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This paper shows that each of the equations describing relationships
among demographic parameters in a stable population is a special case of a
similar and equally simple equation that applies to any closed population.
An equation almost as simple applies to any population defined in most
general terms as a collectivity classified by an index analogous to age. The
paper then demonstrates some implications of these new equations for
demographic theory and practice.

Our work on this subject has precursors in the efforts of Von Foerster
(1959), Trucco (1965), Langhaar (1972), Hoppensteadt (1975), and Bennett and
Horiuchi (1981). In particular, these works recognize that there is a
necessary relationship in a closed population between a population's age
distribution at time t, its age-specific force of mortality function at time
t, and its set of age-specific growth rates at time t. From this
recognition, we take the short step required to rewrite the mathematics
applying to stable populations in a more general form.

The extension to more general conditions of the relations found in
stationary and stable populations can be understood by considering the
expression for the relative rate of change of the number of persons at each
age as age advances. If the number of persons in a population is assumed to
be a continuous function of age, then the relative change in number as age

increases is

1 dN(a) d log N(a)
N(a) da ’ or da :

Here N(a) refers to N(a,t), the number of persons aged a at time t; we have
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omitted the t identifier for convenience. A stationary population is a
population with the same number of births every year and an unchanging
schedule of mortality rates. In a stationary population, the number of

persons at each age does not change with time. In such a population

1 dn(a)  _
NCa) da - ua

where u(a) is the age-specific mortality rate (or force of mortality) at
exact age a.

A stable population is a population in which the number of births
changes with time at a constant rate r, and the mortality schedule is the
same from year to year. The number of persons at each individual age also
changes with time at the rate r. As a result, each successively younger
cohort is larger (or smaller if r is negative) at every age than its older
predecessor by a constant multiple. If we imagine a growing stable
population in which there is no mortality, the relative number at age a would
diminish at a rate r, or

1 an(a)  _ _
Wa) da T

Since the stable population is in general subject to a fixed mortality
schedule u(a), the relative number changes with age as the result of the
independent effects of mortality at age a and the relative difference in size
of adjacent cohorts r, or

1 dN(a)

W&y aa - -u(a) - r n

as can be verified by differentiating the well-known expression for the age
distribution of a stable population (N(a) = Be "%p(a)).

The extension to less restricted conditions in which mortality and
fertility change with time is simple. 1In any closed population, the relative
number at age a changes as age advances because of mortality; it also changes
as a large or small cohort advances in age, replacing one different in size.
To make equation (1) applicable to any closed population at any moment in
time, one can express the rate of increase in the number at age a as a
function of age. Thus, at any moment

1 dN(a)

T I = -u(a) - r(a) (2)

when r(a) is defined as

lim N(a, t + At) - N(a, t)
At>0 NCa, tJAE

The validity of equation (2) can be justified intuitively by noting that the
number at a slightly greater age than a at time t, or N(a +Aa, t), equals the
number at age a at a slightly earlier time, or N(a, t-At), less the number of

deaths the cohort has experienced in this short period (note that At is

necessarily equal to Aa). The number of deaths is N(a,t) u(a,t) At, if the
effect of the difference in cohort size on the number of deaths is ignored,
as it may be as At(=Aa) approaches zero. Hence

N(a + Aa,t) - N(a,t) _ N(a,t - At) - N(a,t) _ u(a,t)At

N(a,t)Aa N(a,t)At Aa ’

the limit of this expression as Aa (= At) approaches zero is equation (2).
More simply, equation (2) expresses the relative change in numbers with age
as the sum of two independent terms, the change that would occur as the
result of mortality alone, and the change that would occur as the number at
age a changed with time, in the absence of mortality.

d log N(a)

Since (2) can be written as — - -u(a) - r(a), it follows by

integration that

a a
- e(x)dx - [ w(x)dx

N(a) = N(o)e ° ° , or

a
- r(x)dx
N(a) = Be °© pla). 3)

Equation (3) is the basis of much of the rest of this paper. So that the
elements of this equation are as clearly understood as possible, let us
reiterate that
N(a) = number of persons age a at time t, i.e., height of the N(a,t)
surface at some point a at some time t.
p(a) = probability of surviving from age 0 to age a according to the

a
|H p(x)dx

° where u(x)

life table prevailing at time t, or p(a) = e
is the mortality function at time t.

r(x) = annual growth rate of persons aged x evaluated at time t.

Unless otherwise noted, all functions in this paper pertain to some
particular time t; all relations among functions pertain at each and every
time t.

It seems likely that equation (3) has been derived many times in many
different contexts. But its implications for demographic analysis do not
appear to have been fully developed. Part of the neglect may result from the
belief that the r(x) series 1is theoretically uninteresting, since it is
clearly a function of past patterns of mortality and fertility. But to a
demographer, the r(x) series is a very widely observed datum, calculable
whenever a country has taken two censuses not too widely separated. With
that datum, many relations among other demographic parameters can be
clarified. We will now show how it leads to a simple generalization of the

equations characteristic of a stable population.
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The birth rate of the population is

bw_ B _ B _ 1
= a a (4)
[ N(adda w —f rxdx - -f r(x)dx
° [ Be® pa)da [e® p(al)da
o o

The proportion of the population that is age 2 is

a
|R r(x)dx
c(a) = N(a) - Be °© p(a) or
© a 3
[ N(a)da o -f rax
° [ Be® p(a)da
o
a
-f r(xdax
c(a) = be ° pla) . (5)

B8
Finally, the birth rate can also be represented as b = g\nﬁmv!nwvam.
a
where m(a) 1s the rate of bearing female children for women aged a and @ and

B are the lower and upper ages of childbearing. Substituting (5) into this
last equation, we have

a
-[ r(x)dx

m
b=fbe? p(a)m(a)da, or
a

a
-f r(x)ax

e ® p(a)m(a)da .

(6)

—
(]
R ™

If age-specific growth rates are constant with age at a value of r, equations

(4), (5), and (6) become

b= = 1
- '
M oTa p(a)da ")
o
c(a) = be T2 p(a) (5")
B _ra
1=fe p(a)m(a)da . (6')
a
Equations 4', 5', and 6' are readily seen to be the classic equations
characterizing stable populations (Lotka, 1939; Coale, 1972). Thus, the

stable equations are a special case of a more general set of equations 4 - 6;
the stable equations pertain whenever age-specific growth rates are constant.

Equations 4 - 6 characterize every closed population at every moment in time.

The existence of a set of such simple and general relations, in view of the
large volume of work on stable population theory, is surprising.

The development so far has assumed the population to be closed to
migration. However, the formulation can be immediately generalized to an
open population with an age-specific force of net out-migration function of
e(x). It is only necessary to recognize that the force of migration function
acts on the growth process in a fashion exactly analogous to the action of
mortality. The age distribution does not recognize whether people are
leaving the population.by death or by out-migrating, and net in-migration
will simply offset (sometimes more than completely) the impact of mortality.

As shown in the Appendix,

a a
-f r(x)dx [ e(x)dx
N(a) = N(o)e °© e ® pa) (7)

The three basic equations 4-6 can now be derived as from (3) above, simply by
adding e(x) to r(x). With this correction for migration, any open population
can be analytically converted into a closed one.

In fact, nothing limits us to recognizing only one form of "migration"
or even one form of mortality. Any form of attrition or accession can be
introduced into (7) simply by recognizing that it must act analogously to
migration or mortality from all combined causes. Equation (7) is the basis
of a surprisingly general set of relations. 1In particular, one can see that
the age composition of any population at any moment (assuming only that age
composition and its change through time are continuous) is completely
determined by the rate of increase in the number at each age at the given
moment, together with the rate of attrition (including negative attrition) at
each age from each of a number of independently operating factors. To be
more specific, if the rate of increase, r(x), is known for each age x from
zero to the highest age attained, and if the values of i different attrition
factors, f.ﬁxu. are also known, the age composition is completely
determined and can readily be calculated; conversely, if the age
distribution and all but one of the attrition factors are known, the rate of
attrition for the omitted factor can readily be calculated.

This set of relations 1is known in demography, for particular instances,
and the basic equation in differential form is familiar in mathematical
biology and actuarial work, but the full (though simple) generalization seems

to have escaped attention. The basic equation is as follows:

a a
-f r{x,t)dx - ) .&.:wﬁn“nvmx .
N(a,t) = No,t)e ° et °

where N(a,t) is the population density at age a, time t; r(x,t) is the
instantaneous rate of growth of the population at age x, time t; and

uj(x,t) is the rate of attrition from the operation of the ith among
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the several factors that diminish (or increase; the attrition can be
negative) the number of members of the population at age x. Because all of
the variables are defined at the same moment (t), the time variable can be

suppressed, and the equation expressed as:

a a
-[ r(x)dx t.M / u (x)dx
io

N(a) = N(o)e °© e (8)

Note how wide is the universe to which the equations apply. To be consistent
with these equations, members of a collectivity must have a defined duration
of existence in a given state, a defined duration analogous to age.
Conventional chronological age of humans is duration of life since birth, but
duration of marriage, duration of residence, duration of existence in the
single state, and duration of stay in a hospital are other examples from
human experience. The attrition factors -- mortality, or mortality from each
of several independent causes, out-migration (or immigration, which is
negative out-migration), divorce (attrition from the married state), or
marriage (attrition from the single state or negative attrition into the
married state) -- cause a specified proportionate rate of decline (or
increase) in numbers at each age for a defined collectivity. For the
relation to hold, the distribution of numbers and the force of each
attrition factor must be continuous functions of age.

Although r(x) is formally defined as mﬁ'mm)ww. it can be viewed and
manipulated as a function of age, and not of n.».__m at a given moment. An
analog is the speed of an automobile, which is properly defined as the time
derivative of the automobile's position, but can also be viewed as a
characteristic of the vehicle at a given moment, indicated by the speedometer
reading. A speed of 60 miles per hour has no implication that the car will
cover 60 miles in an hour nor that it has covered 60 miles in the past hour.
The speedometer is usually a voltmeter showing the voltage produced by a
generator mounted on the driveshaft, a generator producing a voltage
(ideally) proportional to the rate of rotation of the shaft. One can imagine
a '"speedometer" that reads r(x) at each moment in a given population. 1In
fact, if the attrition factors and the age distribution in equation (8) are
known, r{x) can be calculated without any record of the change in number at
the same age from one moment to the next. Note further that any of the age
functions in equation (8) -- r(x), u;(x), or N(a) -- can be calculated from
a full listing of all of the others.

In equation (8) r(x) is formally analogous to any one of the i attrition

vn:

factors. Mathematically, it could be included as the (i+l form of
attrition: a population subject to mno external attrition factors decreases
with age to a degree that is proportional to the rate of increase at each
age. However, the rate of increase is distinctive in that it is a built-in

form of attrition, the result of differences in cohort size that in turn

arise from the past history of the population -- from past rates of entry and

attrition -- whereas the other sources of '

‘attrition" are exogenous.

Any population can be thought of as a stationary population subject to
multiple "decrements', one of which is growth. As in the conventional
multiple decrement situation, it is possible to ask what the population
structure would be like if one of the decrements were not operating. If the
eliminated "decrement" is growth, we are left with the stationary population
produced by the activity of the exogenous decrements , u;(x). If mortality
is the only remaining source of decrement, the stationary population is the
conventional stationary population of life table literature. In other words,
to convert the age distribution at time t into the age distribution of a
hypothetical stationary population subject to current forces of attrition and

a radix of today's births, it 1s only necessary to multiply the current
y > y y y

a

number of persons aged a by exp{ [ r(x,t) dx }. This conversion factor
o

appears in virtually every formula in this paper because it transforms any

population into its corresponding stationary population, from which many

demographic functions can be derived.

