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AN INTEGRATED SYSTEM FOR DEMOGRAPHIC ESTIMATION
FROM TWO AGE DISTRIBUTIONS

Samuel H. Preston

Population Studies Center, University of Pennsylvania, Philadelphia, Pennsylvania 19104

Abstract—This paper presents a simple method for estimating a birth rate and a
level of mortality for an intercensal period. The birth rate is estimated from
the intercept of a line fitted to data and the level of mortality from the slope
of that line. The formula that is developed is based upon a recent
generalization of stable population relations. An estimate of childhood
mortality level is an optional but significant piece of additional input. An
important by-product of the procedure is an estimate of the true age

distribution.

This paper presents a simple method
for estimating birth rates and, simulta-
neously, a parameter representing the
level of mortality. It is designed for use
in countries lacking good vital registra-
tion, which comprise a majority of the
world’s population (cf. United Nations,
1980). The birth rate is inferred from the
intercept of a straight line; the level of
mortality is inferred from the slope of
that line. The estimation procedure inte-
grates Brass’s one-parameter logit mor-
tality system with recently developed
equations generalizing stable population
theory. Two successive age distributions
are required to use the system.

A one-paragraph introduction to this
method was presented in Preston and
Coale (1982, p. 244). Here we derive the
basic formula, extend it to the situation
where an independent estimate of child
mortality is available, apply the proce-
dure to data, and discuss its sensitivity to
various forms of error.

BACKGROUND
Generalized Stable Equations

Preston and Coale (1982) have shown
that the following relation pertains at a
moment in time in any closed popula-
tion:

ca, 1) = b(t)e VrED%p(g, 1), (1)
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where

c(a, t) = proportion of the population

that is aged a at time ¢
b(t) = crude birth rate at time ¢

r(x, t) = annual growth rate of persons
aged x at time ¢

pla, t) = probability of survival to age a
according to the period life ta-
ble prevailing at time ¢.

Closely related versions of this equa-
tion also pertain within discrete time
intervals. The most direct way to devel-
op an analogous discrete time equation is
to assume the age-specific growth rate
function, r(x, ), to be constant over time
within that interval. In this case, c(a, )
in the above formula is the ratio of ath
birthdays during the period to the per-
son-years that were lived in the popula-
tion, b(¢) is births divided by total per-
son-years lived in the time interval, and
p(a, t) is a birth-weighted average of the
p(a, t) functions that prevailed during the
period. If r(x, ?) is constant over age,
equation (1) reduces to a familiar equa-
tion characterizing a stable population.

This equation also applies to an open
population as long as r(x, ) is expressed
as the sum of the age-specific growth
rate at age x, time ¢, and the rate of net
emigration (per person-year) at x, time ¢.
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Hereafter, we will drop the ¢ identifier
for convenience.
Rewriting equation (1), we have:

1 pe S rx)dx

c(a)

= 2
p(a) @

Brass’s Logit Transformation

Brass (1971) shows that a linear logit
transformation of the survival function
p(a), or of its complement, g(a), often
provides a good representation of
changes in age-specific mortality condi-
tions as levels of mortality change. In
particular, he assumed that, of each set
of g(a) functions within a model life table
system,

lnq—(f—)-= « + Bln qs(a)’
p(a) ps(a)

where g,(a), ps(a) are the g(a) and p(a)
functions in the ‘‘standard’’ schedule
adopted; and «, B are parameters that
relate mortality in any other member of
that life table system to that in the stan-
dard. « is the ‘‘level’’ parameter; when
its value is changed, it changes the level
of mortality in the same direction for all
ages. B is the slope parameter; when it
rises, it increases In [g(a)/p(a)] for all
ages above the age where g (a)/py(a) is
unity, and lowers g (a)/p,(a) at all lower
ages. Tabulated values of a logit life table
system may be found in Carrier and
Hobcraft (1971). Some evidence on the
success of the logit transformation is
presented below.
Equation (3) can be rewritten as:

1-p | [°
—_— = -1 , Oor
p(a) ps(a)

