in which there is no mortality, the relative number at age a would
diminish at a rate r, or

1 dN(a)  _ _
N(a) da o

Since the stable population is in general subject to a fixed mortality
schedule u(a), the relative number changes with age as the result of the
independent effects of mortality at age a and the relative difference in size

of adjacent cohorts r, or

Gy Ma) @ - x )

as can be verified by differentiating the well-known expression for the age
distribution of a stable population (N(a) = Be "2p(a)).

The extension to less restricted conditions in which mortality and
fertility change with time is simple. 1In any closed population, the relative
number at age a changes as age advances because of mortality; it also changes
as a large or small cohort advances in age, replacing one different in size.
To make equation (1) applicable to any closed population at any moment in
time, one can express the rate of increase in the number at age a as a

function of age. Thus, at any moment

sy el —u(a) - r(a) 2)

when r(a) is defined as

lim N(a, t + At) - N(a, t)
At>0 N(a,t)JAt

The validity of equation (2) can be justified intuitively by noting that the
number at a slightly greater age than a at time t, or N(a +Aa, t), equals the
number at age a at a slightly earlier time, or N(a, t-At), less the number of

deaths the cohort has experienced in this short period (note that At is
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necessarily equal to Aa). The number of deaths is N(a,t) u(a,t) At, if the
effect of the difference in cohort size on the number of deaths is ignored,
as it may be as At(=Aa) approaches zero. Hence

N(a + Aa,t) - N(a,t) _ N(a,t - At) - N(a,t) _ u(a,t)At
N(a,t)Aa N(a,t)At Aa ’

the limit of this expression as Aa (= At) approaches zero is equation (2).
More simply, equation (2) expresses the relative change in numbers with age
as the sum of two independent terms, the change that would occur as the
result of mortality alone, and the change that would occur as the number at

age a changed with time, in the absence of mortality.
d log N(a)

e = -pu(a) - r(a), it follows by

Since (2) can be written as

integration that

a a
-[ r(x)dx - [ w(x)dx

N(a) = N(o)e ° ° , or

a
- r(x)ax
N(a) = Be ° p(a). (3)

Equation (3) 1is the basis of much of the rest of this paper. So that the
elements of this equation are as clearly understood as possible, let us

reiterate that

N(a) = number of persons age a at time t, i.e., height of the N(a,t)
surface at some point a at some time t.
p(a) = probability of surviving from age O to age a according to the

a
-f p(x)dx

° where n(x)

life table prevailing at time t, or p(a) = e
is the mortality function at time t.

r(x) = annual growth rate of persons aged x evaluated at time t.

Unless otherwise noted, all functions 1in this paper pertain to some
particular time t; all relations among functions pertain at each and every
time t.

It seems likely that equation (3) has been derived many times in many
different contexts. But its implications for demographic analysis do not
appear to have been fully developed. Part of the neglect may result from the
belief that the r(x) series is theoretically uninteresting, since it is
clearly a function of past patterns of mortality and fertility. But to a
demographer, the r(x) series is a very widely observed datum, calculable
whenever a country has taken two censuses not too widely separated. With
that datum, many relations among other demographic parameters can be
clarified. We will now show how it leads to a simple generalization of the

equations characteristic of a stable population.
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The birth rate of the population is

b = B - B - 1
° B a - a 4)
[ N(a)da - -[ r(x)ax - -[ r(x)dx
° [ Be ° p(al)da [e ° p(al)da
o o
The proportion of the population that is age a is
a
-[ r(x)dx
c(a) = N(a) - Be ° p(a) or
o a ]
[ w(a)da w - rax
° [ Be © p(a)da
o
a
-/ r(x)dx
c(a) = be © p(a) . (5)

Finally, the birth rate can also be represented as b = [c(a)m(a)da,
o
where m(a) is the rate of bearing female children for women aged a and @ and

B are the lower and upper ages of childbearing. Substituting (5) into this
last equation, we have

a

8 -[ r(x)ax
b=[be?® p(a)m(a)da, or

o

a

g ) r0ax 6
1=fe?® p(a)m(a)da

a

If age-specific growth rates are constant with age at a value of r, equations

(4), (5), and (6) become

b = = 1
- )
[ e7T% p(a)da S
o
c(a) = be " p(a) (5")
8 -ra
1=1]e p(a)m(a)da . (6")
a
Equations 4', 5', and 6' are readily seen to be the classic equations
characterizing stable populations (Lotka, 1939; Coale, 1972). Thus, the

stable equations are a special case of a more general set of equations 4 - 6;
the stable equations pertain whenever age-specific growth rates are constant.

Equations 4 — 6 characterize every closed population at every moment in time.



The existence of a set of such simple and general relations, in view of the
large volume of work on stable population theory, is surprising.

The development so far has assumed the population to be closed to
migration. However, the formulation can be immediately generalized to an
open population with an age-specific force of net out-migration function of
e(x). It is only necessary to recognize that the force of migration function
acts on the growth process in a fashion exactly analogous to the action of
mortality. The age distribution does not recognize whether people are
leaving the population.by death or by out-migrating, and net in-migration
will simply offset (sometimes more than completely) the impact of mortality.

As shown in the Appendix,

a a
-f rx)ax - e(x)dx
N(a) = N(ode ° e © p(a) ¢2)

The three basic equations 4-6 can now be derived as from (3) above, simply by
adding e(x) to r(x). With this correction for migration, any open population
can be analytically converted into a closed one.

In fact, nothing limits us to recognizing only one form of "migration"
or even one form of mortality. Any form of attrition or accession can be
introduced into (7) simply by recognizing that it must act analogously to
migration or mortality from all combined causes. Equation (7) is the basis
of a surprisingly general set of relations. In particular, one can see that
the age composition of any population at any moment (assuming only that age
composition and its change through time are continuous) 1is completely
determined by the rate of increase in the number at each age at the given
moment, together with the rate of attrition (including negative attrition) at
each age from each of a number of independently operating factors. To be
more specific, if the rate of increase, r(x), is known for each age x from
zero to the highest age attained, and if the values of i different attrition
factors, ui(x), are also known, the age composition is completely
determined and can readily be calculated; conversely, if the age
distribution and all but one of the attrition factors are known, the rate of
attrition for the omitted factor can readily be calculated.

This set of relations is known in demography, for particular instances,
and the basic equation in differential form is familiar in mathematical
biology and actuarial work, but the full (though simple) generalization seems

to have escaped attention. The basic equation is as follows:

a a
-f r(x,t)dx = ] fui(x,t)dx ,
N(a,t) = N(o,t)e ° et °

where N(a,t) is the population density at age a, time t; r(x,t) is the
instantaneous rate of growth of the population at age x, time t; and

u;(x,t) is the rate of attrition from the operation of the 11:h among
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the several factors that diminish (or 1increase; the attrition can be
negative) the number of members of the population at age x. Because all of
the variables are defined at the same moment (t), the time variable can be

suppressed, and the equation expressed as:

a a
-/ r(x)ax —; f u (x)dx
N(a) = N(ode ° e 1 ° (8)

Note how wide is the universe to which the equations apply. To be consistent
with these equations, members of a collectivity must have a defined duration
of existence in a given state, a defined duration analogous to age.
Conventional chronological age of humans is duration of life since birth, but
duration of marriage, duration of residence, duration of existence in the
single state, and duration of stay in a hospital are other examples from
human experience. The attrition factors -- mortality, or mortality from each
of several independent causes, out-migration (or immigration, which is
negative out-migration), divorce (attrition from the married state), or
marriage (attrition from the single state or negative attrition into the
married state) -- cause a specified proportionate rate of decline (or
increase) in numbers at each age for a defined collectivity. For the
relation to hold, the distribution of numbers and the force of each

attrition factor must be continuous functions of age.