The Age Distribution of Births and Deaths

The frequency distribution of mothers' ages at childbearing at time tis

a
|\ r{x)dx
v(a) = . N(a)m(a) _ Be ° - p(am(a) L or
R N(a)m(a)da 8 -f r(x)
¢ [ Be © pla)m(alda
a
a
- r(x)dx
v(a) =e® p(a)m(a) .

It is because the term on the right-hand side of this expression is the
frequency distribution of mothers' age at childbearing that it must sum to
unity, as in equation (6).

An intuitive understanding of this formula may derive from the following

considerations. Rewriting the above equation as

a

Hnaxvn_x
v(a)e = p(a)m(a),

we observe that the right-hand side is the expected number of births at age a

per newborn child subject for all her 1life to today's p(a) and m(a)
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schedules. The left-hand side consists of two components: B(a)/B, or births
a

occurring today at age a per newborn child; and exp ~ .“ r(x)dx T which
o

expresses the factor by which births at age a would grow over the next a

years, under current fertility and mortality rates, as persons now aged a are
replaced by the larger (or smaller) cohort just now being born. Thus, both
sides of the equation are exact representations of the expected number of
births a years hence per woman in the cohort just now being born, if she is
subject to current p(a) and m(a) schedules.

We may now integrate both sides of this equation to derive a new
expression for the net reproduction rate:

a

[ r(x)ax

[¢]

B
pla)m(alda = [ v(a)e
o

da . 9

=
%
[
QR —w™

This expression says that the net reproduction rate in any closed population
can be estimated exactly from information on the distribution of mothers'
ages at childbirth and from age-specific growth rates. The corresponding
relation in a stable population seems to have escaped comment, probably
because the normal analytic problem is to estimate rp from p(a)m(a) and not
the reverse. But if r(x) is observed and v(x) is known or can be
approximated, the net reproduction rate can be estimated from the set of
growth rates, rather than customary estimation of the intrinsic rate of
increase from the net reproduction rate.

The frequency distribution of ages at death in a closed population
likewise bears a simple relationship to the corresponding frequency in the
underlying life table that 1is generating the data. As Bennett and Horiuchi

(1981) have shown, the number of deaths at age a (time t) is

a
-/ r(x)dx
D(a) = N(a)u(a) = N(Ode °© pladu(a), or

a
-[ r(x)dx
D(a) = N(O)e ° d(a), where

d(a) = deaths at age a in the life table prevailing at time t (with
radix of one).

So the frequency distribution of ages at death is

a
- r(x)dx

D(a) d(a)e °

o a
H D(a)da - IH r(x)dx

° [ daCa)e °© da
o
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Normally, the analytic problem will be to infer life table deaths from the

observed age distribution of deaths. For this purpose, one would use

a

[ r(x)ax
= da) = D(a)e °
@ a -
[ d(a)da - [ r(x)ax

° [ playe ° da
o

d(a)

From the life table death function, d(a), all other mortality functions of

interest can be reconstructed,

Population at Age a Determined by Accessions and Departures at Ages from

Zero to a, or from a to W

This section shows how the number of persons at a particular age is
related to the contemporaneous accessions and exits occurring below that age,
as well as to accessions and exits above that age. Denote accessions at age
x as A(x), the number of exits as E(x), the rate of accession A(x)/N(x) as
u*(x), and the rate of exit as w (x). The rate of increase at x is r(x)
If we imagine a hypothetical cohort of N'(o) original members subject to u~

(x) and u*(x), then the number at age a, N'(a), would be
a
[ ) - wxax .

N'(ode °©

A'(x) would equal N'(x)u*(x), and D'(x) would equal N'(x)u7(x). In the

|q r(y)dy
actual population (assuming N'(o) = N(o)), N(x) = N'(x)e © ; hence
'Y
-[ r(y)ay HN r(y)dy
Ax) = A'(x)e ° , and D(x) = D'(x)e ° . The purpose of defining

the number of accessions and departures in a hypothetical cohort is to make
use of two identities that apply to a cohort: the number of persons at age a
equals the number at zero plus the sum of accessions, less the sum of
departures, in the interval from zero to a; the number at a also equals the
number of departures less the number of accessions, in the interval from ato
the highest age attained, w, at which age the cohort is extinct.

Thus :

a
N'(a) = N'(o) + .\ (A'(x)-D"(x))dx; also (10)
o

w
N'(a) = [ (D' (x)-A"(x))dx. (11)
a

Now we recall the relations listed above between numbers at each age,

and numbers of accessions and departures, in the actual population, and in
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the hypothetical cohort. Substituting from the equations in the preceding
paragraph for N'(a), A'(x), and D'(x) the corresponding values of N(a), A(x),
and D(x) in (10) and (11), we find

X a
a - r(y)dy - r(x)dx
N(a) = {N(o) + [ (A(x)-D(x))e ° dxte © , or
[=]
a a
|~_. r(x)dx a I% r(y)dy
N(a) = N(o)e °© + [ (A - D(x))e ¥ dx,
o
or, counting N(o) as A{o),
a
a -[ r(y)ay
N(a) = [ (a(x) - D(x))e * dax (12)
o
and
X
© | r(pay
N(a) = [ (D(x)-A(x))e ? ax . (13)
a

These equations can also be expressed in a form that facilitates

calculation, namely

atn atn
- r(x)dx ata -f r(y)dy
N(a*+n) = N(a)e ? + [ (A(x)-D(x))e ¥ dx (14)
a
and
a X
[ r(x)ax [ r(ydy
a-n a a-n
N(a-n) = N(a)e + [ (D(x)-A(x))e dx. (15)
a-n

As an experiment, these equations were used to calculate the number of
currently married women at each age in Sweden in 1976, counting accessions as
the number of marriages plus the number of immigrant married women at each
age, and departures as emigration of married women, divorce, death, and loss
of husband. The only use of data on the number of resident women is to
calculate the crucial age-specific growth rates for the married population.
The calculated numbers acv:nmnm the recorded number of married women by
single years of age with an average error (from age 17 to age 30) of 1.3

percent.

Particular Features of the New Equations

Equations (5) and (6) can be puzzling to anyone habituated to

traditional demographic analysis, including those at home with the

mathematics of stable populations. Equation (6) presents a relation that
must hold between the net maternity function, p(a)m(a), experienced by the
populations at a given time, and the set of age-specific growth rates, r(x),
found at the same time. Conventionally, the net maternity function is
thought of as having implications for growth in the long run, when the
"intrinsic" growth rate has time to manifest itself. It is not obvious why
(in terms other than found in the formal proof) the set of contemporaneous
growth rates must alsosnecessarily be consistent with the net fertility
function. The puzzle is solved by recognizing that r(x) for all ages above
zero is, as common sense suggests, causally independent of the net fertility
function of the moment, but not of the growth rate at age zero. If the net
fertility function is changing from year to year because of changes in the
rate of childbearing, it is the role of the growth rate in the neighborhood
of age zero to be modified in such a way as to ensure that equation (6)

continues to hold.

a
This outcome can be clarified by separating the integral [ r(x)dx in

o
1 a
equation (6) into [ r(x)dx + [ r(x)dx, a separation that is permissible
o 1
1
because the range of a begins at a, well above age 1. %lxvax is part of
a o
J r(x)dx for all relevant a. It follows that
o
1
-[ r(x)ax
o
e
can be factored from equation (6) as follows:
a 1 a
8 - r(x)ax 8 -[ r(x)dx -f r(x)dx
Je?® pla)m(a)da = [ e ° e 1 p(a)mn(a)da =
a a
1 a
-f r(x)dx 8 - r(x)dx
e © [e ! p(a)m(alda.
a
1
If we call % r(x)dx 100 it follows from equation (6) and this decomposition
o
that
a
8 -f r(x)ax
1% = 2n g. e 1 pla)m(alda . (6a)
a

Thus, jr, has a determinate form that depends on the net fertility
function and r(x) from x=1 to B. 1In a stable context, of course, all of the
values of r{(x) above age one are the same, and 1% will be found to have

this value as well. If the net reproduction rate of a formerly stable
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population is reduced by 50 percent in one year, the value of

a
-/ r(x)dx

1
4n H e
a

pa)m(a)

); and -1%0

will be approximately &n( R

. . 1
will be approximately x:?m[v_ 1%o

2
will be about two, maintaining the validity of equation (6). In short, it

follows from equation (6a) that each year the growth rate at age zero, being
fully determined by the growth rates of older cohorts and the current net
fertility schedule (no matter how aberrant), maintains the consistency of the
full set of growth rates with net fertility.

The connection between current growth rates and the intrinsic growth
rate corresponding to the p(a) and m(a) schedules can be seen by rewriting

equation (6) as

m
[e et p(a)m(a)da = 1 .
a

a
We have denoted ‘?Cﬁvnx\m as mm. the mean of age-specific growth rates below

o
-r_a
age a in the population; r is the intrinsic rate. Since e T pla)m(a) is
the frequency distribution of ages at childbirth in the stable populatiom, it
simply acts as a set of weights applied to the exp TAmm - «vav schedule.

The weighted sum of this latter schedule must be unity; therefore, r, cannot
lie perpetually above (or below) r; in the childbearing interval. The two
values must be equal for at least one age between « and B. Thus, the
intrinsic growth rate in any closed population must equal the average current
age-specific growth rate below some age that lies within the childbearing
interval. In Japan, the intrinsic growth rate for 1960-1964 was -.0033,
which equals the mean age-specific growth rate during the 1960-1963 period
below age ww.mm.H

Of the new expressions, (5) is perhaps the most puzzling. Why should
the proportion of the population that is aged a at time t be a simple
function of the birth rate at t, the life table at t, and age-specific growth
rates at t? It seems intuitively compelling that information on the history
of birth and death rates would have to be introduced in order to determine
the value of c(a). But in this case, all of the pertinent history is
contained in the contemporaneous age-specific growth rate function,

To gain a better idea of the basis of (5), first imagine that mortality
is constant. The size of the cohort of births in year t relative to the size
of population is, by definition, b(t). With constant mortality, however, the
only possible source of age-specific growth is growth in the numbers entering

successive birth cohorts. So the number of births a years earlier must have

a

been smaller (or larger) than the number at t by the factor exp{-[ r(x)dx}.
o

Thus, the size of the cohort of births born at time (t-a), relative to the

a

size of population at time t, is b « exp{-] r(x)dx}. However, only the
o

fraction p(a) from that cohort born a years earlier has survived, so that the

a

proportion of the population now aged a is b exp{-f r(x)dx} p(a). The
o

basis for (5) is thus clear when mortality is constant.

To generalize this result to the case of changing mortality, suppose
that mortality among the cohort now aged a was higher than that pertaining at
time t by amount Au(j) at age j<a. Then for the cohort, noﬂmv =

ya—huli)

pla, tle But if mortality was higher by Au(j) at time t-j, then its

subsequent reduction must have raised the growth rate by Au(j) at some age

between and a at time t, relative to the growth rate under constant

mortality conditions. A gradual reduction of Au(j) would spread the growth
boost over several ages by correspondingly smaller amounts. Which age

received the growth boost is immaterial; what matters is that r(x) has risen

by Au(j) at some age below a, so that the series mxvﬁnwlx:xw is changed by
the factor exp{Au(j)}. This factor exactly offsets nrmommmmnn of the altered
mortality history for the cohort aged a, and the expression for c(a) is
unaltered. Simply stated, any difference between the mortality history of a
cohort and the current mortality regime will be completely reflected in the
r(x) series. Likewise, any growth in the number of births will also be
reflected completely in r(x). That is why no "history" is required in
equation (5).

The connection between the equations and a population's history can be
made more explicit by recognizing that there are two expressions for N(a,t)

in a closed population. From (3) we have

a
|“. rix,t)

o

N(a,t) = N(O,t) e pla,t).