B
L
p(a) ps(a)

Deriving the Estimation Equations

(€)

Equations (2) and (4) can be combined
to give
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B
= e (@) + 1, or
ps(a)

beJorxdx

c(a)

—for(x)dx B

f_____=1_+£[«£<i>], )
c(a) b b |psa)

We have set ¢ = K for simplicity in
exposition. Note that equation (5) re-
quires nonlinear estimation procedures
unless B = 1. But setting B = 1 is a
reasonable procedural assumption in any
event, since it is rare to have census
information of sufficient quality to per-
mit accurate estimation of both « and B.
B is the more vulnerable of the two
parameters to systematic age misstate-
ment (as illustrated below) and in any
event the major interest is usually at-
tached to knowing the “‘level’’ of mortal-
ity. Thus, assuming B = 1, we have

—Jor(x)dx 1 K g,
f_____=_+_q(a)' ©
c(a) b b psa)

Equation (6) is a simple linear equation.
The intercept is the reciprocal of the
birth rate and the slope is K (the “‘level”’
of mortality) divided by the birth rate.
Elements required for estimating values
on the left-hand side are readily derived
from two censuses. The variable on the
right-hand side, g (a)/p,(a), is of course
supplied by an assumed life table, which
will eventually be modified by the value
of K to be determined.

It is very common that a country will
have reasonably good information on
levels of child mortality by virtue of
Brass questions on numbers of children
ever born and surviving. This informa-
tion can be conveniently integrated into
the estimation procedure and should nor-
mally be used where available. The most
useful index of child mortality for pres-
ent purposes is p(5), the probability that
a child will survive to age 5. If the
information on children born and surviv-
ing is drawn from the second of two
censuses separated by 10 years, p(5) will
refer to a point approximately midway
through the intercensal period (National
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Academy of Sciences, 1981). A mid-
censal estimate should be the goal in any
event.

Define spy(a) and sq,(a) as the proba-
bilities of surviving to and dying before
age a, respectively, for someone who
has survived to age 5 in the standard life
table. Thus 5q,(5) = 0 and spy(5) = 1.00.
Assume that the one-parameter logit
transformation pertains only to mortality
above 5:

sq(a) _ sqs(a)
sp(a) sps(a)

Table 1 demonstrates that a one-parame-
ter logit transformation of post-5 mortal-
ity within the West model life table sys-
tem represents mortality variation quite
effectively within a 30-year range of life
expectancies. By transforming the sp(a)
function in a life table with e, = 50, the
sp(a) functions corresponding to e, = 35

fora=S5.
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and to ey = 65 can be reproduced quite
accurately. A 30-year span surely ex-
ceeds the range of uncertainty in the
great majority of applications. A graphi-
cal demonstration is more convincing
still, but the actual and predicted series
are so close that they can hardly be
separately graphed.

Let us designate the observed p(5) as
p*(5). Since

p(a) = p*(5) - sp(a) fora =5,

we may return to equation (2) and re-
write equation (6) after introducing the
new parameterization of mortality:

p*(5)e—fo"r(X)dx
c(a)

qu(a)
sps(a)

+

a=>5.

X 7
; , ™

1
b

Table 1.—Probabilities of Surviving from Age 5 to Various Ages in West Female Model Life Tables at Life
Expectancies at Birth of 35 and 65

Life Expectancy at Birth of 35 Life Expectancy at Birth of 65
sp(a) 5p(a)

Age (a) Actual? Predictedb Actual? Predictedb
5 1.000 1.000 1.000 1.000
10 .959 .956 .993 .991
15 .927 .923 .988 .984
20 .888 .882 .979 .974
25 .841 .833 .969 .961
30 .791 .782 .956 . 947
35 .737 .729 . 942 .930
40 .683 .676 .924 .912
45 .628 .623 .903 .891
50 .573 .568 .876 .867
55 .508 .504 .838 .835
60 .435 .433 .787 .791
65 .345 .349 .713 .726
70 .250 .260 .609 .635
75 .154 .170 469 .503
80 .075 .092 .305 .334

%Source: Coale and Demeny (1966),pp. 8 a

nd 18.