. . IN(a,t) . .
Although r(x) is formally defined as N(a,)sc’ it can be viewed and
manipulated as a function of age, and not of time at a given moment. An

analog is the speed of an automobile, which is properly defined as the time
derivative of the automobile's position, but can also be viewed as a
characteristic of the vehicle at a given moment, indicated by the speedometer
reading. A speed of 60 miles per hour has no implication that the car will
cover 60 miles in an hour nor that it has covered 60 miles in the past hour.
The speedometer 1is usually a voltmeter showing the voltage produced by a
generator mounted on the driveshaft, a generator producing a voltage
(ideally) proportional to the rate of rotation of the shaft. One can imagine
a "speedometer" that reads r(x) at each moment in a given population. 1In
fact, if the attrition factors and the age distribution in equation (8) are
known, r(x) can be calculated without any record of the change in number at
the same age from one moment to the next. Note further that any of the age
functions in equation (8) -- r(x), ui(x), or N(a) -- can be calculated from
a full listing of all of the others.

In equation (8) r(x) is formally analogous to any one of the i attrition
factors. Mathematically, it could be included as the (i+1)th form of
attrition: a population subject to no external attrition factors decreases
with age to a degree that is proportional to the rate of increase at each
age. However, the rate of increase is distinctive in that it is a built-in

form of attrition, the result of differences in cohort size that in turn



arise from the past history of the population -- from past rates of entry and
attrition -- whereas the other sources of "attrition" are exogenous.

Any population can be thought of as a stationary population subject to
multiple '"decrements'", one of which is growth. As in the conventional
multiple decrement situation, it is possible to ask what the population
structure would be like if one of the decrements were not operating. If the
eliminated '"decrement" is growth, we are left with the stationary population
produced by the activity of the exogenous decrements , u;(x). If mortality
is the only remaining source of decrement, the stationary population is the
conventional stationary population of life table literature. In other words,
to convert the age distribution at time t into the age distribution of a
hypothetical stationary population subject to current forces of attrition and
a radix of today's births, it 1is only necessary to multiply the current

a
number of persons aged a by exp { f r(x,t) dx }. This conversion factor

o
appears in virtually every formula in this paper because it transforms any

population into its corresponding stationary population, from which many

demographic functions can be derived.

The Age Distribution of Births and Deaths

The frequency distribution of mothers' ages at childbearing at time t is

a
-[ r(x)ax
v(a) = ; N(a)m(a)  _ Be o _ p(a)m(a)  or
[ N(a)m(a)da 8 - r(x)
¢ [ Be °© p(a)m(a)da
a
a
-f r(x)dx
v(a) =e® p(a)m(a) .

It is because the term on the right-hand side of this expression is the
frequency distribution of mothers' age at childbearing that it must sum to
unity, as in equation (6).

An intuitive understanding of this formula may derive from the following

considerations. Rewriting the above equation as

a

[ r(x)dx
v(a)e ° = p(a)m(a),

we observe that the right-hand side is the expected number of births at age a

per newborn child subject for all her life to today's p(a) and m(a)
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schedules. The left-hand side consists of two components: B(a)/B, or births

a
occurring today at age a per newborn child; and exp { f r(x)dx }, which
o
expresses the factor by which births at age a would grow over the next a

years, under current fertility and mortality rates, as persons now aged a are
replaced by the larger (or smaller) cohort just now being born. Thus, both
sides of the equation are exact representations of the expected number of
births a years hence per woman in the cohort just now being born, if she is
subject to current p(a) and m(a) schedules.

We may now integrate both sides of this equation to derive a new

expression for the net reproduction rate:

a
8 [ r(x)ax
NRR = [ p(a)m(adda = [ v(a)e ° da . 9
a a
This expression says that the net reproduction rate in any closed population
can be estimated exactly from information on the distribution of mothers'
ages at childbirth and from age-specific growth rates. The corresponding
relation in a stable population seems to have escaped comment, probably
because the normal analytic problem is to estimate r; from p(a)m(a) and not
the reverse. But if r(x) 1is observed and v(x) is known or can be
approximated, the net reproduction rate can be estimated from the set of
growth rates, rather than customary estimation of the intrinsic rate of
increase from the net reproduction rate.
The frequency distribution of ages at death in a closed population
likewise bears a simple relationship to the corresponding frequency in the
underlying life table that is generating the data. As Bennett and Horiuchi

(1981) have shown, the number of deaths at age a (time t) is

a
-/ r(x)ax
D(a) = N(a)u(a) = N(0)e ° p(a)u(a), or
a
-/ r(x)dx
D(a) = N(0)e ° d(a), where
d(a) = deaths at age a in the life table prevailing at time t (with

radix of one).

So the frequency distribution of ages at death is

a
-/ r(x)dx
D(a)  _ _d(a)e ®

a
[ D(a)da - -[ r(x)ax
° [ aCade ° da
o



Normally, the analytic problem will be to infer life table deaths from the

observed age distribution of deaths. For this purpose, one would use

a
[ r(x)dx
o
_ d(a) = d(a) = D(a)e _
[ d(a)da - [ e(x)dx
° [ D(a)e © da
o

From the life table death function, d(a), all other mortality functions of

interest can be reconstructed.

Population at Age a Determined by Accessions and Departures at Ages from

Zero to a, or from a to ®

This section shows how the number of persons at a particular age is
related to the contemporaneous accessions and exits occurring below that age,
as well as to accessions and exits above that age. Denote accessions at age
x as A(x), the number of exits as E(x), the rate of accession A(x)/N(x) as
u*(x), and the rate of exit as u (x). The rate of increase at x is r(x).
If we imagine a hypothetical cohort of N'(o) original members subject to u~

(x) and w*(x), then the number at age a, N'(a), would be

a
[ W (x) - uT(x))dx
N'(o)e °

A'(x) would equal N'(x)u*(x), and D'(x) would equal N'(x)u7(x). In the

—? r(y)dy
actual population (assuming N'(o) = N(o)), N(x) = N'(x)e ° ; hence
X
-[ r(y)dy -? r(y)dy
Alx) = A'(x)e ° , and D(x) = D'(x)e ° . The purpose of defining

the number of accessions and departures in a hypothetical cohort is to make
use of two identities that apply to a cohort: the number of persons at age a
equals the number at zero plus the sum of accessions, less the sum of
departures, in the interval from zero to a; the number at a also equals the
number of departures less the number of accessions, in the interval from a to
the highest age attained, w, at which age the cohort is extinct.

Thus :

a
N'(a) = N'(o) + f (A'(x)-D'(x))dx; also (10)
o

w
N'(a) = [ (D'(x)-A"(x))dx. (11)
a

Now we recall the relations listed above between numbers at each age,

and numbers of accessions and departures, in the actual population, and in
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the hypothetical cohort. Substituting from the equations in the preceding
paragraph for N'(a), A'(x), and D'(x) the corresponding values of N(a), A(x),
and D(x) in (10) and (11), we find

X a
a -[ r(y)dy -[ r(x)dx
N(a) = {N(o) + [ (A(x)-D(x))e ° dx}e © , or
o
a a
- r(x)dx a -[ r(y)dy
N(a) = N(ode ° + [ (A(x) - D(x))e ¥ ax,
o
or, counting N(o) as A(o),
a
a -/ r(pay
N(a) = [ (A(x) - D(x))e * dx (12)
o
and
X
" [ r(y)dy
N(a) = [ (D(x)-A(x))e ? ax . (13)
a

These equations can also be expressed in a form that facilitates

calculation, namely

a+n a+n
- r(x)dx atn -[ r(y)dy
N(a+n) = N(a)e ? + [ (A(x)-D(x))e * dx (14)
a
and
a X
[ r(x)dx [ r(y)dy
a-n a a-n
N(a-n) = N(a)e + [ (D(x)-A(x))e dx. (15)
a-n

As an experiment, these equations were used to calculate the number of
currently married women at each age in Sweden in 1976, counting accessions as
the number of marriages plus the number of immigrant married women at each
age, and departures as emigration of married women, divorce, death, and loss
of husband. The only use of data on the number of resident women 1is to
calculate the crucial age-specific growth rates for the married population.
The calculated numbers duplicate the recorded number of married women by
single years of age with an average error (from age 17 to age 30) of 1.3

percent.