But by definition the number of persons aged a at time t is equal to births
that occurred a years earlier times the proportion of that birth cohort who
survived to age a, nnﬁmv. There fore,

N(a,t) = N(O,t-a) _unAmv.

Combining these two expressions for N(a,t) gives

a _ a
[r(x, ©) = rpocas [ du(x)dx, where
o o

n.m wmnrmammnmnusnrﬂmnm»:::_.__vm«ommwnn—..mvmnf.mmunwamn|mm=mhwm:m
Au(x) is the difference between the cohort and the period death rate at age

x, i.e., u(x,t-a*+x) - u(x, t). Thus, the sum of period age-specific growth

rates up to age a, time t reflects both the growth rate of entrants to

cohorts over the previous a years and any changes in age-specific mortality
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that have occurred since a particular age was achieved by the cohort now aged
W.N Arthur (1981) has explored stable population theory using cohort~

specific mortality functioms.

Illustrative Applications to Sweden

This section demonstrates empirically that with accurate demographic
statistics it is possible to use the relations developed above to derive one
demographic series -- in this case the age distribution -- from knowledge of
certain other series. First, it will be shown that the basic equations can
be extended to populations living through a time interval rather than defined
at a moment, and to grouped age distributions rather than the population
density at age a. Equation (2) is also valid if N(a) is defined as the
number of persons reaching age a during a time period T (extending from t' to
t"), rather than as the density of population at age a at a given moment. In

this case r(a) is 1lim N(atAt)-N(a), where N(a*At) is the number arriving at

Ac»0 T N(a)AE
age a during the time interval t'+At to t"+At. (u(a) is defined as the
limit, as Aa approaches zero, of the ratio of deaths to persons at ages ato
atAa to person-years lived at these ages, during the period T.) Note that
r(a) is N(a,t") - N(a,t'), which equals log (N(a,t")/N(a,t'))/T, the

IO

conventional basis for calculating r(a) during a period, if growth in the
number reaching age a is constant during T. Equation (2) is extended to a

population defined in finite age intervals as follows. Let :zx ¢ be the
s

number of persons at ages x to x + n at time t.

:zx+>x~n = =zfn|>n - nsszAszxXDnv

where M is the death rate from x to x+n. Subtracting nzx ¢ from both sides
- £

of this equation, dividing by Aszx nv‘Ava. and letting Ax approach zero, we
>

find

=-r - M ,

d log :zx
————————— n x n X

dx

where  r = is the rate of increase of the population in the age interval x

to x+n. From integration and exponentiation of both sides, it follows that:

] I
-/ r_dy - M_ dy
N,= N eo" 7 oY .
nx no
d log :rx

Since in a stationmary population = = -m it follows that

X

@:5 ay

e = L/L

n"x'n o’

Thus this equation can be written as

N.= N eo™? L/L (3a)
n x n o nxno

By an extension of the argument in the first part of this section, it is
clear that equation (3a) applies to the distribution of person-years lived
during a time interval. The derivations of equations (3) and (3a) are
repeated, in terms of differential and integral calculus of functions of two
variables, in the Appendix.

The following illustrative calculations are made in this section:

1) The single-year age distribution of the mean population of Swedish
females in 1976 is calculated from the number of female births in 1976, the
single-year female life table for 1976, the rate of increase in 1976 of
females in each single-year age interval, and the rate of net migration at
each age. The equation involved is

a a
|&~C&&N|Hmﬁxvaw

° ° pla),

N(a) = N(o)e
where e(x) is the rate of net out-migration at age x. Since the data are
available at one-year age intervals, this equation is approximated by

a+.5
|M mnx * vmxw

_ o
HZN =B e Hrm\\@o

where an is .r + .r. + ... 1Facl ¥ Hﬂm\w.

Results are shown in Table 1.

2) The single-year age distribution of the mean population of Swedish
females in 1976 is calculated from the 1976 growth rate, the number of female
deaths in 1976, and the number of female net out-migrants at each age in

1976. The equation is:
X
[ r(y)dy

a dx.

w
N(a) = [ {D(x)+E(x)}e
a
With data by single-year intervals, this equation was approximated by an

iterative calculation:

17a Hnm\nA
N(a) = N(a+l)e + (D(a)+E(a))e
_z..nN was calculated as YN(a)+N(a+tl). Since growth rates above 100 can be

determined only for the population above 100 as a whole, while deaths by
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S+ e(x))dx

[A%4

Table 1: Kumber of females in Sweden in 1976, by single years of age, calculated from N(a) = Be b,
compared with recorded mean population.
Rate of Rate of
Increase Out-
in 1976 Migration —12(r () +e(x) ) dx Estimated Recorded Estinated Proportionate
Age T(x) e(x) e ¢ Lo/, Population Fopulation ~Recorded Error
- 1 -.04890 -.00936 1.02958 0.99325 48871, 49054, -183. -0.00373
l:- 2 -.05537 -.01096 1.09577 0.99226 51962. 52371, -409. -0.00782
2- 3 0.01052 -.00646 1.13042 0.99188 53584, 53901. -317. -0.00588
3- 4 -.01486 1.13892 0.99165 53975, 54255. -280. ~9.00517
4= 5 -.00692 1.15583 0.99141 54763. 55033. -270. -0.00491
5- 6 0.03749 1.14269 0.99109 54123, 54420, -297. -0.00546
6= 7 0.02390 111237 0.99083 52673. 52940, -267. -0.00505
7- 8 1.13371 0.99062 53672, 53928. -256. -0.00475
8- 9 1.20419 0.99043 56997, 57296. -299. -0.00521
9- 10 1.24918 0.99021 59114, 59401, -287. ~9.00483
10- 11 1.25922 0.98999 59576. 59880, =304, . 00507
11- 12 1.26515 0.98979 59340, 60127, -283. -0.00470
12- 13 1.21417 0.98957 57420, 27750, -330. =2.90571
13- 14 1.13608 0.98942 53719, 53987, -268. ~0.00497
14- 15 1.09590 0.98920 51808, 52049. -281. -0.00461
15- 16 1.07267 0.98884 50691, 50943, -252. -0.00494
16- 17 1.07283 0.98845 50678, 50974, -296. -0.00580
17- 18 1.08649 0.98806 51304, 52104, -840. -0.01612
18- 19 1.10623 0.98757 52210. 52604. ~394, -0.00749
19- 20 1.12358 0.98705 53000. 53499, -u99. -0.00932
20~ 21 1.13130 0.98662 53342, 53861, -519, -0.00964
21- 22 1.13087 0.98613 53295. 53802. -507. =7.90943
22- 23 1.14900 0.98551 54115, 54640, =525, ~0.00961
23- 24 1.17965 0.98494 55527, 56035. -508. -0.00907
24- 25 1.19010 0.98u48 55993, 56452. -u53. -0.00814
25- 26 1.22248 0.98405 57490. 579";- -453. :3.303,8'
26- 27 1.28658 0.98356 60475, 60927, -452. - 01u3
27- 28 1.35268 0.98300 63546, 63666 =120, :g.go &8
28- 29 1.38929 0.98246 65230, 65598. -368. 00561
29- 30 1.40909 0.98189 66121, 66494, -373. -0.00561
30- 31 1.41712 0.98124 66454, 66816, =362, -u.oosua
31- 32 1.40269 0.98060 65734, 66090. -356. -0.0053¢
32- 33 1.35480 0.97995 63348, 63805. -351- =0.00560
33- 34 1.25860 0.97919 58897, 59249, -352, ~0.00594
34- 35 1.13800 0.97832 53206. 53547. -3u. -0.00637
35- 36 1.04935 0.97737 490 14. 49278. -26u. -0.00537
36- 37 1.03632 0.97650 48362. 48605. -243. ~0.00500
37- 38 1.03166 0.97557 48099, 48350, -251. =0,00520
38- 39 0.99258 0.97442 46222, 46446, -2%:- -g.gg:%
39- 40 0.96597 0.97318 44926. 45141, ~215. Z0-00u77
40- ut 0.93933 0.97191 43630, 43839, =209. 5008
41- 42 0.91798 0.97047 42575, 42791, ~216. =0.00505
42- 43 0.91165 0.96890 42213, 42424, -21;. -ggg:;'}/
43- 44 0.93186 0,96724 43074, “3331- -227. 29-0052
4y- 45 -.00803 -.00128 0.96212 0.96531 44384, 44603 -219. -0.00490
85~ 46 -.02904 0.98138 0.96335 45181, zg:i: _5!1«7). ‘g:ggzgg)
se- w7 0.01687 9. o856 HEAA e 46159, -225. -0-00483
47— 48 Zlou1e7 1.00180 0.95943 45934. uh1se- 22 -0-90u8s
u48- 29 0.01543 o Saenss veres 46986. -223] ~0.00474
49- 50 ~.03263 1.02511 0.95455 46763, 46986 23 9-00uTs
50- 5 C-03572 e o Sasse oaun. 43764 -22u, -0.00451
51- %2 --02136 1-9%263 O 9ane soate 50647, -223. ~0.00451
52- 33 s-01986 1.6 O-a4azg i 51520, -222. -0.00431
$3- 54 -.02186 1, 14011 0.94149 51298, 23830, [ige. 000801
Ehall: --07211 119543 0.93762 3355e- 57347, -267. ~0.00466
55- 56 ~-06339 127361 093065 e 53608, ~usu. -0100902
se- 51 0. 19603 ootz S aases rape 48399, -219] -0200434
57- 58 -.00940 1.09171 0.92364 48189. - - - - b4
. 0.91846 48639, 48864, 225. 0.00460
A Siorees 1135 0.91279 48563, 48760. -197. -0.00405
59- 60 0.01060 1-11325 00657 48115 48303, -188. -0.00388
60- 61 --00569 1-11057 0.2 . 49085 -211 -0.00830
) 9955 48874, . . 004
61- 62 - 0u069 113687 bt 49642, -213 -0.00429
62- 63 seoetal 115984 e, "9“33‘ 49495, N -0.00437
63- 64 -.01428 1.10750 0.88321 “9231' 48899, -0.00416
63~ 65 BERHE 1ieel PO Sreu0. 47828, -0.00394
65- 66 0.00347 1.15405 0.86378 "76"1- W1728 o 00843
66- €7 IR ELE 116484 S eana: 47112, -0.00484
67- 68 0.02133 1.16526 0.84190 “5’:9‘;- 45362, o 00479
68- 69 0.02330 1.13979 S arena Viese 43651, ~0-00508
69- 70 0.01915 1.11607 0-81428 has- 41913 -0.00477
70- 71 0.02131 1-93373 373508 Sansa: 40074, -0.00467
n-1 9.02238 1-01020 FARAALS Iaan: 38136, -9.00507
72- 7 0.02711 1-0us22 8 75aae ity 36734 -0.00438
73T --01075 1.03582 o3 el 35348 -0.00456
Th- 75 0.02314 gau=sce 9-Taso7 e 33342, ~0.00432
75- 76 0.02154 1.00734 0.68960 3319 - 3073s 1000832
76- 77 0.06110 0.96678 0.66130 30556, J0730. 299057
77- 18 0.00982 0.93317 0.62965 28080. 28200. 10-00u25
78- 79 0.08472 8.90833 0- 20802 Sels: 23748 ~0.00373
79- 80 0.01364 0-88248 9-50100 236 ‘;' 21801, -0.00497
80- 81 0.02133 0.00028 0.86717 0.52364 21693, 19605, Col00547
81- 82 0.03238 0.00026 0.84398 0.48341 19498, 19605. 0-90547
- -.00006 0.82161 0.44154 17337, - -
82- 83 0.02121 o o5 0-39994 15206, 15313, 0.00712
B 35ar oloooos 0.77193 0.35912 13268, 13318, 000525
) 11302 11389. 0.00761
85- 86 0.05489 -.00018 0.74489 0.31749 N 9391 -0.00642
0 9331, .
86- 87 0.03983 0.0 0.71050 0.2748 7702 -0.00128
81- 88 0.02623 o2 08741 53335 S 6426, -0.00439
88- 89 0.00202 -.00016 0.67782 0.19750 6398.
89- 90 0.04956 0.0 0.66062 0.16398 5177, 5207. :u.oos:s
90- 91 0.04797 0.00049 0.62902 0.13350 4013, 4085, a.oorzs
91- 92 0.01031 0.00032 0.61071 0.10572 3086. 3105, :g.gg?ﬂq
92- 93 0.08788 -.00043 0.58148 9.08304 2308. 2312, 9-00189
93- 94 0.08884 0.0 0.53242 0.06382 1624, 1622. p-00113
94~ 95 0.13046 0.0 0.47713 0.04713 1075. 1097, -o'ow;o
95- 96 -.08201 0.0 0.46571 0.03352 746, 732. 90
96- 97 -.00734 0.0 0.48699 0.02371 552. 545, 0.(0)306?,
97- 98 0.13005 0.0 0.45801 0.01634 358, 347, 9-03047
98- 99 0.07197 0.0 0.41400 0.01083 214, 209. 9-025u7
99-100 0.20822 0.0 0.35988 0.00707 122, 121, L0051
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single years of age above 100 are listed, N(100) was approximated by
+

N(100) = D(100-101)e¥ (1007, 1976)/2
+

cA_oﬁlpoNvmaﬁHoo+“ 1976)+r (100, 1975)/2
.

