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1 2 Increment-Decrement
Life Tables

Alberto Palloni, University of Wisconsin

12.1 Introduction

12.2 Increment-Decrement Life Tables

12.3 Estimation of Increment-Decrement Life Tables

12.4 Formalization and Generalization of Relations

12.5 The Simplest Case: A Two-state System

12.6 Alternative Solutions: The Case of Constant Rates

12.7 Programs for the Calculation of Increment—Decrement Life Tables

12.1 Introduction

In chapter 3 we studied the life table as a tool to describe mortality. A life table can be used
to describe any event whereby individuals under observation transit from one state to another.
In the case ofwmonality the event is death and the two states under consideration are “alive™
(state 1) and “dead” (state 2).

The mortality process studied in chapter 3 can be thought as representing a model resting
on the following assumptions:

a.  Simple state space: There are only two possible states that individuals can occupy:

b.  Event is proper: All individuals eventually transit from state | to state 2:

¢.  Destination state is “absorbing”: Nobody who moves from state | to state 2 ever goes
back to state 1.

Most demographic phenomena consist of events that cannot be represented and compre-
hended by such a basic model. To represent the marriage process. for example, we need to
modify assumption (a) by increasing the number of possible states to include single. married.
widowed. and divorced. These states are clearly not absorbing because people who enter them
may subsequently leave them.

Chapter 4 discussed modifications to the simple life table procedure to handle one important
generalization. namely, the introduction of multiple and competing destination states. This is
an extension that removes assumption (a). However. the multiple decrement model continues
to be restrictive since it relies on the other two assumptions. namely. that all destination states
are absorbing (no reverse flows are possible). and that the events are proper. that 1s, everyone
will experience the event under study or. equivalently, everybody will exit trom state 1.Of thlcse
assumptions. that preventing reverse flows is most problematic for demographic computation.
Section 12.2 describes increment—decrement life table models that enable us to understand
events with non-absorbing states and reverse flows. Section 12.3 introduces an example.
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discusses computational choices for the calculations to estimate an increment—decrement
table. and suggests interpretations for the results. In the remaining sections of the chapter we
formalize and generalize relations between quantities in any increment—decrement table.

12.2 Increment-Decrement Life Tables

In this section we review examples of three phenomena that can be fruitfully analyzed with
generalized increment—decrement tables.

12.2.1 Marriage and divorce

The process of union formation and dissolution is the prime example of interrelated events that
can be understood with a simple increment—decrement model. To keep the illustration simple
we will neglect the existence of consensual unions and assume that all unions are formally
sanctioned. We will also overlook equally important complexities raised by the fact that union
formation and dissolution involve not just one but two individuals. In what follows we focus
on women exposed to marriage.

In most populations a majority of, but not necessarily all, women will eventually marry.
Some but not all among those who marry will experience a divorce (permanent separation) or
widowhood due to the death of their partner. Finally, some marriages will be terminated as a
consequence of the death of the woman herself. The multistate representation of these events
is graphically displayed in figure 12.1 (Schoen. 1988). Women who marry for the first time
cannot return to the single state, and thus there is only a one directional arrow linking the state
“single” with the state “married”. By contrast. those who divorce or separate and those who
experience widowhood may remarry, and this possibility is reflected by two-directional arrows.
As always, death is an absorbing state and there are no reverse flows from the state, “dead.”

In this representation, the passage of time is measured by the age of the woman and one
does not necessarily need to account for the time spent in each state as an important dimension
of the problem. That is, the model assumes that remarriage and divorce depend on time only
through the age of the woman and not through the duration that they have spent in any state.
If this assumption is violated, special procedures to handle both age and duration dependence
are needed.

Ot interest to those studying marriage change and family formation are questions such as
the following: what is the expected time before the first marriage? What is the probability

—_t
Married i
T .
4 H
Divorced j Widowed |- w: Dead —

Figure 12.1 Multistate representation of marriage and marriage disruption
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Figure 12.2 Multistate representation of HIV/AIDS
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that a first marriage will eventuaily end up in a divorce? What is the average number of
marriages that a woman will experience during her lifetime? What is the expected number of
years before a first marriage breaks up by divorce? Answers to these questions may enable
investigators to understand better the effects of social and economic forces on family formation
and organization.

12.2.2 HIV/AIDS

Because of its very nature, the HIV epidemic admits a simple multistate representation (Palloni,
1996). Individuals in a population exposed to HIV can occupy one of three states: susceptible
(noninfected), HIV-positive and asymptomatic (contracted virus but with no symptoms of
AIDS), and AIDS (full-blown symptoms of AIDS). As always. death is an absorbing state. A
graphic representation appears in figure 12.2. The force of infection, A. is the instantaneous rate
of infection or HIV incidence: the force of incubation, 3. is the instantaneous rate of incubation
or AIDS incidence; and the quantities w! (i = 1, 2, 3) are, respectively, the forces of mortality
for individuals who are susceptible, infected, and with AIDS. As in any application of life
table procedures, our interest is to use observed events, namely, becoming infected, developing
AIDS, and dying, to estimate the underlying rates, X. 3, and wl.