Particular Features of the New Equations

Equations (5) and (6) can be puzzling to anyone habituated to

traditional demographic analysis, including those at home with the



mathematics of stable populations. Equation (6) presents a relation that
must hold between the net maternity function, p(a)m(a), experienced by the
populations at a given time, and the set of age-specific growth rates, r(x),
found at the same time. Conventionally, the net maternity function is
thought of as having implications for growth in the long run, when the
"intrinsic" growth rate has time to manifest itself. It is not obvious why
(in terms other than found in the formal proof) the set of contemporaneous
growth rates must also*necessarily be consistent with the net fertility
function. The puzzle is solved by recognizing that r(x) for all ages above
zero 1s, as common sense suggests, causally independent of the net fertility
function of the moment, but not of the growth rate at age zero. If the net
fertility function is changing from year to year because of changes in the
rate of childbearing, it is the role of the growth rate in the neighborhood
of age zero to be modified in such a way as to ensure that equation (6)

continues to hold.

a
This outcome can be clarified by separating the integral f r(x)dx in
1 a °
equation (6) into [ r(x)dx + [ r(x)dx, a separation that is permissible
o 1

because the range of a begins at a, well above age 1. f r(x)dx is part of

o
a
S r(x)dx for all relevant a. It follows that
o
1
- r(x)dx
o
e
can be factored from equation (6) as follows:
a 1 a
8 -] r(x)dx 8 [ r(x)dx -f r(x)dx
Je® p(a)m(a)da = [ e © el p(a)m(a)da =
a a
1 a
- r(x)dx 8 - r(x)dx
e ® [e ! p(a)m(a)da.
a
1
If we call [ r(x)dx 156° it follows from equation (6) and this decomposition
o
that
a
8 -f r(x)dx
1T, = [e 1 p(a)m(a)da . (6a)
a

Thus, ;r, has a determinate form that depends on the net fertility
function and r(x) from x=1 to B. In a stable context, of course, all of the
values of r(x) above age one are the same, and r, will be found to have

this value as well. If the net reproduction rate of a formerly stable
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population is reduced by 50 percent in one year, the value of

a
- r(x)dx
8 1
tn [ e p(a)m(a)
a

will be approximately 2n(——§—-); 1%0 will be approximately ln(—;—); and e-lro
will be about two, maintaining the validity of equation (6). In short, it
follows from equation (6a) that each year the growth rate at age zero, being
fully determined by the growth rates of older cohorts and the current net
fertility schedule (no matter how aberrant), maintains the consistency of the
full set of growth rates with net fertility.

The connection between current growth rates and the intrinsic growth
rate corresponding to the p(a) and m(a) schedules can be seen by rewriting

equation (6) as

B —(r - rI)a -r.a
[ e a e p(a)m(a)da = 1
a

a
We have denoted fr(x)dx/a as r_, the mean of age-specific growth rates below
o

age a in the population; T is the intrinsic rate. Since e rIa p(a)m(a) is
the frequency distribution of ages at childbirth in the stable population, it
simply acts as a set of weights applied to the exp {-(;a - rI)a} schedule.
The weighted sum of this latter schedule must be unity; therefore, t, cannot
lie perpetually above (or below) r; in the childbearing interval. The two
values must be equal for at least one age between o and B. Thus, the
intrinsic growth rate in any closed population must equal the average current
age-specific growth rate below some age that lies within the childbearing
interval. In Japan, the intrinsic growth rate for 1960-1964 was -.0033,
which equals the mean age-specific growth rate during the 1960-1963 period
below age 29.26.1

Of the new expressions, (5) is perhaps the most puzzling. Why should
the proportion of the population that is aged a at time t be a simple
function of the birth rate at t, the life table at t, and age-specific growth
rates at t? It seems intuitively compelling that information on the history
of birth and death rates would have to be introduced in order to determine
the value of c(a). But in this case, all of the pertinent history is
contained in the contemporaneous age-specific growth rate function.

To gain a better idea of the basis of (5), first imagine that mortality
is constant. The size of the cohort of births in year t relative to the size
of population is, by definition, b(t). With constant mortality, however, the
only possible source of age-specific growth is growth in the numbers entering

successive birth cohorts. So the number of births a years earlier must have



a
been smaller (or larger) than the number at t by the factor exp{-[ r(x)dx}.
o
Thus, the size of the cohort of births born at time (t-a), relative to the

a
size of population at time t, is b - exp{-f r(x)dx}. However, only the
o
fraction p(a) from that cohort born a years earlier has survived, so that the

a
proportion of the population now aged a is b exp{-J r(x)dx} p(a). The
o
basis for (5) is thus clear when mortality is constant.

To generalize this result to the case of changing mortality, suppose
that mortality among the cohort now aged a was higher than that pertaining at
time t by amount Au(j) at age j<a. Then for the cohort, p_(a)
p(a, e 8u(3) | pue if mortality was higher by Au(j) at time t-j, then its
subsequent reduction must have raised the growth rate by Au(j) at some age
between j and a at time t, relative to the growth rate under constant
mortality conditions. A gradual reduction of Au(j) would spread the growth
boost over several ages by correspondingly smaller amounts. Which age
received the growth boost is immaterial; what matters is that r(x) has risen
by Au(j) at some age below a, so that the series exp{-‘}r(x)dx} is changed by

o
the factor exp{Au(j)}. This factor exactly offsets the effect of the altered

mortality history for the cohort aged a, and the expression for c(a) is
unaltered. Simply stated, any difference between the mortality history of a
cohort and the current mortality regime will be completely reflected in the
r(x) series. Likewise, any growth in the number of births will also be
reflected completely in r(x). That is why no "history" 1is required in
equation (5).

The connection between the equations and a population's history can be
made more explicit by recognizing that there are two expressions for N(a,t)

in a closed population. From (3) we have

a
—f r(x,t)
N(a,t) = N(O,t) e ° pla,t).

But by definition the number of persons aged a at time t is equal to births
that occurred a years earlier times the proportion of that birth cohort who
survived to age a, p.(a). Therefore,

N(a,t) = N(O,t-a) pc(a).

Combining these two expressions for N(a,t) gives

a a
[ rx, t) = ;B « a+ [ Mu(x)dx, where
o o

;B is the mean growth rate in number of births between time t-a and t; and
Au(x) is the difference between the cohort and the period death rate at age
%, i.e., u(x,t-a+x) - u(x, t). Thus, the sum of period age-specific growth
rates up to age a, time t reflects both the growth rate of entrants to

cohorts over the previous a years and any changes in age-specific mortality
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that have occurred since a particular age was achieved by the cohort now aged
532 Arthur (1981) has explored stable population theory using cohort-

specific mortality functioms.