D(102-103)e
+

D(103%)e

r(100%, 1976)+r(100%, 1975)+r(100%, 1974)/2

r(100%, 1976)+r(100%, 1975)+r(100*, 1974)

Results are shown in Table 2.

3) The single-year age distribution of the mean population of Swedish
females in 1973-1977 is calculated from the number of female births in 1973-
1977, the single-year female life table for the period, the average rate of
increase in 1973-1977 of females in each single-year age interval, and the
rate of net out-migration at each age. The mean population at each age is
one-fifth the number of person-years lived in each single-year age interval
during the five-year time period. The growth rate and the net out-migration
rate are the increase in the number of persons and the number of net out-
migrants, divided by the number of person-years lived during the five years.
With rates thus defined, the calculations are based on the same equations as
in (1) above that were used for estimating the age distribution of Swedish

females in 1976. Results are shown in Table 3.

4) The five-year proportionate age distribution of the mean population
of Swedish females in 1976 is calculated from the 5Ly function of the
Swedish female life table for 1976, and the growth rate in 1976 of the mean
population in five-year age intervals. The equation involved is:

a
|;. mnxnx

- o
N N e mrx\wro.

In this set of calculations, 5Ty 1is taken at five-year intervals, i.e.,
a

for x=0, 5, 10, etc., and the integral H mnxmx is approximated by a
o

trapezoid. Results are shown in Table 4.

5) The five-year proportionate age distribution is calculated as in (4),

except that was taken at one-year intervals, i.e., mnov mnw. mnww ete.,

5%

a
in evaluating the integral &, mwxmn. Results are shown in Table 5.
o

The most striking feature of the calculations is the extremely close fit
of the calculated data to the accurate Swedish population statistics. 1In

Table 1 the difference between the calculated and recorded populations does

not exceed one percent until age 94, and in Table 2 until age 85, with the
exception of age 17. Incredibly enough, the relatively large discrepancy at
age 17 is the result of an error in the Swedish yearbook for 1976. The mean
population is listed in Table 4:15, which presents the life table for 1976.
It is readily verified that the mean population at each age as listed in this
table is simply the arithmetic average of the year-end populations for 1975
and 1976 1listed elsewhere; the mean population at age 17-18 in 1976
calculated in this way is 51,644 instead of the listed 52,144. This is an
error of 500 persons, which doubtless occurred as the result of a punching
mistake of one digit in the thousands column for 17 year olds in year-end
1975 or 1976 when the mean population was calculated. The precision of these
calculations thus proves to be sufficient to detect an isolated one percent
error in the listing of the single-year mid-year population of Swedish
females.

A more significant result of the precision of the calculation is the
close agreement of the calculated populations from 90 to 100 with the
official figures. If the official Swedish 1life table 1is employed in
calculating Table 1, the agreement is much poorer. The published life table

n
for 1976 (and other years) is based on Wittstein's formula Aax = a (-x) )

above age 91 rather than directly on recorded numbers of deaths and persons.
The difference between the official table of 1976 and the table we
constructed, and its effect on the estimated population from age 92-93 to 99-

100, are as follows:

Proportionate error in estimated

1Lx/20 population with:
X Official Calculated Official life table Calculated
92 .08313 .08304 .003 .002
93 .06314 .06382 -.012 -.001
9% .04651 .04713 .007 014
95 .03308 .03352 -.032 -.019
96 .02260 .02371 -.059 -.013
97 01474 .01634 -.125 ~-.030
98 .00910 .01083 -.181 -.025
99 .00526 .00707 -.260 -.005

We calculated a life table above age 91 by accepting the official f£q;, and

- M
1 x
4 .
x.l\nx as e , and er as nx.quL The

official life table produces estimates in which errors increase rapidly above

from x = 91 to 99, estimating £

age 95; evidently the unadjusted death rates are a more realistic basis for a

life table than those calculated by the Wittstein formula.
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compared with recorded mean population.

. . ey
Table 2: Number of females in Sweden in 1976, by single years of age, calculated from N(a) = /“(D(x) + EG))e ® éy
‘a