This example shares an important feature with simple life table representations: there are no
reverse flows, as individuals who become infected will remain infected for life. As before. death
is an absorbing state. However. not everybody in the population is likely to become infected.
Indeed, an important quantity to be estimated is the ultimate proportion of individuals who are
likely to become infected.

In the case of HIV/AIDS the issue of time dependence is more complicated than in the case
of marriage. Indeed. while the force of infection is mainly dependent on the age of individuals,
the force of incubation is driven by the duration in the state (duration of infection) as much as
it is by age. By the same token. the risk of mortality once AIDS is contracted, ;ﬁ. is almost
entirely associated with duration of infection and only weakly dependent on age.

As in the case of marriage. an understanding of the HIV/AIDS epidemic requires us to answer
questions that increment—decrement tables can address very precisely: what proportion of a
cohort will eventually contract the virus? What is the average age at which individuals in
a cohort will contract the virus? What fraction ot the cohort will contract the virus before
reaching age x7 What fraction of the cohort will develop AIDS before age v

12.2.3 Health, chronic illnesses, and disability

An important and lively current debate in the study of health and mortality revolves around
the idea that as improvements in survivorship and life expectancy continue. the health of those
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Figure 12.3 Multistate representation of chronic illness and disability

individuals benetited by these improvements may deteriorate (Fries, 1980; Singer and Manton,
1994). Is it generally true, for example, that the time spent ill or disabled is longer now than
it was when life expectancy was around 60 years? Could it be that when they reach their
retirement age baby boomers will experience higher life expectancy but also higher prevalence
of ill-health and disability than their parents did at similar ages? If this is so, what kind of
pressure will there be on resources to keep a minimum standard of well-being?

A simple way to understand the events and relations involved and indeed to begin to answer
these questions is, once again, through an increment-decrement representation (Rogers et al.,
1990). This is shown in figure 12.3. We assume that all individuals start out in the state “healthy™
and that they can transit first to the state “chronically ilI” and from there to the state “disabled.”
As most disability is caused by chronic illnesses, we will neglect the possibility of a flow
from “healthy” to “disabled.” As in the case of marital status, reverse flows are possible as
individuals can recover from either disability or chronic illnesses.

Strategic factors that will shape the answers to the questions formulated before are the set of
transition rates, ! and \2. These are, respectively, the rate of incidence of chronic illness and the
rate of recovery. To the extent that A remains invariant over time but A decreases, we should
expect that a growing fraction of the population will be occupying the state “chronically ill” or
“disabled.” Note also that if \ or A* are reduced (death rates fail among the ill and disabled) and
all the other rates remain unchanged, we should expect a similar result, namely, an increase in
the prevalence of chronic illness and disability. Understanding the factors that determine these
rates is then a key to providing evidence for or against the idea that morbidity is increasing or
expanding.

There are a number of other examples and illustrations that we could have used. Paramount
among these are applications to multiregional life tables, where the analyst is interested in
modeling migration flows between and within geographic regions as well as mortality (Rogers.

1995b).

12.3 Estimation of Increment-Decrement Life Tables

12.3.17 Children’s experiences of marriage, consensual unions, and disruptions

A controversial topic in the current demographic and sociological literature is related to the
changing dynamic of union formation and dissolution. Over the past twenty years or so the
rate of entrance into consensual unions has increased sharply. This is thought by some to be
responsible for increasing rates of childbearing out of wedlock. In addition. some researchers
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believe that consensual unions are more likely to end up in eventual separation and that, even
if they lead to a marriage. the latter is subject to an increased chance of divorce. These trans-
formatious certainly influence the family structure and material well-being of couples. but
are thought to produce particularly salient consequences for the early experiences of children.
Because children’s early life experiences have potentially large effects on their later life behav-
iors and activities, it becomes important to describe children’s patterns of exposure to different
types of family contexts dictated by their parents’ union history.