Illustrative Applications to Sweden

This section demonstrates empirically that with accurate demographic
statistics it is possible to use the relations developed above to derive one
demographic series -- in this case the age distribution -- from knowledge of
certain other series. First, it will be shown that the basic equations can
be extended to populations living through a time interval rather than defined
at a moment, and to grouped age distributions rather than the population
density at age a. Equation (2) is also valid if N(a) is defined as the
number of persons reaching age a during a time period T (extending from t' to
t"), rather than as the density of population at age a at a given moment. In

this case r(a) is 1lim N(a+At)-N(a), where N(a+At) is the number arriving at
At>0 N(a) At

age a during the time interval t'+At to t"+At. (u(a) is defined as the
limit, as Aa approaches zero, of the ratio of deaths to persons at ages a to
a+Aa to person-years lived at these ages, during the period T.) Note that

r(a) is N(a,t") - N(a,t'), which equals log (N(a,t")/N(a,t'))/T, the
N(a)
conventional basis for calculating r(a) during a period, if growth in the

number reaching age a is constant during T. Equation (2) is extended to a

population defined in finite age intervals as follows. Let an ¢ be the
3

number of persons at ages x to x + n at time t.

an+Ax,t = an,t-At - (an)(nMx)(At)

where Mx is the death rate from x to x+n. Subtracting an N from both sides
- s

of this equation, dividing by (an t).(Ax), and letting Ax approach zero, we
k]

find
d log N
n x -r_ - s
—_— nx nx
dx
where is the rate of increase of the population in the age interval x

n'x
to x+n. From integration and exponentiation of both sides, it follows that:

I ]
-/ r_ dy - M _dy
= N eo 7 ot Y .
nx no
d log an

Since in a stationary population = "% it follows that

X

'any dy

o
L .
n x' n o

I
=
~

e



Thus this equation can be written as

r
N = N eo™? L/ L (3a)
n x n o nxno

By an extension of the argument in the first part of this section, it is
clear that equation (3a) applies to the distribution of person-years lived
during a time interval. The derivations of equations (3) and (3a) are
repeated, in terms of differential and integral calculus of functions of two
variables, in the Appendix.

The following illustrative calculations are made in this section:

1) The single-year age distribution of the mean population of Swedish
females in 1976 is calculated from the number of female births in 1976, the
single-year female life table for 1976, the rate of increase in 1976 of
females in each single-year age interval, and the rate of net migration at

each age. The equation involved is

a a
-[ r(x)dx - [ e(x)dx

(o} o

N(a) = N(o)e p(a),

where e(x) 1is the rate of net out-migration at age x. Since the data are

available at one-year age intervals, this equation is approximated by

a+.5
-g {ltx + 1ex}
lNa =Be lLa/£0
a+.5
. 2
here g 1Tx 18 1% * 1T 1Ta-1 1L /2

Results are shown in Table 1.

2) The single-year age distribution of the mean population of Swedish
females in 1976 is calculated from the 1976 growth rate, the number of female
deaths in 1976, and the number of female net out-migrants at each age in

1976. The equation is:
x

© [ x(y)ay
N(a) = [ {D(x)+E(x)}e ? dx.
a
With data by single-year intervals, this equation was approximated by an

iterative calculation:

17a lra/z'
N(a) = N(a+l)e + (D(a)+E(a))e
1Na was calculated as VN(a)+N(a+l). Since growth rates above 100 can be

determined only for the population above 100 as a whole, while deaths by
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single years of age above 100 are listed, N(100) was approximated by

R
N(100) = D(100-101)eT (1007, 1976)/2

+
D(101-102)eF (1007, 1976)+r(100%, 1975)/2
+
D(102-103)eF (1007, 1976)+r(100%, 1975)+r(100%, 1974)/2
+
D(103+)er(100+, 1976)+r(100*, 1975)+r(100%, 1974)

Results are shown in Table 2.

3) The single-year age distribution of the mean population of Swedish
females in 1973-1977 is calculated from the number of female births in 1973-
1977, the single-year female life table for the period, the average rate of
increase in 1973-1977 of females in each single-year age interval, and the
rate of net out-migration at each age. The mean population at each age is
one-fifth the number of person-years lived in each single-year age interval
during the five-year time period. The growth rate and the net out-migration
rate are the increase in the number of persons and the number of net out-
migrants, divided by the number of person-years lived during the five years.
With rates thus defined, the calculations are based on the same equations as
in (1) above that were used for estimating the age distribution of Swedish

females in 1976. Results are shown in Table 3.

4) The five-year proportionate age distribution of the mean population
of Swedish females in 1976 1is calculated from the 5Ly function of the
Swedish female life table for 1976, and the growth rate in 1976 of the mean

population in five-year age intervals. The equation involved is:

_ o
Ny = 5N e SLx/SLo.

In this set of calculations, 5Ty is taken at five-year intervals, 1i.e.,
a
for x=0, 5, 10, etc., and the integral f 5rxdx is approximated by a

o
trapezoid. Results are shown in Table 4.

5) The five-year proportionate age distribution is calculated as in (4),

except that _r_was taken at one-year intervals, i.e., sTgs 571 5o etc.,

57'x
a
in evaluating the integral f 5rxdx. Results are shown in Table 5.
o

The most striking feature of the calculations is the extremely close fit
of the calculated data to the accurate Swedish population statistics. 1In

Table 1 the difference between the calculated and recorded populations does



not exceed one percent until age 94, and in Table 2 until age 85, with the
exception of age 17. 1Incredibly enough, the relatively large discrepancy at
age 17 is the result of an error in the Swedish yearbook for 1976. The mean
population is listed in Table 4:15, which presents the life table for 1976.
It is readily verified that the mean population at each age as listed in this
table is simply the arithmetic average of the year—end populations for 1975
and 1976 listed elsewhere; the mean population at age 17-18 in 1976
calculated in this way is 51,644 instead of the listed 52,144. This is an
error of 500 persons, which doubtless occurred as the result of a punching
mistake of one digit in the thousands column for 17 year olds in year-end
1975 or 1976 when the mean population was calculated. The precision of these
calculations thus proves to be sufficient to detect an isolated one percent
error in the listing of the single-year mid-year population of Swedish
females.

A more significant result of the precision of the calculation is the
close agreement of the calculated populations from 90 to 100 with the
official figures. If the official Swedish life table is employed in
calculating Table 1, the agreement is much poorer. The published life table

n
for 1976 (and other years) is based on Wittstein's formula (qx = a-(M-X) )

above age 91 rather than directly on recorded numbers of deaths and personms.
The difference between the official table of 1976 and the table we
constructed, and its effect on the estimated population from age 92-93 to 99-

100, are as follows:

Proportionate error in estimated

1Lx/ %0 population with:
X Official Calculated Official life table Calculated
92 .08313 .08304 .003 .002
93 .06314 .06382 -.012 -.001
94 .04651 .04713 .007 .014
95 .03308 .03352 -.032 -.019
96 .02260 .02371 -.059 -.013
97 01474 .01634 -.125 -.030
98 .00910 .01083 -.181 -.025
99 .00526 .00707 -.260 -.005

We calculated a life table above age 91 by accepting the official %4;, and
_lMx

from x = 91 to 99, estimating £ /% as e , and
x+1°'x

L as V&_°% . The
17x X x+l
official life table produces estimates in which errors increase rapidly above
age 95; evidently the unadjusted death rates are a more realistic basis for a

life table than those calculated by the Wittstein formula.
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Note that the proportionate age distribution is even more accurately
estimated than the absolute numbers. The estimated population 1is
consistently smaller than the recorded by about 0.005 times the recorded
number in Table A-1, and about .0035 times the recorded number in Table A-2.

The estimation of the single-year age distribution of person-years lived
in 1973-1977 is equally precise, with a typical proportionate underestimate
of about 0.003 times the recorded number, until ages above 90.