9€T

Rate of Vet Estimated Number Estimated Number Recorded
Increase Deaths Emigrants at Recording a to atl Mean Estimated Proportionate
Age r(x) D(x) E(x) Age at N(a) N, Population —Recorded Error
0- 1 -. 04894 358. -459. 47841, 49976 49056 . 22. 0.00046
- 2 -.05537 25. -57u. 50344, 52031, 52371, -380. -.00650
2- 3 0.01052 15. -3u8. 53775. 53659. 53901 -242. -.00450
3- 4 -.01486 9. -227. 53543, 54951, 54255, ~204. -.90376
4= 5 -.00692 17, -193. 54564, 54841, 55033. -192. -.00349
5- 6 0.03749 18. -229. 55120, 54201, 54420, -219. -.00402
6~ 7 0.02390 10. -179. 53299, 52759 52940, -190. -.00359
7- 8 -.05674 13. -96. 52207. 53751, 53928, -177. -.00329
8- 9 -.05990 8. -126, 55340, 57082, 57296. ~214, -.00374
9- 10 -.00924 17. -120. 58878. 59202. 59401, -199. -.00334
10- 11 -.00268 9. -139. 59528, 59666, 59890. -214. -.20353
11- 12 -.00301 15. -97. 59804. 59935. 60127, -192. -.00319
12- 13 0.08868 1. -104. 60066. 57508. 57750. -2u2. -.70420
13- 14 0.04765 [ -A5. 55058. 53801, 53997. -186, -.00344
14- 15 17, -77. 52573. 51887. 52049. -162. -.00311
15- 16 20. -107. $1210. 50770. 50943, -173. -.00340
16— 17 20. -195. 50333. 50757. 50974, -217.
17- 18 21, -2€0. 51186. 51384, 52144 -760.
18- 19 30. -3u6. 51584, 52294. 52604, -310.
19- 20 26. -554. 53014. 530R9. 53499. -410.
20- 21 20. -577. 53164, 53435, 53861, -426.
21- 22 33. -535. 53708. 53392, 53802. -410.
22- 23 35. -531. 53079. 50219, 54640. -u21.
23- 24 28, -u93., 55383. 55637. 56035. -398.
24- 25 23. -378. 55892 56107, 56452. -345.
25- 26 27. -317. 56323. 57610. 57943, -333,
26- 27 32. -271. 58927. 60602. 60927. -325.
27- 28 38. -197. 62325. 63681. 63666. 15,
28- 29 33, -128, 65067. 65370, 65598. -228.
29- 30 43, -129. 65674. 66264. 66494 . -231,
30- 31 [ -120. 66859, 06598, 66816, -219.
11- 32 42, -110. 66338, 65877. 66090. -213.
32- 313 [ -98. 65420. 53586. 63805. -219.
33- 34 50. -73. 61804, 59026. 59249, -221.
34- 35 50. -57. 56373. 53323. 53547, -220.
35- 36 49. -71. 50438. 49122, 49278. -156.
36- 37 37. -64. 47840. 48469 48605. -136.
37- 38 55. -72. 49107. 48205. 48350. -145.
38- 39 57. ~37. 47321, 46325. 46446, -121.
39- 10 59. -50.. 45350, 45026. 45181, -115.
40- 41 6. -38. 44704, 43727, 43839, -2,
41- 42 T2. -68. 42772. 42670. 42791, -121.
42- 43 65. -s4. 42569. 42308, 42424, ~116,
u3- 4y 82. -54. 42049, 43171, 43301, -130.
44- 45 -200803 93. -57. 44325, Hu48s. 44603, -118.
45- 46 89. 44646, 45284, 45421, -137. - 2
46- 47 87. 45931, 45527. uss::. 15039
47- 48 109. 45127, 46038, 46159,
48- 49 121, 46968. 46562, 46673,
49- 50 124, 46159, 46870. 46986.
50~ 51 167. 47591. 48381, 48497,
51- 52 152. 49185, 49652. 49764,
52- 53 199. 50124. 50533, 50647,
53- 58 207. 50945, 51414, 51520.
54- 55 227. 51888. 53687. 53830,
55- 56 275. 55549, 57208. 57347,
56- 57 290. 58918. 53282, 53648.
57- 58 262. 48187. 48296. 481399,
58- 59 285. 48405, 48746, 48864,
59- 60 319. 49090. 48669. 48760.
60- 61 344, 48251, 48220, 48303,
61- 62 u13, 48190. 48980. 49085,
62- 63 4u6. 49783. 49536, 49642,
63- 64 508. 49290. 49384. 49495,
6u- 65 550. 49479, 48784, 48899
£5- 66 560, 48100. 47740, 47828,
66- 67 588. 47383, 47610. 47724,
67- 68 705, 47837. 46980, 47112,
68- 69 745. u6137. 45235, 45362
69- 70 829. 44351, 43514, 43651,
20- 71 888. 42694, 41793, 41913,
71- 72 996. 40911 39960. 40074.
72- 13 989. 39031, 38010. 38136.
73- T4 1158, 37015. 36635. 36734,
74~ 75 1203. 36259. 35241, 35348,
75- 76 1286. 34252, 33245, 33342,
76~ 77 1394, 32268. 30590. 30730.
77- 78 1490. 29000, 28107, 28200,
78- 79 1473, 27241, 25896. 26035.
79- 80 1545, 24618, 23669, 23748,
80- 81 1606. 22756. 21693, 21801,
81- 82 1678. 20681. 19489, 19605.
82- 83 1665, 18367. 17321, 17402,
83- 84 1562. 16335, 15182. 15313,
84- 85 1505. w1, 13221. 13318,
85- 86 1520, 12386, 11266. 11389,
86- 87 158, 10248. 9284, 9391,
87- 88 1265. 8418. 7650, 7702,
88- 89 1128. 6952. 6355. 5426,
89- 90 1019. 5812. 5135. 5207.
90- 91 864, 4537, 3973, 4Q45.
91- 92 757. 3479, 3059. 3105.
92- 93 553. 2689. 2231. 2312.
93~ 94 466. 1935, 1601, 1622,
94- 95 348, 1325 1053, 1090.
95- 96 265. 836. 727, 732,
96- 97 180. 632. 537, Su5.
97- 98 144, 456. 3u8. 3u7.
98- 99 85. 265. 209, 209,
99-100 0.20822 54. 165. RREN 121, -2. -.01986
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Table 3: Number of person-years lived by females in Sweden, 1973-1977, calculated from N(a) = Be pla),
compared with recorded mean population, by single years of age.
Rate of Net Estimated Number Estimated Number Recorded
Increase Deaths Emigrants at Recording a to atl Mean Estimated Proportionate
Age r(x) D(x) E(x) Age at N(a) KA Population —Recorded Error
o- 1 -.03111 -. 00594 1.01870 0,99289 256131, 254657, -526. -0.00206
- 2 _ 02496 -.00886  1.05544 0.99181 263012, 264099. -1087. -0.00411
2- 3 -.00762 -.00393  1.07966 0.99138 263931, 269526. -595. ~0.00221
3- 4 0.00771 -.00238 1.08303 9.99112 269697, 270194, -u93, -0.00184
W 5 -.00552 -.00162  1.08401 0-99086 269870. 270326. ~us56. ~0.00169
5= & -.01513 -.00151  1.09698 0.99057 273019, 273542, -523. ~0.00191
6- 7 -.01510 -.00082  1.11498 0.99028 277420. 277880 ~u60. -0.00165
7- 8 -.02206 -.00037 1.13657 0.99003 282719. 283167. —448. -0.00158
8 9 -.02616 ~-.00081  1.16499 0.98982 289727, 290294. -567.
9- 10 0.00170 -.00097  1.18037 0.98962 293093, 206114 621,
10- 11 0.02256 -.00102  1.16730 0.98942 290183. 290835, -652.
1= 12 0,03034 -.00084 1.13789 0.98923 2828139, 283469, -650.
12- 13 0.03553 -.00136  1.10223 0.93902 273899, 274616 -
13- 14 0.03887  -.00121  1.06547 0.98879 264702. 265370, -668.
14- 15 0.01553 -.00117 1.04019 0.98853 258354, 258967. -613.
15- 16 0.00076  ~.00145  1.03310 0.98823 256515, 257133, ~619.
16- 17 -.00322 ~-.00298  1.03667 0.98785 257303, 258165. 963,
17- 18 -.00760 -.00u31 1.04611 0.98746 259541, 261125, -1584. -
18- 19 -.00130 -.00564 1.05601 0.98703 261885, 263179, -1285. ~-0.00488
19- 20 -.00787 -.00805 1.06816 0.98657 264774, 266454, -1680. -0.00631
20- 21 -.00433 -.00837  1,08356 0.98617 268480. 270271, -1791. -0200663
21- 22 -.00557 1.09767 0.98575 271864, 273638, -1774. ~0.006483
22- 23 -.01421 1.11640 0.98532 276380. 278057. -1677. ~0.00603
23- 2u  -102875 1219711 0.98488 283855, 205402, ~1547. Zoo00542
24- 25 -.02995 1.18672 0,98444 293528, 295106. -1578. -0,00535
25- 26 -.03019 122732 0.98402 303439, 304849 ~18100 ~0.00463
26- 27 -.03240 1.26957 0.98355 313738, 315104, ~1406. ~0.00446
27- 28 -.02202 1230681 0.98306 322775. 3237170 —9u2] ~0.00291
28- 29 -.00892 132861 0.98255 327942, 329131, -1189. ~0.00361
29- 30 0.01017  -.00093  1.32871 0.98203 327843. 329041, -1199. ~0.00364
30- 31 0.02920 -.00060  1.30381 0.98146 321514. 322631, 117, ~0.00346
31- 32 0.05316  -.00071  1.25203 0.98084 308547, 309686. -1139] ~0.00368
32- 33 0.063us  -.00070  1.1819 0-98018 291084. 292188. -1104. -0.00378
33- 34 0.05914 -.00031 1.11225 0.97947 273719, 274647, =928, -0,00338
34~ 35 0.05604  -.00034  1.05035 0.97869 258280, 259116. -836. -0-00323
35- 36 0.08443  -.00059 099935 0297790 2455u2. 206343, -801. -0.00325
36- 37 0.02382 -.00051  0.96636 0.97708 237236, 237944 -708. -0.00207
37- 38 0.02142  -.00073  0.94534 0.97613 231850, 23256%. -718. -0.0030
38- 39 0.02856  -.00060  0.92262 0.97502 226020 226712, -692. -9.00305
39- 40 0.02316  -.00072  0.89966 0.97384 220129, 220791, -663. -0:00300
a0- 41 0.00379  -.00060  0.88820 0.97262 217053, 217669. -616. -02002
41- 42 -.00120 -.00073  0.88764 0.97127 216616, 217262, -646. -0.00297
42- 43 -.01550  -.00080  0.89559 0.96980 218228, 216835, 611, -9.00218
43- a4 -.01279  -.00061 0.90880 0.96816 221069, 221721, -652. ~0.0029%
46- 45 -.02321  -.00056  0.92585 0.96630 224783, 225464, -681. -0.00302
45~ - -
“- 47 olaer  loogse 095409 0196247 2022t 2281, -7, -0.00315
: - - . 30721 z z
47- 48 ZI01627  -.00038  0.96941 Fopetads 2 - 231413, 693. 0.00299
48~ 49 -1023u6  -.00046  0.98928 0.95769 et hbeg 23574 690, -0.00294
49- 50  -.01934  -.00042  1.01112 0.95497 2380u1. 238770. -729. -0.00305
50- 51 -.02642  -.00039  1.03u94 0.95198 ESE P 283365 -159. -0.00312
51- 52 -103883  -.00025  1.06746 0-94887 Sauass. 248323, o179, -0.00314
52- 53 -.04101  -.00014  1.10893 0. 94551 euse- 255273, -784. -0.00307
53- 54 0.00324  -.00024  1.13029 094173 Juu0. 264318, -878. -0.00332
54- 55 0.00538  -.00024  1.12570 0.93771 Jennie 268239. -797. -0.00297
55- 56 0.00572  -.00020  1.11971 0.93382 A 266042, -826. -0.00310
Te- 37 olod3me  Soegay  1ltese 093342 262600 263413, -81a. -0200310
57- 58 0.03706  -.00034  1,07177 0.92361 7621, 2564 19. -793. -0.00309
58- 59 -.01297  -.00015  1.05919 0.91822 248716, 249536. -821, -0.00329
59- 60 -201083  -.00011  1.07201 0.91248 Freidey 245120. [1se. -0.00309
60- 61  -.00981 -.00017  1.08328 0.90621 Juceso: 246508. o737, -0.00299
61- 62 -200008  1.09306 0.89926 Sicoen. 247408, ~7s8. -0.00306
62- 63 -200005  1.10097 0.89180 e 247733, S feas -0.00309
63~ 64 0.00004  1.10618 0.88368 266692 247506 -814. -0.00329
64~ 65 -.00000  1.10737 0.87452 e 206362, -761. -0.00309
65 oo 00000 3-j01a 0.87052 263315, 264119, -800. -0200328
66- 67 ~200011  1.09345 0.85354 Iiauaer 240250. c19. -0.00329
Bl 00011 109343 9-8535 238495, 235284 -790. -0200336
68- 69 -200017 106493 0.82816 Tate0e: e o8ss: 3o
69- 70 -.00020  1.08175 0.81351 212930, e -633. e
70- 71 -200012  1.02146 0.79730 . 822 - 00384
T1- 72 -200026  1.00472 0:77943 frosiey 205448 -823. -0.00401
72- 73 -.00020  0.98838 0.75961 19e157- 197592, -83s. -0.00423
73- 74 -200018  0.96898 0.73803 188637, 189418, -781. -0.00412
78~ 75 -.00026  0.94842 0.71445 e 180481, -801. -0.00444
75~ 76 -.00031  0.92466 0.68838 170249 170916. -667. -0.00390
: - . 159927 -
76- 77 -200017  0.89662 0.65965 1 : 160701, 174 -0.00481
77- 78 -.00014  0.86916 0.62856 Saens A . 20:00eas
78- 79 -.00022  0.84444 0.59544 ezt 137930, -666. =0.00483
79- 80 0.82148 056025 26338. 126945, -510. -0.00481
80- 81 0.79835 0.52347 :'563"- 116212, -578. -0.00497
81- 82 0-77588 0.48493 05002, 105647, -645. -0200611
82 a3 IR S S 043493 94532, 95075. -s43. -0.00571
. - . 83860. z Z
83- 84 Tloooos  0.7230 4412, 552, 0.00654
- 00004 72303 0.40364 73327, 73840. =513 -0.00695
84~ 85 0.0 0.69564 0.36261 63378, 63813 —335. “0‘00551
85- 86 -lo0026  0.67097 0.32118 24145, Sao3ar e 090681
86- 87  0.08193  -.00017  0.64632 0.27992 45458, aas3e- I3 Z0.90722
87- 88  0.04079  -.00008  0.62021 0.24060 37493, Tresu. ey Z0-90173
:.;_ :3 %'ziqu; 00010 055748 0-20371 30580, 30810. -230. -0.00746
- . -.00020
o gl ewm owme o peslomen o o
91- 92 0.06721 ~. 00007 - - . -204. ol
92- 93 0.06556  -.00009 9 aveuy 9- 11213 ls222. 14358, “136. Z0.00949
93- 94 0.06597 0.0 FapsEats 0. 08847 9501 10574 -73. To.0068s
94- 95 0107715  o.0 0larias 9-067e7 1821 7625. -104, Z0l01359
95- 96 0.07712 -.0008s  0.38142 - : 5379. -tea. -0.03639
e 99 oloare: . 0203628 3u76. 3566, 90, 0%
. 0.0 0.35940 0.02541 2295. 2438 143 -0
9o 95 o.09e33 %0 033602 0.01694 1430, 1567. -137] TN
- N --00206  0.30606 0.01072 828, 970, ~146. o
99-100 0.07241 0.0 0.28151 0.00622 40, Sho. Tlaos _g:;:gg-‘;

6€2




Table 4: Proportionate distribution of female population in Sweden in 1976, by five-year age intervals, calculated from

5% ™ 5% 5

-12( x +oe Ydx
e OS5XOX L /L, compared with recorded distribution.