Derived through one-parameter transformation of .p(a) in Coale-Demeny "West"

female model life table with e = 50.

54(a) / p(a) in the model life’table wi
and the results transformed into 5p(a).
same procedure was used but with a X =

To derive the prediction for e, = 35,
th e, = 50 was multiplied by XK = 2,12
For the prediction at eo = 65, the

0.43.
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Equation (7) remains a simple linear
equation whose parameters can readily
be estimated. But it now incorporates
the important additional information on
child mortality levels.

IMPLEMENTING THE SYSTEM

We will assume that an estimate of
p*(5) is available. Data on population age
distribution from two censuses are as-
sumed to be available in 5-year wide age
groups. The procedure can be applied to
data in discrete S-year age intervals or to
specific ages. The latter choice is sub-
stantially the simpler and does not ap-
pear to sacrifice accuracy. The steps are
the following.

(1) Estimate sr., the age-specific
growth rate for the population aged x to x
+ 5, as

CInsN, (r+ k) = In N, ()
h

where sN, (¢) is the number of persons
reported at ages x to x + 5 at time ¢ (the
first census) and 4 is the length of the
intercensal period in exact number of
years. The set of sr,’s should be comput-
edforx=0,5,10, ... uptoan arbitrary
terminal age. Age-specific net emigration
rates, if available, should be added to the
st, series (Preston and Coale, 1982).

(2) Estimate c(a), the ratio of ath birth-
days to total person years lived during
the period. The most satisfactory proce-
dure for doing so, in view of the assump-
tions underlying the formulas, is to esti-
mate person-years lived between ages a
and a + 5 during period ¢ to t + & as

SNa (t + h) - 5Na(t)

5ra'h

5Tx

sN,(ttot + h) =

for each age and derive c(a) as

c(a)
sN,(ttot+h) + sN,_s(ttot + h)

103 sN.(ttot+ h)

x=0

®)
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(3) The values of the left-hand side of
(7) can now be calculated for all ages a =
5,10, 15, .. ..

For example,

p*(5)e—fo“r(x)dx

Age c(a)
5 pr(5)e ™
c(5)
*(5 —5(sro+srs)
10 p*(5)e
c(10)
*(5 e—5(5ro+sr5+5r10)
s p*(5)

c(15)

etc.

(4) It is now only necessary to adopt a
standard mortality schedule for ages
above 5. This should, of course, be as
similar as possible to the presumed level
and shape of adult mortality in the popu-
lation under study. If no other informa-
tion is available, a level might be chosen
that corresponds in a model life table
system to the particular value of p*(5).
Note that no logit calculations are neces-
sary; the only required values are

sq(a) _ Is — 1,
SP(a) la

in the life table chosen as the standard.
(5) Plot the dependent variable

p*(5)e — Jo'r(x)dx
c(a)

against the independent variable

y=

qu(a)
5ps(a) ’

The plot should be approximately linear.
If it is not, an error in data, calculation,
or assumption is implied. The only as-
sumption employed, however, is that
adult mortality (i.e., beyond age 5) can




An Integrated System for Demographic Estimation From Two Age Distributions

be represented as a one-parameter logit
transformation of a standard. The user
can, of course, experiment with different
standards and different values of B. Oth-
er sources of error are discussed below.

(6) Fit a line to the relationship be-
tween the variables. There are several
ways to fit a line to the points. The two
major alternatives are least-squares pro-
cedures, which tend to give more weight
to outlying observations, and grouped
mean procedures, which will normally
be preferred because of their reduced
sensitivity to outliers. Regardless of the
fitting procedure used, the intercept is
the reciprocal of the birth rate. The slope
divided by the intercept is K, the factor
by which the sq (a)/sps(a) schedule is to
be multiplied in order to estimate adult
mortality for the population in question.