Calculation of the age distribution by five-year age intervals produces
an estimate of substantially less precision than the single-year estimates,
when growth rates of five-year age groups are utilized only at intervals of
five years. (See Table 4, where the error reaches almost six percent of the
true proportion.) The reason for this greater error is that the proper
identity is

a
—g (er+5ex)dx
sNa T 5N sta’skos
so that the precise calculation calls for the evaluation of the integral of a

function (er+5ex) that is a continuous function of age. The integral of 5Ty

from o to a is really something like

5%6.1 * “+*5Ta-0.1
10

r r
50 . . 5 a .
20 20

In constructing Table 4, ? 5rxdx was approximated by a trapezoidal formula
using values of 5Tos 5Tgs etc., as 2.5(5ro)+5(5r5+ ...Sra_5)+2.5(5ra),
analogous to estimating the integral of any continuous function by five-year
wide trapezoids. Since, in Sweden, the irregular age distribution caused by
past variations in fertility causes an erratic sequence of age-specific
growth rates, the trapezoidal approximation at five-year intervals is not a
very close approximation.

In Table 5 the age distribution by five-year intervals has been
calculated on the basis of the same equation, but with five-year growth rates

(and emigration rates) taken at starting ages only one year apart. In other

a
words, f 5T dx is calculated by a trapezoidal approximation, but with one-

o
a

year wide trapezoids; namely g erdx = 5ro/Z *gT) f Tyt T gt 5ra/2.
Note that in Table 5 this calculation has produced an age distribution that
fits the recorded distribution with extraordinary precision.

As a last point in this illustrative use of Swedish data, we have
calculated the net reproduction rate for each year from 1973 to 1977 from the

a
-/ r(x)dx

o

formula NRR = [ e v(a)da, where v(a) is the proportion of the total
a
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number of births occurring to women at age a. The sequence is 0.889, 0.896,
0.849, 0.809, 0.792, compared with the official calculations of 0.896, 0.899,
0.851, 0.806, 0.785 —— an error of less than one percent in every year in
calculating the net reproduction rate without explicit use of mortality data,

or of the level of fertility.

Applications for Estimation from Limited Data

a) Mortality
The formulation in (3) for a closed population can be used to infer
intercensal mortality conditions from two census age distributions.

Recognizing that life expectancy at birth is

p(a)da,

o
o
1

0 —m

. . . . . o
one can simply integrate both sides of equation (3) to estimate e as

a
- [ r(x)ax

eg = f %é%% e © da
o

Generally, estimates of N(0) will be poor. Higher starting points can
usually be more accurately estimated by averaging successive segments of the

age distribution. For example, life expectancy at age 5 is

a
- [ r(x)dx
o _ Na) 5
s =[xy e da

N(5) can be estimated as one-tenth of the total population between ages 0 and
10. Preston and Bennett (1982) have shown that this estimation system gives
good results in Sweden, India, and the Republic of Korea. It is always
subject to the quality of census data, of course, and seems to work
substantially less well in Kenya (Hill, 1981).

Directly inferring mortality from two age distributions means that
errors in the latter will often affect the former. Partly for this reason,
demographers have developed '"model" life tables that impose regularity on the
age sequence of p(a)'s and thus help to smooth out distortions in the age
distributions. All of the estimation methods that combine model life tables
and stable population analysis can be adapted to the more general case. For
example, Coale and Demeny (1967) recommend using the cumulative proportion
below certain ages, in combination with the stable growth rate, to identify
the correct level of mortality within a model life table system. Age 35 is

often considered a good choice for estimation purposes. The new formula for
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the proportion below age 35 is

a
35 -[ r(x)dx
[e?® p(al)da
o

c(35) =

a
-[ r(x)ax

e p(a)da

o8

Solving for the current level of mortality thus involves substituting trial
values of the p(a) function among candidates drawn from a model life table
system until a set is found that equates the right-hand side to the observed
value of C(35). Higher levels of life expectancy will produce lower values
of C(35), given the observed set of r(x)'s.

An alternative procedure is to use Brass's (1975) one-parameter

transformation of age-specific death rates. Assume that

q(a) _ qu(a)
p(a) Ps(a5 ’

where q(a) = 1 - p(a)
q4(a), ps(a) = q(a) and p(a) functions in the model
life table adopted as a standard
K = parameter representing level of mortality in the population.

After substituting into (5) and simplification, we find that

a
-/ r(x)dx

e ° - 1 L qs(a)
c(a) ) psias

This is now a simple linear equation whose intercept is the reciprocal of the
birth rate and whose slope is the product of the intercept and k. Preston
(1982) applies this procedure in several countries with promising results.

By generalizing stable population relations the new equations seem
certain to displace the estimation procedures based upon quasi-stable
methods (e.g., Coale and Demeny, 1967). These involved simulations of the
effect of mortality change on population age structures and growth rates.
The analyst then attempts to locate the simulation appropriate to his
situation by referring to the growth history of the population under study.
But we have seen that all of the features of that history that are pertinent
to demographic estimation are contained in the series of contemporaneous age-
specific growth rates.

Another data situation pertains when registered deaths are available by
age. If death registration is complete, of course, no indirect estimation of
mortality is required. But often the level of completeness is unknown. As

Bennett and Horiuchi (1981) have shown, it is possible to use the system to



estimate the completeness of registration. As demonstrated above,

a
[r(x)dx
o
da) = 2 (a)e _
- [ r(x)ax
[ p(a)e ° da
o

D(a) is simply observed deaths at age a, and d(a) = p(a)u(a) is deaths in the
underlying life table at age a corresponding to current mortality conditions
(with radix of one). Integrated from 0 to «, the d(a) function must equal

unity. Thus

a
- [ r(x)dx
[ pa) e® da
2 ) =1 . (16)

However, the left-hand side of equation (16) will equal unity only if deaths
are completely registered. Tf they are registered with completeness C at all
ages, then the value of the left-hand side will equal C. Therefore, its

3 Equation

value provides a direct estimate of registration completeness.
(16) can be implemented from any starting age and need not begin at zero,
since the probability of dying above age y (the arbitrary starting age) for
someone who survived to that age is always unity.

Estimates are less vulnerable to error in the N(0) or N(y) series if the
registered deaths are compared with the total population above 0 or y. This
improvement can be introduced by integrating over age for a second time. In

this case the formula for C starting from arbitrary age y is

a
- o [ r(x)dx
S rnta) e? da da
Yy = C. (17)
[ N(a)da
y

Bennett and Horiuchi (1981) have shown that equation (17) gives very good
results in Sweden and the Republic of Korea. Note that, after solving for C
in the more robust formula (17), one can then take the estimated value,
insert it into (16) to correct the D(a) series, and use (16) to estimate the
"true" number of births, N(0). Thus, registered deaths by age and age-
specific growth rates are sufficient to estimate the birth rate. Using them
in this fashion requires the assumption that C is invariant to age, which may
be untenable for infancy.

The system in (17) can give different and hence inconsistent estimates
of C for different starting ages. A fitting procedure is available to

produce a synthetic estimate. If deaths are registered with completeness C
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relative to the completeness of population enumeration, then in a life table

produced from the data,
1
- /c
pT(a) pR(a)

where pp(a) is the probability of surviving to age a in the life table
produced by the data and pp(a) is the true probability under prevailing
mortality conditions. Substituting this expression into equation (5), taking

logs and rearranging, we have

a
gnc(a) - [ r(x)dx
o

fnb + —(l:- fn pR(a)

nb - —é—

uR(x)dx

O “—m

This 1is again a simple linear equation whose intercept is the log of the
birth rate and whose slope is the reciprocal of registration completeness.
The independent variable is simply the sum of recorded age-specific growth
rates up to age a.