Growth Rate Rate of Out-Migration
(x Five) (x Five) Estimated Recorded Estimated Proportion
Age 5. x o S5ee, SLa/SLO 5CB/SCO 5Ca ,_;i? ) -Recorded of Recorded
0- u -.11385 1.00000 1.00000 1.00000 0.06176 0.06399 ~0.00222 -0.03600
5- 9 --06716 1.00677 0,99854 1.11829 0.06907 0.06722 9.00185 0.02677
10- 14 0.15488 0.99417 0.99749 1.08119 0.06678 0.06863 -0.00185 -0.02766
15- 19 -.01180 1.00148 0.99587  1,02368 0.06323 0.06279 0.00044 0.00689
20- 24 -.01436 1.02013 0.99340 1.07352 0.06630 0.06645 -0.00014 -0.060217
25- 29 -.15421 1.01423 0.99083 1.20175 0.07422 0.07615 -0.00193 -0.02600
30- 34 0.26978 0.99897 0.98767 1.14428 0.07067 0.07484 -3J.00817 -0.05898
35- 39 0.12165 0.98983 0.98319 0.94298 0.05824 0.05751 2.00073 0.01259
40- u4 -.00090 0.98926 0.97649 0.88718 0.05480 0.052u6 2.00233 0. 04255
45- 49 -.07114 0.98833 0.96682 0.91544 0.05654 0.05583 0.00071 0-01257
50- 5S4 --17321 G.97642 0.95245 1.02243 0.06315 0.06148 0.00167 0.02638
55- 59 0.11577 0.98501 0.93075 1.03021 0.06363 0.06215 0.00148 0.02324
60- 64 -.04301 0.98386 0.89807 0.95924 0.05925 0.05935 -0.90010 -0.00170
65~ A9 0.0436u 0.98354 0.84714 0.90493 0.05589 0.05602 -0.00013 -0.00235
70- 74 0.08447 0.98385 0.76448 0.76653 0.04734 0,046u8 0.90087 0.01829
75- 79 0.15347 0.58410 0.63254 0.56365 0.03481 0.03435 2.00046 0.061328
80- 84 0.13461 0.98346 0.44501 0.38347 2.02121 0.02114 9.00007 0.00329
85- 89 0.18350 0.98300 0.23948 0.15763 0.00974 0.00970 3.09004 0.00368
90~ 94 0.29375 0.98291 0.08733 0.04527 0.00280 0.00294 -2.00015 -0.05278
95- 99 0.05377 0.98272 0.0184y 0.00803 0.00050 0.00047 0.00002 0.%74817
100 + 0.41825 0.98313 0.00066 0.060112 0.00007 0.00004 0.00003 0.45726
100
z 5C,/5Cy = 16.191;  (C = 1/16.191

(In this tab.

le /%.r d_ is estimated from values of .r at x=0, 5, 10, etc.)
05" x x 57x

ove

Table 5: Proportionate distribution of female population in Sweden in 1976, by five-year age intervals, calculated from
Talsty * 524K . .
$Ca = 5Coe Lo/ ko compared with recorded distribution.
s2.r d 2 e d Estimated Recorded Estimated P tion
- 5 - stimate ecordes 1imat e roportio
age o3 X x e OEX st/ sty 5CalsCy 2 <, “Recorded of Recorded
0- 4 1.00000 1.00000 1.00000  1.00000 0. 06400 0.06398 9.00002 0.00027
5- 9 0.97438 1.00433 0.99854  1.05110 0.06727 0.06722 0.00005 0.00081
10- 14 0.95636 0.99342 0.997469  1.07305 0.06868 0.06862 000036 0.00080
15~ 19 0.85279 0.99712 0.99587  0.97991 0.06272 0.06291 -0.00019 -0.n0307
20- 24 0.95904 1.02596 0.99340  1.03454 0.06621 006644 -0.00023 -0.00352
25- 29 1.05601 1.014821 0.99083  1.18877 0.07608 0.07608 0.00001 0.00007
30- 34 0.92354 0.99352 0.98767  1.16955 0.07485 0.07484 0.00001 0.00018
35- 39 0.72551 0.98964 0.98319  0.8991¢ 0.05755 0.05751 0.00004 0.00073
40- 84 0.86355 0.98891 0.97649  0.82034 0.05250 0.05246 0.90004 0.00080
45~ 49 1.01062 0.98881 0.96682  0.87307 0.05538 0.05583 0.29005 0.C0091
50~ 54 1.05410 0.98622 0.95245  0.96178 0.06156 0.06148 0.00007 0.00122
55- 59 0.97650 0.98501 0.93075  0.97243 0.06224 0.06215 0.00009 0.00143
60- 64 0.93520 0.98393 0-89807  0.92872 0.05944 025934 9.90010 0.00150
65- 69 0.94584 0.98326 0.84714  0.87637 0.05609 0.75602 0.00007 0.00123
70- 74 0.86828 0.98375 0.76448  0.72664 0.04651 0.0454R 4.00003 0.00066
75- 79 0.8u254 0.98427 0.63254  0.53632 0.03433 0.03835 -0.00092 -0.00070
80- 84 0.82487 0.98339 0.43501  0.32922 0.02107 0.02114 ~0.00007 -0.00382
85- 89 0.80220 0.98315 0.23948  0.15030 0.00962 0.00970 -0.00008 -0-00834
90- 94 0.78191 0.98281 0.08733  0.08531 0.00290 0.00294 -0.00004 -0.01513
95- 99 0.72685 0.98320 0.01844  0.00735 0.00047 0.00047 ~0-00000 -0.00381
100-104 0.53501 0.98313 0.00066 0.00074 0.00005 0.00004 0.00901 0.20163
100
Escalsco = 15.62; G = 1/15.62

(In this t

able fo.r d is estimated from values of 5T, at x=0, 1, 2, 3, 4, 5, etc.)

x x

7T
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Note that the proportionate age distribution is even more accurately
estimated than the absolute numbers. The estimated population is
consistently smaller than the recorded by about 0.005 times the recorded
number in Table A-1, and about .0035 times the recorded number in Table A-2.

The estimation of the single-year age distribution of person-years lived
in 1973-1977 1is equally precise, with a typical proportionate underestimate
of about 0.003 times the recorded number, until ages above 90.

Calculation of the age distribution by five-year age intervals produces
an estimate of substantially less precision than the single-year estimates,
when growth rates of five-year age groups are utilized only at intervals of
five years. (See Table 4, where the error reaches almost six percent of the
true proportion.) The reason for this greater error is that the proper
identity is

a
-/ Amnx+mmxvax
o

5a 50 mrm\

L
570"
so that the precise calculation calls for the evaluation of the integral of a

function Awnx+wmxv that is a continuous function of age. The integral of STy

from o to a is really something like

a
In constructing Table 4, % mnxax was approximated by a trapezoidal formula
)

using values of §Tos 5T5s etc., as N.mﬁunof.mmmwm._. I.wﬂmnmv.vm.mAwﬂmv.
analogous to estimating the integral of any continuous function by five-year
wide trapezoids. Since, in Sweden, the irregular age distribution caused by
past variations in fertility causes an erratic sequence of age-specific
growth rates, the trapezoidal approximation at five-year intervals is not a
very close approximation.

In Table 5 the age distribution by five-year intervals has been
calculated on the basis of the same equation, but with five-year growth rates

(and emigration rates) taken at starting ages only ome year apart. In other
a

words, [ wﬂxax is calculated by a trapezoidal approximation, but with one-
o

year wide trapezoids; namely M unxax & mwo\m *gT) *gTy b GTo + mnm\m.
Note that in Table 5 this calculation has produced an age distribution that
fits the recorded distribution with extraordinary precision.

As a last point in this illustrative use of Swedish data, we have

calculated the net reproduction rate for each year from 1973 to 1977 from the

a
N - r(x)dx

formula NRR = s_‘ e ® v(a)da, where v(a) is the proportion of the total
a
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number of births occurring to women at age a. The sequence is 0.889, 0.896,
0.849, 0.809, 0.792, compared with the official calculations of 0.896, 0.899,
0.851, 0.806, 0.785 -- an error of less than one percent in every year in
calculating the net reproduction rate without explicit use of mortality data,

or of the level of fertility.

Applications for Estimation from Limited Data

a) Mortality

The formulation in (3) for a closed population can be used to infer
intercensal mortality conditions from two census age distributions.

Recognizing that life expectancy at birth is

plalda,

o
o
L}
SN

one can simply integrate both sides of equation (3) to estimate mM as
a
[ r(x)dx

da .

Generally, estimates of N(0) will be poor. Higher starting points can
usually be more accurately estimated by averaging successive segments of the
age distribution, For example, life expectancy at age 5 is

a

- [ r(x)dx
mm = s X e 5 da .
5

3
5

N

N(5) can be estimated as one-tenth of the total population between ages 0 and
10. Preston and Bennett (1982) have shown that this estimation system gives
good results in Sweden, India, and the Republic of Korea. It is always
subject to the quality of census data, of course, and seems to work
substantially less well in Kenya (Hill, 1981).

Directly inferring mortality from two age distributions means that
errors in the latter will often affect the former. Partly for this reason,
demographers have developed "model™ life tables that impose regularity on the
age sequence of p(a)'s and thus help to smooth out distortions in the age
distributions. All of the estimation methods that combine model life tables
and stable population analysis can be adapted to the more general case. For
example, Coale and Demeny (1967) recommend using the cumulative proportion
below certain ages, in combination with the stable growth rate, to identify
the correct level of mortality within a model life table system. Age 35 is

often considered a good choice for estimation purposes. The new formula for
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the proportion below age 35 is

a
|~‘. r(x)dx

e © pla)da
c(35) = —— .
-f r(x)ax

e © p(a)da

w
0 G

o

0

Solving for the current level of mortality thus involves substituting trial
values of the p(a) function among candidates drawn from a model life table
system until a set is found that equates the right-hand side to the observed
value of C(35). Higher levels of life expectancy will produce lower values
of €(35), given the observed set of r(x)'s.

An alternative procedure 1is to wuse Brass's (1975) one-parameter

transformation of age-specific death rates. Assume that

aa) _ xnmﬁmv
p(a) umr; ’

where q(a) =1 - p(a)
q5(a), pgla) = q(a) and p(a) functions in the model
life table adopted as a standard
K = parameter representing level of mortality in the population.

After substituting into (5) and simplification, we find that

a
L‘ r(x)dx

e ° - 1 . K, amﬁmv
c(a) 'Y PG

This is now a simple linear equation whose intercept is the reciprocal of the
birth rate and whose slope 1is the product of the intercept and k. Preston
(1982) applies this procedure in several countries with promising results.

By generalizing stable population relations the new equations seem
certain to displace the estimation procedures based upon quasi-stable
methods (e.g., Coale and Demeny, 1967). These involved simulations of the
effect of mortality change on population age structures and growth rates.
The analyst then attempts to locate the simulation appropriate to his
situation by referring to the growth history of the population under study.
But we have seen that all of the features of that history that are pertinent
to demographic estimation are contained in the series of contemporaneous age-
specific growth rates,

Another data situation pertains when registered deaths are available by
age. If death registration is complete, of course, no indirect estimation of
mortality is required. But often the level of completeness is unknown. As

Bennett and Horiuchi (1981) have shown, it is possible to use the system to
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estimate the completeness of registration. As demonstrated above,

a
[r(x)dx

o
da(a) = 2 (a)e .
a

» [ r(x)ax
.ﬁ D(a)e ° da
o

D(a) is simply observed deaths at age a, and d(a) = p(adu(a) is deaths in the
underlying life table at age a corresponding to current mortality conditions
(with radix of onme). Integrated from 0 to =, the d{a) function must equal

unity. Thus
a
[ r(x)dx

[ D(a) e ° da

0

———e—— = 1 . (16)

@

However, the left-hand side of equation (16) will equal unity only if deaths
are completely registered. Tf they are registered with completeness C at all
ages, then the value of the left-hand side will equal C. Therefore, its

3 Equation

value provides a direct estimate of registration completeness.
(16) can be implemented from any starting age and need not begin at zero,
since the probability of dying above age y (the arbitrary starting age) for
someone who survived to that age is always unity.

Estimates are less vulnerable to error in the N(0) or N(y) series if the
registered deaths are compared with the total population above 0 or y. This
improvement can be introduced by integrating over age for a second time. 1In

this case the formula for C starting from arbitrary age y is

a
® o &—Axvn—x
S rota)e? da da
1y = Cc. (17)
[ N(a)da

y

Bennett and Horiuchi (1981) have shown that equation (17) gives very good
results in Sweden and the Republic of Korea. Note that, after solving for C
in the more robust formula (17), one can then take the estimated value,
insert it into (16) to correct the D(a) series, and use (16) to estimate the
"true" number of births, N(0). Thus, registered deaths by age and age-
specific growth rates are sufficient to estimate the birth rate. Using them
in this fashion requires the assumption that C is invariant to age, which may
be untenable for infancy.