APPLICATIONS
India

Table 2 shows the values required to
apply the procedure to Indian females
during the intercensal period from 1961
to 1971. The points (cols. 4 and 5, desig-
nated hereafter y and x) are plotted in
Figure 1. The points fall very close to a
straight line, except that for age 75. A
line was fit to the points by a grouped
mean procedure, using the mean values

of x and y for ages 5-30 as one ‘‘observa- -

tion’’ and the mean values of x and y for
ages 45-70 as the other. The equation of
this line is

y = 23.735 + 44.992x, implying that

1
b =———=.0421 and
23.735
44,992
= —— = 1.896
23.735

When the estimated value of K is applied
to sqs(a)/sq,(a) and a complete life table
recomputed from age 5, the estimated
life expectancy at age 5 is 51.0 years.!
This lies between the estimate of 53.2
years by Dyson (1979), also using the
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South model life table system on inter-
censal data, and that of the Registrar-
General of India (1977, p. 16) of 50.2
years. As Dyson points out, there is
reason to believe that the Registrar-Gen-
eral’s estimate is too low. Preston and
Bennett (1982, p. 15), using a method
that does not require a model life table
system, derive an es’ of 53.6.

The estimated birth rate of 42.1/1000 is
very close to the range of 40.5-42.0
given by Adlakha and Kirk (1974) for the
intercensal period; it is likely that our
estimate is higher because it uses a high-
er estimate of child mortality based upon
newly-published results from a 1965-
1966 National Sample Survey. Our esti-
mate is substantially higher than esti-
mates based upon the Indian Sample
Registration System for years near the
end of the decade.

South Korea

Table 3 and Figure 2 show comparable
values used to apply the system in South
Korea. A different ‘‘standard’ table is
chosen for mortality above age 5, one
that is believed to be more reflective of
Korean conditions: West female level 19
(eg = 65).

The equation of the line fitted by
grouped mean procedures to points 5-30
and 45-70 is

y = 36.947 + 43.831, implying that

1
b = ——— = .02707 and
36.947
43.831
= = 1.186.
36.947

The implied levels of birth rates and life
expectancy are in good agreement with
those presented in Coale et al. (1980).
The unweighted mean birth rate for
1967-1975 given in this source is 28.6.2 It
is derived mainly through own-children
techniques. Some of the rather small
discrepancy between the two figures re-
sults from the fact that the intercensal
procedure described here implicitly as-
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signs greater weight to more recent ob-
servations in a growing population such
as South Korea; and during the period,
Korea’s birth rate declined rapidly. A K
value of 1.86 translates into an es of
63.07, which is almost identical to the
value presented in Coale et al. (1980, p.
35) based on West model life tables for
1966—-1970 (63.16) but less than that for
1970-1975 (65.07). Using a nonparamet-
ric intercensal estimation procedure,
Preston and Bennett (1982) derived an es
value of 62.7 for the intercensal period.

SENSITIVITY TO ERROR

There are several advantages to the
estimation system proposed here relative
to existing procedures. Perhaps the most
attractive is that it appears to provide a
fairly robust estimate of the birth rate.
The apparatus for indirect estimation has
been much more extensively developed
for mortality than for fertility estimation.
We discuss briefly below the sensitivity
of results to various forms of error and to
the procedures used.

Choice of Points to Fit the Line

Experimentation with differing combi-
nations of points for fitting lines in the
two cases shown above (but always in-
cluding the lowest ages and relatively
high ages) results in birth rate estimates
that vary by less than 1/1000. The reason
is that points for young ages are heavily
clustered at low values (i.e., near the
intercept that determines b). Conse-
quently, choosing different points for fit-
ting at the high ages still results in a line
that goes through the middle of that
cluster. Relative to backward projection
of the population below age 10, in which
birth rate estimates are based exclusive-
ly on number of persons below age 10 at
the second census, the procedure de-
scribed here uses much more informa-
tion on the age distribution. In principle,
it uses information on the proportions at
all ages to determine b; in practice,
points at higher ages (i.e., at higher val-
ues of x and y) have successively less
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influence on the intercept and succes-
sively more on the slope.