While this system of equations is useful for estimating registration
completeness, it can also be used to infer mortality (and fertility)
conditions directly from two sets of deaths by age. If we are prepared to

assume that mortality is constant over the period of observation, then
D(x, t+n)

Dix, t)

r(x, t to t+n) = %n

n
The age-specific growth rates can be inferred from the changes over time in
numbers of deaths by age. Deaths in the prevailing life table (with radix

one) are simply

a
[ r(x)dx
_ p(a) °
d(a) = 5
- [r(x)ax
[ p(a)e ° da
o

Thus, from nothing more than two sets of age-specific numbers of deaths it is
possible to construct a life table and to estimate birth rates (via equation
16). The required assumption 1is that mortality is constant during the
interval of observation (and, of course, that the population is closed to or
adjusted for migration). Since countries often collected and tabulated
deaths by age before they conducted censuses, this procedure may find
application in historical demographic research.

In this section and the succeeding one, it 1is assumed that the
population is closed to migration, or, what is equivalent, that age-specific
rates of net out-migration have been added to age-specific growth rates

before the formulas are applied.



b) Birth rates and fertility

Estimating the birth rate from intercensal growth rates and a life table
believed to prevail for the intercensal period can be done straightaway with
equation (4). It is only necessary to substitute appropriate values into the
equation. A particular advantage of this procedure is that it makes no use
of the reported age distribution, which is often very seriously distorted at
the young ages that are critical for many estimates of birth rates (e.g.,
through back-projection of age distributions). Instead, only age-specific
growth rates are required, which would be wunaffected by constant
proportionate distortions at the first and second censuses. The age-specific
growth rates could be combined with estimates of mortality made by Brass-type
procedures based on reported numbers of children ever born and children
surviving.

We have already shown how an estimate of the birth rate can be produced
if the life table is unknown but is assumed to belong to a one-parameter set
of model life tables, or if (not necessarily completely) registered deaths by
age are available.

We also observed above that it is possible to estimate the net
reproduction rate directly from the set of r(x)'s and the reported age
distribution of mothers at childbirth. The proportion of births occurring to

mothers aged a, v(a), at any time t is

a
-[ r(x)dx
v(a) =e?® p(a)m(a) .

A survey question on births in the past year, or information facilitating the
selection of a model fertility schedule, will provide an estimate of v(a).
Then the net reproduction rate can be estimated by rearranging this

expression and integrating.

a
[r(x)ax

]
NRR = [ p(a)m(a)dda = [ v(a)e ° da .
o a

By its simplicity, what this expression (and certain earlier ones) seems to
be telling us is that estimates of the net reproduction rate and the net
maternity function are more readily and robustly inferred from age-specific
growth rates than are either fertility or mortality conditions separately.
This is analogous to relations among crude rates, since the crude rate of
natural increase gives us directly the difference between crude birth and
crude death rates but no separate information on either.

Armed with an estimate of the net reproduction rate, one can determine
the approximate value of the gross reproduction rate (and the total fertility
rate) by the use of two well-known approximations: NRR = GRR p(m) (where

p(m) is the probability of surviving to the mean age of the net maternity
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function), and TFR = GRR (1+SRB), where SRB is the ratio of male to female
births. The proportion surviving to m can be approximated from Brass-style
estimates of 2(3) or 2(5) plus estimates of survival from childhood to @
from some form of model life table, and 1+SRB can be taken as about 2.05. 1If

the whole series of p(a) can be estimated, age-specific fertility rates can

a
[r(x)ax
be estimated by m(a) = v(a) e ° /p(a).

Like other demographic series, age-specific growth rates are subject to
error. When estimated from intercensal population change, they are subject
to error from differences in coverage completeness between the censuses and
from intercensal changes in the patterns of age misreporting. Age
misreporting tends to have a large geo-culture component; patterns have
apparently been very constant over a half century in India, for example
(Zlotnik, 1979). Age tends to be quite well reported in countries of the
Chinese-Japanese cultural sphere. There is usually little reason to expect
that patterns of age misreporting will change radically from one census to
the next, although the wording of age questions and instructions to
enumerators can provoke such changes. If changes in the pattern of age
misreporting involve only transfers between two adjacent age groups, the
effect on the equations should not be large since they all involve the
cumulative sum of growth rates up to a particular age.

Differences in census coverage completeness may be more problematic than
the changes in age misreporting for most countries. A 2 percent improvement
or deterioration in coverage between censuses separated by 10 years will
evoke a change in all age-specific growth rates by .002. This is not a

a
trivial magnitude in terms of its effect on the exp {~[r(x)dx} function,
o

which will change by the factor .951 by age 25. No single strategy can be
enunciated for dealing with an erroneous series of growth rates. If all
other demographic information is accurate, it is of course possible to
estimate the error in the age-specific growth series directly by applying
equation (5) to successive ages. This set of error estimates would then
provide a direct way of correcting the second census to make it comparable in
completeness and age misreporting to the first.

But it will be rare that other information can be assumed completely
accurate. The general situation is one where nothing is known for certain.
Here the new equations at least provide tests of consistency additional to
those normally used. The most common consistency test compares estimated
crude birth and death rates with recorded population growth from censuses.
We can add to that test one in the form of equation (6) that displays a
necessary relationship among age-specific growth rates and age-specific
fertility and mortality rates prior to the end of childbearing. Because the
Brass procedures for estimating age-specific mortality and fertility are

widely used, opportunities for such an application are abundant. Equation



(5) is also a strong check of consistency among estimated birth rates, age-
specific mortality, and age-specific growth.

It is also possible to estimate the degree of differential coverage in
the two censuses, providing that one is willing to assume it to be invariant
to age or to follow some other pre-specified functional form. If the second
census is uniformly in error relative to the first by a ratio constant with
age, then all computed age-specific growth rates will be in error by the
same absolute amount Y. In the presence of such an error, all of the r(x)'s
in formulas 4-6 must be replaced with rp(x) + Y, where rR(x) is the

observed (i.e., erroneous) growth rate at age x. Equation (5) now becomes

a
-/ rR(x)dx —ya
c(a) = be ° e p(a).

One may estimate Y by taking logs of both sides and rearranging:
a
gnc(a) - fnp(a) + [ rR(x)dx = fnb - va . (18)
o
The value of Y can now be estimated as the slope of a line. If registered
deaths are available but the completeness of registration is an unknown,

designated C as before, then

o

a
2nc(a) + | rR(x)dx = fnb - va -
o

a
g uR(x)dx . (19)

Equation (19) is now a linear equation with two independent variables that
should not be highly colinear, so that identification of y and C should be
possible.

Still other procedures can be devised for use with model 1life table
systems (e.g., Preston and Bennett, 1982). We cannot hope to be exhaustive
here, and each of the procedures described needs much more careful attention
to detail (e.g., treatment of open-ended age intervals) than we have
provided. The new equations provide numerous fresh points of entry for
demographic estimation, and we have only scratched the surface of
possibilities as well as problems,

It should be noted that in virtually all of the measurement procedures
described here, a corrected age distribution is an important by-product. The
true age distribution of the population is itself an object of interest, and

demographers can play a useful role in identifying it more accurately.

c) Migration

The conventional way to estimate net migration rates in the absence of a
count of migrants is to forward project a population age distribution at time
t by an "appropriate" life table and compare the projected population with

that recorded at some time t+n (United Nations, 1970). Differences between
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actual and projected numbers of persons are ascribed to net surviving
migrants. Back-projections of these survivors are then required in order to
estimate the volume of net migration. The migration of persons who were
below age n at time t+n requires special treatment. The procedure is awkward
to implement unless censuses are separated by an integer multiple of five
years because census age distributions are normally tabulated in five-year
age categories.

A simple alternative is to use the equations for an open population.