The system in (17) can give different and hence inconsistent estimates
of C for different starting ages. A fitting procedure 1is available to

produce a synthetic estimate. If deaths are registered with completeness C
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relative to the completeness of population enumeration, then in a life table

produced from the data,

1
) /¢

aAmv = wﬁm

where pp(a) is the probability of surviving to age a in the life table
produced by the data and pq(a) is the true probability under prevailing
mortality conditions. Substituting this expression into equation (5), taking

logs and rearranging, we have
a

tnc(a) - [ r(x)dx =
o

in vmﬂmv

- rwﬁxvmx .

n
o
B,
o
1
CRN

This is again a simple linear equation whose intercept is the log of the
birth rate and whose slope is the reciprocal of registration completeness.
The independent variable is simply the sum of recorded age-specific growth
rates up to age a.

While this system of equations is useful for estimating registration
completeness, it can also be used to infer mortality (and fertility)
conditions directly from two sets of deaths by age. If we are prepared to

assume that mortality is constant over the period of observation, then
D(x, t+n) _

Ex. [3)

n

r(x, t to t+n) = %n

The age-specific growth rates can be inferred from the changes over time in
numbers of deaths by age. Deaths in the prevailing life table (with radix

one) are simply
a

[ r(x)dx
p(a) °

d(a) = 5
- .?Axvax

[ p(a)e °© da
o

Thus, from nothing more than two sets of age-specific numbers of deaths it is
possible to construct a life table and to estimate birth rates (via equation
16). The required assumption 1is that mortality is constant during the
interval of observation (and, of course, that the population is closed to or
adjusted for migration). Since countries often collected and tabulated
deaths by age before they conducted censuses, this procedure may find
application in historical demographic research.

In this section and the succeeding one, it 1is assumed that the
population is closed to migration, or, what is equivalent, that age-specific
rates of net out-migration have been added to age-specific growth rates

before the formulas are applied.

b) Birth rates and fertility

Estimating the birth rate from intercensal growth rates and a life table
believed to prevail for the intercensal period can be done straightaway with
equation (4). It is only necessary to substitute appropriate values into the
equation. A particular advantage of this procedure is that it makes no use
of the reported age distribution, which is often very seriously distorted at
the young ages that are critical for many estimates of birth rates (e.g.,
through back-projection of age distributions). Instead, only age-specific
growth rates are required, which would be unaffected by constant
proportionate distortions at the first and second censuses. The age-specific
growth rates could be combined with estimates of mortality made by Brass-type
procedures based on reported numbers of children ever born and children
surviving.

We have already shown how an estimate of the birth rate can be produced
if the life table is unknown but is assumed to belong to a one-parameter set
of model life tables, or if (not necessarily completely) registered deaths by
age are available,

We also observed above that it 1is possible to estimate the net
reproduction rate directly from the set of r(x)'s and the reported age
distribution of mothers at childbirth. The proportion of births occurring to

mothers aged a, v(a), at any time t is

a
|.\. r(x)dx
v(a) =e® pla)m(a) .

A survey question on births in the past year, or information facilitating the
selection of a model fertility schedule, will provide an estimate of v(a).
Then the net reproduction rate can be estimated by rearranging this

expression and integrating.

a
8 [r(x)dx

8
NRR = % pla)n(a)da = [ v(a)e ° da .
a a

By its simplicity, what this expression (and certain earlier ones) seems to
be telling us is that estimates of the net reproduction rate and the net
maternity function are more readily and robustly inferred from age-specific
growth rates than are either fertility or mortality conditions separately.
This is analogous to relations among crude rates, since the crude rate of
natural increase gives us directly the difference between crude birth and
crude death rates but no separate information on either.

Armed with an estimate of the net reproduction rate, one can determine
the approximate value of the gross reproduction rate (and the total fertility
rate) by the use of two well-known approximations: NRR = GRR p(m) (where

p(m) is the probability of surviving to the mean age of the net maternity
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function), and TFR = GRR (1+SRB), where SRB is the ratio of male to female
births. The proportion surviving to m can be approximated from Brass-style
estimates of £(3) or 2(5) plus estimates of survival from childhood to @
from some form of model life table, and 1+SRB can be taken as about 2.05. If

the whole series of p(a) can be estimated, age-specific fertility rates can

a
[r(x)ax
be estimated by m(a) = v(a) e ° /p(a).

Like other demographic series, age-specific growth rates are subject to
error. When estimated from intercensal population change, they are subject
to error from differences in coverage completeness between the censuses and
from intercensal changes in the patterns of age misreporting. Age
misreporting tends to have a large geo-culture component; patterns have
apparently been very constant over a half century in India, for example
(Zlotnik, 1979). Age tends to be quite well reported in countries of the
Chinese-Japanese cultural sphere. There is usually little reason to expect
that patterns of age misreporting will change radically from one census to
the next, although the wording of age questions and instructions to
enumerators can provoke such changes. If changes in the pattern of age
misreporting involve only transfers between two adjacent age groups, the
effect on the equations should not be large since they all involve the

cumulative sum of growth rates up to a particular age.

Differences in census coverage completeness may be more problematic than
the changes in age misreporting for most countries. A 2 percent improvement
or deterioration in coverage between censuses separated by 10 years will
evoke a change in all age-specific growth rates by .002. This is not a

a
trivial magnitude in terms of its effect on the exp ﬁl\lxvmxu function,

o
which will change by the factor .951 by age 25. No single strategy can be

enunciated for dealing with an erroneous series of growth rates. If all
other demographic information 1is accurate, it 1is of course possible to
estimate the error in the age-specific growth series directly by applying
equation (5) to successive ages. This set of error estimates would then
provide a direct way of correcting the second census to make it comparable in
completeness and age misreporting to the first.

But it will be rare that other information can be assumed completely
accurate. The general situation is one where nothing is known for certain.
Here the new equations at least provide tests of consistency additional to
those normally used. The most common consistency test compares estimated
crude birth and death rates with recorded population growth from censuses.
We can add to that test one in the form of equation (6) that displays a
necessary relationship among age-specific growth rates and age-specific
fertility and mortality rates prior to the end of childbearing. Because the
Brass procedures for estimating age-specific mortality and fertility are

widely used, opportunities for such an application are abundant. Equation

(5) is also a strong check of consistency among estimated birth rates, age-
specific mortality, and age-specific growth.

It is also possible to estimate the degree of differential coverage in
the two censuses, providing that one is willing to assume it to be invariant
to age or to follow some other pre-specified functional form. If the second
census is uniformly in error relative to the first by a ratio constant with
age, then all computed age-specific growth rates will be in error by the
same absolute amount Y. In the presence of such an error, all of the r(x)'s
in formulas 4-6 must be replaced with Hwﬂxv + Y, where wwﬁxv is the

observed (i.e., erroneous) growth rate at age x. Equation (5) now becomes

a
-f N»Axvmx —ya
c(a) = be ° e pla).

One may estimate Y by taking logs of both sides and rearranging:
a
tnc(a) - fnpla) + [ nwavnx = 4nb - ya . (18)
o
The value of Y can now be estimated as the slope of a line. If registered

deaths are available but the completeness of registration is an unknown,

designated C as before, then

a
fnc(a) + M nw?&ax = fnb - Ya IW cwﬁxvmx . (19)

SN

Equation (19) is now a linear equation with two independent variables that
should not be highly colinear, so that identification of Y and C should be
possible.

Still other procedures can be devised for use with model life table
systems (e.g., Preston and Bennett, 1982). We cannot hope to be exhaustive
here, and each of the procedures described needs much more careful attention
to detail (e.g., treatment of open-ended age intervals) than we have
provided. The new equations provide numerous fresh points of entry for
demographic estimation, and we have only scratched the surface of
possibilities as well as problems,

It should be noted that in virtually all of the measurement procedures
described here, a corrected age distribution is an important by-product. The
true age distribution of the population is itself an object of interest, and

demographers can play a useful role in identifying it more accurately.

c) Migration

The conventional way to estimate net migration rates in the absence of a
count of migrants is to forward project a population age distribution at time
t by an "appropriate" life table and compare the projected population with

that recorded at some time t+n (United Nations, 1970). Differences between




250

actual and projected numbers of persons are ascribed to net surviving
migrants. Back-projections of these survivors are then required in order to
estimate the volume of net migration. The migration of persons who were
below age n at time t+n requires special treatment. The procedure is awkward
to implement unless censuses are separated by an integer multiple of five
years because census age distributions are normally tabulated in five-year
age categories.

A simple alternative is to use the equations for an open population.

Since

a a
|& r(x)dx IR e(x)dx

N(a) = N(O)e © e ® pla),
4 a
W r(x)dx -f e(x)ax
zAmvm T - e . and
a N(a) a
- e(x)dx = %n % + [ r(x)ax. (20)
o o

Implementing equation (20) again requires an "appropriate' life table to give
p(a), plus census age distributions and age-specific growth rates. If
implemented from age 0, it also requires intercensal births; if these cannot
be estimated, the process could begin at age 5, with N(5) estimated by
averaging numbers in the adjacent 5-year intervals. Applying equation (20)
to successive ages gives the sum of age-specific net migration rates at
different ages; age-specific net migration rates could then be estimated by
subtraction. It is likely that imposing a "model" schedule of migration
rates of the kind proposed by Rogers and Castro (1981) would improve
estimates in developing countries. The procedure is clearly applicable to
all forms of migration, whether internal (in which case the N(a)'s would
pertain to a particular region of a country) or international. The advantage
of using (19) relative to existing techniques is likely to be more of

convenience than of methodological soundness. It does, however, provide an

opportunity for improved estimates below age 10.

Estimates of Marital Survival

By analogy to previous results,

a
-fr(x)dx
M(a) = M(0)e © n(a), where (21)
M(a) = number of marriages intact at duration a
r(x) = growth rate of number of married couples
m(a) = probability that a marriage will survive to duration a according

to conditions of divorce and death of the period.

To estimate the life expectancy of a marriage from the time it was contracted
according to period-specific conditions of dissolution, it is only necessary

to rearrange this equation and integrate:

a
8 -f e(x)dx
e () = [ M(a)e ©
° o

M(0)

This provides a simple method of estimating the life expectancy of a
marriage, which is otherwise so laborious a process that it is rarely
undertaken. All that is required are two surveys giving the number of intact
marriages by duration and an estimate of the number of intervening marriages
that have occurred (M(0)). There are many other processes that could be
similarly modelled: length of time spent in school, in prison, in parity two,
in the divorced state, in the major leagues, in the priesthood, etc.

The above relationship does not indicate the likelihood of leaving the
state of marriage from any of the multiple sources of exit. Now suppose
that we have data on the number of divorces by duration of marriage, X(a).
Multiplying both sides of (21) by wuP(a), the force of decrement from
divorce at duration a, we have

a
-f r(x)dx

X(a) = M(a)u"(a) = M(0)e © wan(a). (22)

The function, (a)uP(a), integrated over all durations from 0 to ®, is

simply the probability that a marriage will end in divorce, vc. Thus,
rearranging (22) and integrating, we have
a
- [ r(x)dx
[ x(ade © da
_o
i (') E— (23)

Equation (23) provides an extremely simple procedure for estimating the
probability that a marriage will end in divorce. Tt generalizes one given in
Preston (1975) that assumed stability. Again, it is widely applicable beyond
the case of marriage and divorce. In the case of fertility, vc is
equivalent to a parity progression ratio, the probability of eventually
leaving a particular parity by the route of having another child. With two
surveys on the duration since achieving a particular parity (including zero)
and the number of intervening births by order and duration since last birth,
one can estimate all of the parity progression ratios and hence the total
fertility rates without any reference to age. This generalizes some recent
work of Griffith Feeney (1981).