Changing Census Coverage
Completeness

For similar reasons, birth rate esti-
mates (but not estimates of adult mortal-
ity) are relatively insensitive to changing
completeness of coverage in the two
censuses. To illustrate, we have reduced
all intercensal growth rates in India by 3/
1000, equivalent to a 3 percent deteriora-
tion in coverage at all ages in the second
census relative to the first. The equation
of the new line fit to points 5-30 and 45-
70 is

y = 24.303 + 62.200x, implying that

= = .0411 and
24.302
62.200

= = 2.559
24.302

The birth rate estimate is changed by
only 1/1000 as a result of this large simu-
lated deterioration in census coverage.
However, the level of adult mortality
rises substantially, as more people are
absent at the second census and pre-
sumed dead. The value of es in this
simulated case is 47.2 years, compared
to the original estimate of 51.0.

Inaccurate Information on Migration

A failure to incorporate accurate infor-
mation on international migration in the
estimation equation could have several
different effects, depending on the age-
incidence of migration. If the error in the
net emigration series (which is to be
added to r(x)) is invariant to age, then the
effect on estimates is formally equivalent
to the effect of differential coverage com-
pleteness in the two censuses. As shown
above, the effect on birth rate estimates
is probably small, but on adult mortality
estimates it can be substantial. If emigra-
tion is larger than that allowed for, adult
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mortality estimates will be spuriously
inflated, since emigrants appear to be
deaths. If emigration is higher than al-
lowed for only at older ages (say, after 25
or 30), then the adult mortality estimate
should be the only one affected (again, it
will be too high). If, however, emigration
is underestimated only at the youngest
ages (say, below 15), then the birth rate
estimate will be too low, since the entire
y series will be spuriously raised by a
relatively constant amount. In effect,
part of the relatively old age distribution
that results from youthful emigration ap-
pears instead to result from low fertility.
A pattern of error in emigration that is
concentrated in the ages 15-30, which is
perhaps the most commonly encoun-
tered pattern, should have relatively lit-
tle effect on the birth rate estimate, since
the effect on y-values accumulates and
becomes substantial only in the middle
range of points plotted. But it will, again,
raise estimates of adult mortality.

If estimated net emigration rates are
too high (i.e., net immigration rates are
too low), then results are the converse of
those described above.

Age Misstatement and Differential
Omission of Children

An important source of error in indi-

rect estimation of developing countries is -

age misstatement and differential omis-
sion from censuses by age. The present
method is also vulnerable to these prob-
lems. But once again they appear to
affect adult mortality estimates more se-
riously than estimates of the birth rate.
One of the most serious problems for
most methods of birth rate estimation,
especially backward projection but also
procedures using the ogive of the age
distribution, is differential omission of
young children from censuses. To illus-
trate the effects of such omission on the
present procedure, we have arbitrarily
reduced the number of children aged 0—4
in both Indian censuses by 10 percent
and reestimated the line (again using

ages 5-30 and 45-70) as
y = 23.671 + 43.701x, implying that

b= = .0422 and
23.671
43.701
= = 1.8462.
23.671

Very surprisingly, the estimated birth
rate is changed only from 42.1/1000 to
42.2/1000. And instead of being lowered
by the omission of the youngest children,
it is raised slightly. What has happened
to cause this slight rise is that, when
children aged 0-4 are omitted, the pro-
portion at all other ages rises, depressing
their y-values. In the cluster of points
near the intercept, one rises sharply in
value and all others decline. The sum of
the first six y-values actually declines,
and as the intercept declines the birth
rate rises.> But on average the cluster
remains in much the same place. This
insensitivity contrasts with the very con-
siderable sensitivity to omission of chil-
dren of back-projection methods. If 10
percent of children 0-4 are differentially
omitted from the censuses, the back-
projected value of b based on children 0-
9 would be too low by about 5 percent.