Since

a a
-[ r(x)dx -f e(x)dx

N(a) = N(0)e ° e ? pla),
g a
£ r(x)dx [ e(x)dx
N(;)g - = e © , and
g N(a) 4
-[ e(x)dx = #n ﬁ(ﬁT%TET + [ r(x)dx. (20)
o o

Implementing equation (20) again requires an "appropriate' life table to give
p(a), plus census age distributions and age-specific growth rates. If
implemented from age 0, it also requires intercensal births; if these cannot
be estimated, the process could begin at age 5, with N(5) estimated by
averaging numbers in the adjacent 5-year intervals. Applying equation (20)
to successive ages gives the sum of age-specific net migration rates at
different ages; age-specific net migration rates could then be estimated by
subtraction. It is likely that imposing a "model" schedule of migration
rates of the kind proposed by Rogers and Castro (1981) would improve
estimates in developing countries. The procedure is clearly applicable to
all forms of migration, whether internal (in which case the N(a)'s would
pertain to a particular region of a country) or international. The advantage
of using (19) relative to existing techniques is likely to be more of
convenience than of methodological soundness. It does, however, provide an

opportunity for improved estimates below age 10.

Estimates of Marital Survival

By analogy to previous results,

a
-[r(x)dx
M(a) = M(0)e ° n(a), where (21)
M(a) = number of marriages intact at duration a
r(x) = growth rate of number of married couples
m(a) = probability that a marriage will survive to duration a according

to conditions of divorce and death of the period.



To estimate the life expectancy of a marriage from the time it was contracted
according to period-specific conditions of dissolution, it is only necessary
to rearrange this equation and integrate:
a
-[ r(x)dx
M(a)e °

T TC) I

This provides a simple method of estimating the 1life expectancy of a

e (M) =
o

o—38

marriage, which 1s otherwise so laborious a process that it 1is rarely
undertaken. All that is required are two surveys giving the number of intact
marriages by duration and an estimate of the number of intervening marriages
that have occurred (M(0)). There are many other processes that could be
similarly modelled: length of time spent in school, in prison, in parity two,
in the divorced state, in the major leagues, in the priesthood, etc.

The above relationship does not indicate the likelihood of leaving the
state of marriage from any of the multiple sources of exit. Now suppose
that we have data on the number of divorces by duration of marriage, X(a).
Multiplying both sides of (21) by uP(a), the force of decrement from

divorce at duration a, we have

a
- r(x)dx
x(a) = M(a)uP(a) = M(0)e ° n(a)u(a). (22)

The function, w(a)uP(a), integrated over all durations from 0 to ®, is
simply the probability that a marriage will end in divorce, pD. Thus,

rearranging (22) and integrating, we have
a

© [ r(x)dx
[ x(a)e © da
e (23)

Equation (23) provides an extremely simple procedure for estimating the
probability that a marriage will end in divorce. It generalizes one given in
Preston (1975) that assumed stability. Again, it is widely applicable beyond
the case of marriage and divorce. In the case of fertility, pD is

equivalent to a parity progression ratio, the probability of eventually
leaving a particular parity by the route of having another child. With two
surveys on the duration since achieving a particular parity (including zero)
and the number of intervening births by order and duration since last birth,
one can estimate all of the parity progression ratios and hence the total
fertility rates without any reference to age. This generalizes some recent
work of Griffith Feeney (1981).

The multiple decrement results pertain when duration in a state is the
indexing variable. They are directly analogous to age relations in a

population because one can only enter the duration hierarchy at zero, just as
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one enters the age hierarchy at birth. If one is interested in the expected
years of life spent before the occurrence of some event, or the probability
that some event will occur in the course of life, one would return to age as
the indexing variable. Analogous versions of (23) exist, for example, to
estimate the probability that an individual would marry, become a mother,
enter the labor force, or move from place of birth. Only a slight
modification is required to estimate the length of life before an individual

enters one of these states.

Summary and Conclusion

Much of formal demography deals with functions that pertain to
individuals passing through 1life, or, equivalently, to a stationary
population in which the births of individuals are evenly distributed over
time. These functions include life expectancy, probabilities of surviving
between two ages, net and gross reproduction rates, expected years spent in
various states, and the probability that particular events will occur in the
course of life. The stable population model has proven very useful in part
because it permits the translation of population structure or processes in a
more general type of population — one with constant growth rates — back into
equivalent functions for a stationary population. Here we have developed a
method for translation that is more general still, since it applies to any
population. The only ingredient required for the translation is a set of
age-specific growth rates. These are also useful for performing the reverse
translation, e.g., between a population's life table and its birth rate, or
its age distribution.

Table 6 summarizes the basic relations among certain functions in a
stationary population, a stable population, and any population. The r(x)
function used in the table is the age-specific growth rate plus the age-
specific rate of net emigration. If the population is closed to migration,
r(x) is simply the age-specific growth rate. The meaning of the functions
and variables has been previously defined.

Once the basic principle of this translation 1is recognized, its
implementation becomes routine. We have described certain applications of
the new equations, particularly to demographic estimation from incomplete
data. The equations can be applied to many other issues: the two-sex
problem, increment-decrement tables, convergence of a population to its
stable form, cyclical changes in vital rates, and density dependence of
population processes, to name a few. Stable population models will no doubt
continue to occupy a central place in demonstrating the long-term
implications of changes in mortality and fertility. However, in demographic
estimation and measurement, it seems likely that the new procedures will
supplant most of those based upon stable or quasi-stable assumptions. The
existence of these procedures strongly underscores the value of repeated

census operations for demographic measurement.



Table 6:

Formulas for certain functions in stationary, stable, and any population.

Formula for

Stationary Stable Any
Function Notation Population Population Population
a
Proportionate age -fr(x)dx
distribution c(a) bp(a) be F3p(a) be © p(a)
+n
Ratio of population at c(atn) - 3 r(x)dx
two ages c(a) nPa e nPa e d nPa
o © © ra 2
Lif t t birth = [p(a)d fe(a)d: fc(a)e “da T (x)dx
e expectancy a T e 0p(a) a Oc(a) a . b zc(a)ea
v b b
b b 5
Birth rate b 1 1 1
© © a
6P(a)d8 [p(a)e T3da © ~fr(x)dx
0 ép(a)e ©
Proportionate age distribu- _ a
tion of mothers at childbirth v(a) p(a)m(a) p(a)m(a)e ™2 ~fr(x)dx
p(a)m(a)e ©
Treo
r(x)dx
Net reproduction rate NRR = ?p(a)m(a)da ?v(a)da =1 zv(a)erada ?‘,(a)e‘) da
a a a
Lr(x)
Expected years of life to © s ra < o
be spent in state G G~ = ?g(a)p(a)da [g(a)c(a)da ég(a)c(a)e da ég(a)c(a)e da
with incidence at age a Lo O——b——— b b
g(a)
* a
Number of persons at age a _in © © (a-a®) © [ r(x)dx
terms of deaths above age a N(a*) /*D(a)da J'*D(a)er a2 ) a /*D(a)ea* da
a al a
*
Number of persons at age a**in " a* ra* a* ra ?r(x)dx a*
terms of deaths below age a N(a™) N(0) - El; D(a)da e N(O)—éfD(a)e da| ° N(0)-/D(a)e®
o
a
- - . © I, F(x)dx
ProbabiiiCy of survival from 7 D(a)da I D(a)er(ﬂ—a )aa f D(a)ed
a* to a™n in terms of deaths npa* a*in a*in a*n 7
—ax )
7 p(a)da Focare™@#Vaa T peayedr @y,
a* a* a
Footnotes
1. Calculated from Keyfitz and Flieger (1968, pp. 30-1, 230-2) and

Population Index, April 1977, p. 374.