The multiple decrement results pertain when duration in a state is the
indexing variable. They are directly analogous to age relations in a

population because one can only enter the duration hierarchy at zero, just as
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one enters the age hierarchy at birth. 1If one is interested in the expected
years of life spent before the occurrence of some event, or the probability
that some event will occur in the course of life, one would return to age as
the indexing variable, Analogous versions of (23) exist, for example, to
estimate the probability that an individual would marry, become a mother,
enter the labor force, or move from place of birth. Only a slight
modification is required to estimate the length of life before an individual

enters one of these states.

Summary and Conclusion

Much of formal demography deals with functions that pertain to
individuals passing through life, or, equivalently, to a stationary
population in which the births of individuals are evenly distributed over
time. These functions include life expectancy, probabilities of surviving
between two ages, net and gross reproduction rates, expected years spent in
various states, and the probability that particular events will occur in the
course of life. The stable population model has proven very useful in part
because it permits the translation of population structure or processes in a
more general type of population — one with constant growth rates — back into
equivalent functions for a stationary population. Here we have developed a
method for translation that is more general still, since it applies to any
population. The only ingredient required for the translation is a set of
age-specific growth rates. These are also useful for performing the reverse
translation, e.g., between a population's life table and its birth rate, or
its age distribution.

Table 6 summarizes the basic relations among certain functions in a
stationary population, a stable population, and any population. The r(x)
function used in the table is the age-specific growth rate plus the age-
specific rate of net emigration. If the population is closed to migration,
r(x) is simply the age-specific growth rate. The meaning of the functions
and variables has been previously defined.

Once the basic principle of this translation is recognized, its
implementation becomes routine. We have described certain applications of
the new equations, particularly to demographic estimation from incomplete
data. The equations can be applied to many other issues: the two-sex
problem, increment-decrement tables, convergence of a population to its
stable form, cyclical changes in vital rates, and density dependence of
population processes, to name a few. Stable population models will no doubt
continue to occupy a central place in demonstrating the long-term
implications of changes in mortality and fertility. However, in demographic
estimation and measurement, it seems likely that the new procedures will
supplant most of those based upon stable or quasi-stable assumptions. The
existence of these procedures strongly underscores the value of repeated

census operations for demographic measurement.

Table 6: Formulas for certain functions in stationary, stable, and any population.

Formula for

Stationary Stable Any
Function Rotation Population Population Population
2
Proportionate age ..mlxv?
distribution c(a) bp(a) be T3p(a) be pla)
.
Ratio of population at clatn) _ FPreax
two ages ca) nPa e ™npa e? nPa
@ 3 o ra a
Life expectancy at birth & = fp(a)da fe(a)da fe(are ™ da « Jrooax
° 0 [ =1 0 fetaé
V% b
D b 5
Birth rate b Y 1 1
63 = 3
mimxm fp(a)e ™ 3da b4 ~fr(x)dx
o fotare ®
oP
Proportionate age distribu- a
tion of mothers at childbirth v(a) pla)m(a) pla)mla)e™@ ~fr(x)dx

plan(a)e ©

a
Jx(x)dx
Net reproduction rate NRR = miiiuzu wiuv& =1 mitm—.mn; miwvma da
o o @ o
e
Expected years of life to « ® ? @ rix,
be spent in state G ¢" = fg(a)pladda fg(a)c(a)da [e(a)e(ae™da fpee@e e
with incidence at age a Lo b‘lv’l 0 5
8@
« a
Number of persons at age a ,in ® @ (aa®) - £ rGodx
terms of deaths above age a’ N(a®) / D(a)da S opGayer@aal),, 7 p(a)e?™ da
al a’ a*
-
Nunber of persons at age a*,fn . o* ot at WQZL ox
terms of deaths below age a’ N(a") N(0) - [ D(a)da  &"® _:8&23« da| e° _.:8.3:;%
° o
a
. © " o / tncc%
Probability of survival from % d(a)da 7 player(@-a®y, 7 p(a)e?
&* to a*n n terms of deaths npa* akin a*in a%in .
03 TaF) 03
7 b(a)da D (ayel (28Mga 2 () dx
- .ﬁ K D(a)e® da

Footnotes

1. Calculated from Keyfitz and Flieger (1968, pp. 30-1, 230-2) and
Population Index, April 1977, p. 374.

2. As Shiro Horiuchi has shown in correspondence, an expression for the age-
specific growth rate itself, rather than its cumulation from age zero, can be
derived by differentiating the second expression for N(a, t), giving

% mux,y)
r{a,t) = nwﬁva - .“w%u|.< dx, where y = t-a+x
Q

and nwﬁnv = d#n B(t)/dc.

Froax
d.
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3. More generally, if completeness varies with age, the left-hand side of
(16) will equal a weighted mean value of age-specific completeness, where

weights are supplied by the d(a) function, life table deaths at age a.
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Appendix

Derivation of the Basic Equation Linking Age Distributions

to Period Mortality, Migration, and Growth Rates
Samuel H. Preston,* Ansley J. Coale,** and Michel Garenne*

The proof of equation (3) 1is a straightforward application of
multivariate calculus. What we present here is basically an expanded and
elaborated version of an appendix in Bennett and Horiuchi (1981). Imagine a
surface representing the number of persons alive by age and time period and
define N(a, t) as the number of persons aged a at time t. The number of
persons aged a + da at time t + dt is N(a + da, t + dt). For present
purposes we will assume that da = dt, so that N(a, t) and N(a + da, t + dt)
refer to persons belonging to the same cohort, i.e., those born at time (t -

a). The change in the size of this cohort between time t and t + dt can be

* Population Studies Center, University of Penmmsylvania
*%0ffice of Population Research, Princeton University
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denoted as dN(a, t). Assuming existence and continuity of the partial

derivatives, it can be shown that as da = dt approach zero,

aN(a, ©) = 2Ma B) o, e, O 4 4.1
EI3 da
where mmwmvlnvn is the partial derivative of N(a, t)
with respect to t; and
% is the partial derivative of N(a, t)
with respect to a.
Dividing both sides of A.1 by N(a, t), we have
WG, v | W@ O WE O, )
W, ® N(a, ©) Wz, ©)
aN(a, t)
= r(a, t)dt + da da .
zﬂm. [3)

r(a,t) is the growth rate of the population aged a at time t, or the

proportionate change in the number of persons aged a per unit of time. The
left-hand side of A.2 is the proportionate change in the size of the cohort
aged a at time t in the small interval of age a to a + da (or time t to t +
de). There are only two sources of change in a cohort's size, death and
migration. Using amummv to denote deaths in the interval a to a + da to the

cohort aged a at time t and , M(a) to denote net migrants (in-migrants minus

da
out-migrants) during this same interval, we have

dN(a, t) = 4 M(a) - 4.D(a) .

It is conventional to define the force of mortality function for a

cohort at age a as (Reyfitz, 1968, p. 5)

. p(a)
u(a) = lim da
da+0 N(a)da °’

where ambnmv is understood to pertain to the age interval a to a + da. We
can analogously define the force of migration function as
lin aa'®

Y@ = 40 Wavds -

Dividing both sides of A.2 by da = dt and substituting, we have,

IN(a, t)
as da = dt » 0, -u(a, t) + y(a, t) = r(a, t) + 3a . (A3

zmwu t)
This is the equation linking ages, periods, and cohorts that is required in
order to derive the remaining expressions.
A.3 can also be written as

d%n N(a, t)

FFY = v(a, t) - ula, t) - r(a, t) .
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Holding t constant and omitting it in the notation, we integrate both sides

between specific ages 0 and x:

X X X X
s d in Na) da = \ Y(a)da - H u(a)da - ‘_\ r(a)da, or
da
o 0 0 0
X X X
2oN(x) - %nNCO) = [ y(adda - [ u(a)da - [ r(a)da .
0 0 0
Taking exponentials and rearranging we have
X X X
[ v(a)da - [ u(adda - [ r(a)da .
o 0

N(x) = N(0)e © e e

This is the basic equation (7) in the text, with y(a) defined to equal -e(a).
In a closed population, of course, Y(a) = 0 at all a.
To develop the equivalent formulas for dealing with discrete time and

age groups in a closed population, we return to equation A.3 and write it as

wz?:nv mz?_nv
pu(a,’t) = - 0a -3t , or

ZM? t) N(a, t)

|vz::$ mz?,nv
Dla, ©) = - o =— = = -

We now integrate between specific ages x and x+n and periods t; to t,:

t, x+n t, x+n X+n t
2 2 IN(a, 2 9N(a, t)
[© ] Dla, t)dade = -[° [ |.m|nw dadt - [ f |.mmj| dtda
t, x t, x x t
1 1 1
nN x+n
= |._s {N(x+n,t)-N(x,t)}dt - % Azﬂm.anzAm.:vwam.
t X

1

Now dividing both sides by the sum of person-years lived in the age and time

interval, we have

nm x+n
-dtn | [° [ N(a, t)dadt
_tox |
nzx B dx RN M
|n;:=mx

:Zx = dx T n"x .
The term inside the brackets, P,, is the sum of person-years lived in
the discrete time-age interval. | M  is the death rate for that interval

as conventionally defined: total deaths divided by total person-years lived.

nfx is the growth rate of the population in the interval as conventionally

defined: the difference between the end period population aged x to x+n and
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the beginning period population in the age interval, divided by total person-
years lived in the age interval during the period t; to t,.

Now integrating this expression between specific ages 0 to K, we have

N N
%:K#&x nl&n nmw +n= :vo l %ﬂﬂxnx .oﬂ

K K
|%=Zxax |%=H xmx

2Pk = nfo © e (A.4)

This is the discrete analogue of equation (3) and the similarity is quite
close. Person-years lived in discrete intervals of age and time have

replaced N(a, t); mortality and growth defined on discrete age-time intervals
K

have replaced u(a, t) and r(a, t). Note that the exp {~[ =Zx&$ term does
0

not involve summing age-specific death rates in successive age intervals but
rather requires summing death rates in n-year wide intervals continuously
from starting ages 0 to K. This exponential term can be conveniently

simplified by noting that

-% = d_.
x+n X n x
(d womﬂrxv
Hence, |=Ex = ||m.x'|w and on the assumption that
% M_dx
-/ nx
= 0 -
:xxl "k © :hw\aho.
K
l% r_dx
05 X
Thus, 2% = Uoo € =HN\=HO . (4.5)

Note that A.5 shows the proportions at all age intervals (except the
first) relative to nCo» which is in principle the first observation of
grouped data. No precise relation to the number of births can be derived in

this context. However, since
(c +C + ... C ) =1.0,
no nn n w-n

it follows that

L¥%y=10. (A.6)

Since all of the terms but C/ in A.6 can be calculated (when nlx 1S

known at n-year intervals, and when  r  is known as a continuous

variable), 500 can be determined, and the other :owm as well. Note

that (except for the generally accepted approximation that Ay :va

equation A.5 is exact. It is approximate only if ,r, itself is known at
n-year intervals, rather than continuously. (See the calculations of the

Swedish age distribution by five-year intervals as an illustration of this

point.)

The relation between age structures of deaths and person-years in
discrete time and age segments can be readily derived. Denoting D, as

deaths in the age interval x to x + n during the time period t) to ty, we

have
:cx+< = :mﬁ.w . :xx...vN ‘
Substituting for :mﬁ.% from A.4,
x+y xty
- H M_da - \ r_da
X n a % n a
:cNJ. " ofx € stJJ or
Xty x+y
R r_da L. M_da
x n a x n a
:vw@ e = :mx e :zx.@ .

Integrating both sides of this expression from y=0 to y = ®, we have
x+y Xty
- M.M oTa da - |M M, da
m_‘scuiw e dy = :mw w\ € :Zx+v~ dy .
But the value of the integral on the right-hand side is unity, as can be

shown by integrating by parts. Therefore,

This equation 1is exactly analogous to one in the text except that nPx has

replaced N(a), D, has replaced D(a), and r, has replaced r(a).

259