Age misreporting that is essentially
random will add scatter to the points
without biasing estimates.* Transfers of
population to adjacent age intervals
should likewise have small effects. How-
ever, systematic overstatement of age at
the higher ages may bias estimates, par-
ticularly of adult mortality. Such over-
statement will raise y-values in the mid-
dle-to-late ages being evacuated, and
lower them in the highest ages receiving
the spurious inflow of population. This
pattern should be: detectable in a hill-
shaped scatter of points about the line;
indeed, it is observed in the India data of
Figure 1. An estimation strategy should
simply endeavor not to use the points so
affected, particularly since the very high
values of y and x pertaining to the high
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ages factor heavily into group averages.
Note that the pattern of the scatter pro-
duced by age misstatement appears simi-
lar to that which would be produced by a
value of B (the adult mortality slope
parameter) of less than unity. For this
reason, it may be misleading to use this
estimation procedure to estimate B.

Error in Child Mortality

The sensitivity of b to error in estimat-
ed p*(5) can be stated very simply: the
estimated b is inversely proportional to
D*(5). If p*(5) is too high by 5 percent (a
very large error relative to typical uncer-
tainty in p*(5)), all y-values will be raised
by 5 percent. Both the slope and the
intercept also will be raised by 5 percent,
and the estimated birth rate will be 5
percent too low. However, the estimate
of adult mortality will be unaffected,
since K is the ratio of the slope to the
intercept and both are distorted by the
same factor. Although the estimated b is
sensitive to p*(5), it is fortunate that p(5)
is one of the most reliably-observed de-
mographic parameters in developing
countries, thanks to the success of the
Brass technique.

Error in Estimated Adult Mortality
Pattern

The x-values used in plotting the basic
relation shown in Figures 1 and 2 are
simply sqg,(a)/sps(a). Choosing as a stan-
dard the wrong level of mortality within
a one-parameter logit life table system
should have very little effect on either
the birth rate estimate or on the estimate
of adult mortality. If the one-parameter
transform applies exactly, the x-values
will all be incorrect by the factor e, the
error in assumed mortality level. But this
error will be exactly reflected in the
estimated K value that is used to correct
the initial standard. The final estimated
mortality level should be correct, and the
intercept should be undisturbed by equi-
proportionate errors in x-values.

A more serious difficulty arises if the
wrong adult mortality pattern is chosen.
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To illustrate the sensitivity of results to
use of very different age-patterns of mor-
tality, Larry Heligman of the United
Nations Population Division has repeat-
ed the India exercise using the United
Nations (1982) new South Asian model
life table as a standard. This pattern is
quite different from any contained in the
Coale-Demeny life table set, with ex-
tremely low mortality in the age span 5-
50 and unusually high mortality outside
of this span. At the same level of p(5)
used for India above, the South Asian
model has lower mortality than is con-
tained in the South at all ages between 10
and 50, and higher mortality above age
50. The maximum difference between
the two sq,(a)/sps(a) functions, .0515,
thus occurs at age 50 (.2823-.2308). Us-
ing the South Asian pattern as a standard
results in an estimated crude birth rate of
41.4 (vs. 42.1 for the South) and an
estimated es of 52.7 years (vs. 51.0 for
the South). As anticipated, the Bropor-
tionate difference is greater for es" than it
is for the crude birth rate. The estimated
crude birth rate is reduced by using the
South Asian pattern because, at a given
level of y-value, the x-value is reduced
more at lower ages (except that corre-
sponding to age 5) than at higher ages.
This distortion has the effect of raising
the intercept and lowering birth rate esti-
mates. Experimenting with different B-
values—the slope coefficient for adult
mortality—also produces changes in the
estimated birth rate. With a B = .841 in
the South Asian pattern, the crude birth
rate is 43.1 (compared to 41.4 when B =
1.00) and es® is 50.6, compared to 52.7.
Here, the proportionate changes in birth
rates and es° are nearly the same.