2. As Shiro Horiuchi has shown in correspondence, an expression for the age-

specific growth rate itself, rather than its cumulation from age zero, can be

derived by differentiating the second expression for N(a, t), giving

o ay

a
r(a,t) = ry(t-a) - / 3ulx,y)

and rB(C) = d&n B(t)/dt.

dx, where y = t—a+x
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3. More generally, if completeness varies with age, the left-hand side of

(16) will equal a weighted mean value of age-specific completeness, where

weights are supplied by the d(a) function, life table deaths at age a.
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Appendix

Derivation of the Basic Equation Linking Age Distributions

to Period Mortality, Migration, and Growth Rates
Samuel H. Preston,* Ansley J. Coale,** and Michel Garenne*

The proof of equation (3) is a straightforward application of
multivariate calculus. What we present here is basically an expanded and
elaborated version of an appendix in Bennett and Horiuchi (1981). Imagine a
surface representing the number of persons alive by age and time period and
define N(a, t) as the number of persons aged a at time t. The number of
persons aged a + da at time t + dt is N(a + da, t + dt). For present
purposes we will assume that da = dt, so that N(a, t) and N(a + da, t + dt)
refer to persons belonging to the same cohort, i.e., those born at time (t -

a). The change in the size of this cohort between time t and t + dt can be

* Population Studies Center, University of Pennsylvania
**0ffice of Population Research, Princeton University
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denoted as dN(a, t). Assuming existence and continuity of the partial

derivatives, it can be shown that as da = dt approach zero,

oN(a, t) 9N(a, t)
dN(a, t) = at’ dt + aa’ da , (A.1)
where EE%%l—El is the partial derivative of N(a, t)
with respect to t; and
3&%%;.51 is the partial derivative of N(a, t)
with respect to a.
Dividing both sides of A.l by N(a, t), we have
IN(a, t) N(a, t)
dN(a, t) g e 2 Y g,
T - t + a (A.2)
Na, t N(a, t N(a, t
IN(a, t)
= r(a, t)dt + da da
Nfa, t)

r(a,t) is the growth rate of the population aged a at time t, or the
proportionate change in the number of persons aged a per unit of time. The
left-hand side of A.2 is the proportionate change in the size of the cohort
aged a at time t in the small interval of age a to a + da (or time ttot+
de). There are only two sources of change in a cohort's size, death and
migration. Using daD(a) to denote deaths in the interval a to a + da to the
cohort aged a at time t and daM(a) to denote net migrants (in-migrants minus
out-migrants) during this same interval, we have

dN(a, t) = 4.M(a) - 4.D(a)

It is conventional to define the force of mortality function for a
cohort at age a as (Keyfitz, 1968, p. 5)

lim da®(®)

u(a) = da+0 N(a)da °

where daD(a) is understood to pertain to the age interval ato a+ da. We

can analogously define the force of migration function as

(a) = lim da
Y da+0 N(a)da
Dividing both sides of A.2 by da = dt and substituting, we have,

dN(a, t)
as da = dt » 0, -u(a, t) + y(a, t) = r(a, t) + da . (A.3)
Nza, t)

This is the equation linking ages, periods, and cohorts that is required in
order to derive the remaining expressions.

A.3 can also be written as

94n N(a, t)

52 = vy(a, t) - u(a, t) - r(a, t) .



Holding t constant and omitting it in the notation, we integrate both sides

between specific ages 0 and x:

x X z *

rd gn N(a) . - [ y(a)da - [ u(a)da - [ r(a)da, or
a

- 0 0 0

x x x
2nN(x) - 2nN(0) = [ y(a)da - [ u(a)da - [ r(a)da
0 0 0

Taking exponentials and rearranging we have

X X X
[ v(a)da - [ w(a)da - [ r(a)da
N(x) = N(0)e ° e © e ®

This is the basic equation (7) in the text, with y(a) defined to equal -e(a).
In a closed population, of course, Y(a) = 0 at all a.

To develop the equivalent formulas for dealing with discrete time and
age groups in a closed population, we return to equation A.3 and write it as
aN(a, t) IN(a, t)

u(a,’t) = - Qa - 3t , or
N(a, t) N(a, t)

_ 3N(a, t) _ 3N(a, t)
da ot

D(a, t)

We now integrate between specific ages X and x+n and periods t; to ty:

xX+n x+n

t t x+n t
fz J/  D(a, t)dadt = —fz J Eﬁégi_fl dadt - [ fz EE%%l—El dtda
tl X tl X X t1
t2 x+n
= —[“{N(x+n,t)-N(x,t)}de - [ {N(a,tz)-N(a,tl)}da.
t X
1

Now dividing both sides by the sum of person-years lived in the age and time
interval, we have

t, x+n

-atn | [ [ N(a, t)dadt
_ & X i
nx dx Ttk OF
-d&4n_P
_ n x
n x dx n x

The term inside the brackets, _P is the sum of person-years lived in

n x?

the discrete time-age interval. oMy 1is the death rate for that interval

as conventionally defined: total deaths divided by total person-years lived.

nTx is the growth rate of the population in the interval as conventionally

defined: the difference between the end period population aged x to x+n and
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the beginning period population in the age interval, divided by total person-
years lived in the age interval during the period t) to ty.

Now integrating this expression between specific ages 0 to K, we have

K K
anxdx = - 4n nPK + n nPO - fnrxdx , or
0 0
K K
—f M dx -f r_dx
on X on X
2Pk = P © e (A.4)

This is the discrete analogue of equation (3) and the similarity is quite

close. Person-years lived in discrete intervals of age and time have

replaced N(a, t); mortality and growth defined on discrete age-time intervals
K

have replaced u(a, t) and r(a, t). Note that the exp {~[ ndex} term does
0

not involve summing age-specific death rates in successive age intervals but

rather requires summing death rates in n-year wide intervals continuously

from starting ages 0 to K. This exponential term can be conveniently

simplified by noting that

d
— = -2 = d
dx an £x+n X n x
(d logan)
Hence, —nmx = ——————HE—-; and on the assumption that

fde
-/ nx
- 0 -
nx nx’ © nLK/nLo'

K
-f r_dx
on X

Thus, C = C_ e AV (A.5)

Note that A.5 shows the proportions at all age intervals (except the
first) relative to nCo» which is in principle the first observation of
grouped data. No precise relation to the number of births can be derived in

this context. However, since

(cC +C + ... C ) = 1.0,
no nn n w-n
it follows that
C
oo+ S L EER) =10 . (4.6)
n o n o

Since all of the terms but nCo in A.6 can be calculated (when nlx 1is

known at n-year intervals, and when _r, is known as a continuous
variable), nCo, can be determined, and the other aCk's as well. Note



that (except for the generally accepted approximation that %k = nMx)

equation A.5 is exact. It is approximate only if nfx itself is known at
n-year intervals, rather than continuously. (See the calculations of the
Swedish age distribution by five-year intervals as an illustration of this
point.)

The relation between age structures of deaths and person-years in
discrete time and age segments can be readily derived. Denoting D, as
deaths in the age interval x to x + n during the time period t] to t,, we

have
D = P * M
n x+y n xty n x+y
Substituting for _P from A.4,
n x+y
xty x+
- f M_ da - fy r_da
xna xra
an+y “nx € nMX+Y» or
xX+y Xty
f r_da -f M_ da
xna e
an+y € “n'x © nMX+Y

Integrating both sides of this expression from y=0 to y = ®, we have

Xty Xty
o i nfa da m -i nMa da
gan+y € dy = an g € nMx+y nd

But the value of the integral on the right-hand side is unity, as can be
shown by integrating by parts. Therefore,

x+y

X n'a da

-]
=/ b e dy
o M XY

This equation is exactly analogous to one in the text except that nPx has

replaced N(a), D, has replaced D(a), and ,r, has replaced r(a).
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