ESTIMATING THE TRUE AGE
DISTRIBUTION

It is useful to note that, by accepting
the recorded intercensal growth rates by
age, we are implicitly adopting the ‘‘hy-
pothesis of similar errors’’ previously
used by Coale and by Demeny and
Shorter (1968). That is, we are assuming
that equal proportionate errors have oc-
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curred in a particular age group at both
censuses, so that recorded growth rates
are correct. It is possible to estimate
what those errors are by reconstructing
the “‘true’’ age distribution and compar-
ing it to the recorded one. An estimate of
the true age distribution is likely to be
one of the most important by-products of
this procedure, since there is no other
method for estimating it short of making
stable assumptions or introducing a dual
record system. To estimate the true age
distribution, s¢,, we may accept the esti-
mated b, the recorded age-specific
growth rates, and the estimated level of
mortality:

_fon+2A5r(x)dx SLa

5éa =be
lo

Such estimates of s¢, are not forced to
sum to unity, and in several applications
they have differed from it by 1 or 2
percent. For final estimates of sé,, all
such preliminary estimates should be di-
vided by the sum of preliminary esti-
mates. Although such division seems to
constitute a revision of b, it is more
properly interpreted as a fudge-factor
required to fit continuous relations into
discrete boxes.

SUMMARY

The estimation system proposed here
builds upon several others: Brass’s adult
mortality estimation via logit transforma-
tions of a standard schedule; Brass-type
child mortality estimation; and recent
generalizations of stable population pro-
cedures. It is new only in the degree to
which it integrates these components
into a simplified, one-step procedure for
estimating fertility and mortality condi-
tions. The computational advantage rela-
tive to separate application of individual
procedures is likely to be greatest in
situations where censuses are not sepa-
rated by exactly 5 or 10 years. In such
situations, conventional calculations of
adult mortality conditions can be quite
laborious, since survival rates are nor-
mally tabulated in 5 and 10 years incre-
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ments, and the graduations or interpola-
tions required can introduce error. The
visual display of data points on which
estimation is based ought to aid in the
identification of error in data. The sim-
plicity of procedures also facilitates anal-
ysis of the sensitivity of results to data
errors of various kinds. Results of sever-
al sensitivity analyses suggest that the
procedure provides relatively robust es-
timates of intercensal birth rates. It
shares other intercensal methods’ sensi-
tivity of adult mortality estimates to dif-
ferential census coverage completeness
and to age misstatement. An important
by-product of the method is an estimate
of the true age distribution.

While the discussion and results pre-
sented here focus on the situation where
an estimation of childhood mortality is
available, the procedure can also be em-
ployed when it is not. In this case, the
‘“‘standard’’ mortality schedule must be-
gin at age zero instead of age 5 and
equation (6) must be used. There are
several reasons to use an estimate of
childhood mortality if it is available.
First, it is typically one of the most
reliably estimated demographic variables
for developing countries. Second, in the
absence of child mortality information,
the value of B adopted for estimation
purposes will apply to relations between
childhood and adult mortality, and not
simply to relations among younger and
older adults. Relations between child
and adult mortality are highly variable
(Coale and Demeny, 1966) and hence the
procedure is liable to greater error
(slightly mitigated by the possibility to
experiment with values of B). In addi-
tion, data errors (such as differential
completeness of censuses) that previous-
ly would have affected only levels of
adult mortality will now affect levels of
childhood mortality, to which birth rate
estimates are sensitive.

NOTES
! Life expectancy for age S is derived by first
recalculating sp(a) for a = 10, 15, ..., 80 as

sp(a) = 1/[1.896 g (a)/p,(a) + 1]. Using the assump-
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tion that deaths are evenly distributed within each
age interval, person years lived between 5 and 80
are S[p(10) + p(15) + ... p(75)] + 2.5 [p(5) +
p(80)]. To this sum is added p(80) &gy, Where &g is
taken from a model life table with the same value of
p(80)/p(S) (in this case, South level 8.9). The result-
ing sum is life expectancy at age S.

2 Coale et al. (1980, p. 2). These years are chosen
because both censuses were held in October.

* The decline results from the fact that, under the
recommended procedure, sN, figures into only the
calculation of y(5), whereas sN, at all other ages
figures into y(a) at two ages, x and x + 5.

4 In particular, least-squares estimates are unbi-
ased by errors in the y-values as long as they are
normally distributed with mean of zero and con-
stant variance.
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