We can shed some light on this issue by summarizing the experiences of children at various
ages as a function of one (or both) of their parents™ union status (see Bumpass and Lu, 2000).
For simplicity, we choose to work with their mother’s union status. Thus, the study population
consists of children whose mother’s union history will determine the family context which
children encounter at a given point in their life. Since the most strategic issues associated
with a child’s living arrangements have to do with early life impact, we are justified to focus
our attention on children’s experiences between exact ages zero and 15. Similarly. since the
main hypotheses suggest that the most important contrasts are associated with children who
experience life with a single mother, with a mother in a consensual union, or with a mother
in a marriage. we will neglect altogether all states created by mortality. As a consequence we
start with a simplified representation of the marriage process displayed in figure 12.4. In this
figure the states are numbered sequentially and the transition rates to and from any of them are
indexed so that the first superscript always corresponds to the state of origin and the second
to the state of destination. The corresponding rates for these transitions, A’/ (x), are associated
with children, not with adult women and/or men, and refer to the rate at which children whose
mothers are in state i at age x move to state j in the small age interval (x, x +8x). Thus, N2(x)
1s the rate at which children who live with mothers who are not in a union experience a change
between ages x and x + 8x and begin to live with mothers who are cohabiting but not married.
Similarly, A23(x) is the rate at which children who live with a mother in a consensual union
move between ages x and x + & to a family context characterized by a mother who is married.

Relative to the marital status example given before, the state-space representation in
figure 12.4 is both simpler and more complicated. The illustration is more complicated because
we now explicitly consider the existence of consensual unions as ditferent from marriages. This
complication is justified by the increasing importance of consensual unions and the increased
prevalence of children who live with cohabiting parents who are not legally married.

The state-space representation, however, is also simpler since we neglect altogether the
effects of mortality. In fact, not only have we omitted an absorbing state for death (of the
child). but we also overlook the distinction, for example, between a child whose mother is not
in a union due to death of a spouse or partner (widowhood) and a child whose mother is not

Non-union Married
1 3
Y E§
L2 S
/&‘2 ’ )\32

«
Cohabitation
(consensual union)
2

Figure 12.4 Muiltistate representation of children’s experience with family contexts
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in a union due to a divorce or separation. This decision is probably inconsequential since we
are only interested in the evolution of the phenomena in a range of maternal ages (15 to 55)
where aduit mortality is very low. Thus. the rates X! and ! will reflect primarily the risk of
separation (from consensual unions) and divorce (from marriage). By the same token, we do
not distinguish among women in the non-union state according to the nature of their previous
union. Instead. we lump together divorced mothers with those who were in a cohabiting union.
This is tantamount to assuming that any heterogeneity in the transition rates out of this state
(non-union) can be legitimately ignored or. equivalently, that the processes of union or marriage
formation for those whose previous union was a cohabitation is essentially the same as it is
for those whose previous union was a marriage. If this were not a realistic assumption — and,
in all likelihood. it is not so — we should distinguish the existence of two disruption states.

12.3.2 Estimation of rates

The National Survey of Family Growth (NSFG) is a nationally representative survey of house-
holds in the United States implemented periodically by the National Center for Health Statis-
tics. The goal of the survey is to retrieve information on fertility and related health issues. The
NSFG-5 fielded in 1995 includes 10,847 female respondents who are 15-44 years of age in
1995 (Potter et al., 1997). Since the NSFG-5 elicits union and fertility histories for the women
in the sample, we are able to reconstruct their children’s experience of cohabitation, marriage.
or union disruption (Bumpass and Lu, 2000). With the retrospective information on events that
occurred during the period 19904, we calculate observed single-year age-specific rates for
every relevant age and flow displayed in figure 12.4. These rates. which we will denote | M/,
correspond to the ratios | DY /, N( of observed transitions from i to j in the age interval x to
x4+ 1(;DY) to the estimated midperiod population in state i in the age group (; N.). These
rates are displayed in table 12.1.1 Just as the mortality rates | M’s defined in chapter 3 were
the basis for the life tables in the two-state case, so the ;M ’s rates will be the basis for life
tables associated with each state in figure 12.4. Thus, in this application we will have one life
table for children whose mothers are not in a union (state 1 or “non-union™), one for children
whose mothers are in a consensual or cohabiting union (state 2, “cohabitation™), and one for
children whose mothers are married (state 3, “married”). As in chapter 3. the central quantities
in these tables are the corresponding probabilities of experiencing the events.

Recall now the procedure used when there are only two states to consider. origin and desti-
nation, and only one flow from origin to destination. In this case we only focused on quantities
describing the exits or the flow away from the origin state. To do so we calculated values
of | My’s and added an assumption about the behavior of the underlying risk to estimate the
values of gy, |dy,and | L. For example, with the assumption that /(x) is linear over one-year
intervals, we could uniquely estimate g, from ; M, for every age group, and then derive the
quantities |y and | L. " Although we did not describe the procedure quite in these terms, we
could say that for each age (other than age 0) in the life table we have three equations in three
unknowns. The three equations in the linear case are:

(x + 1) =1(x) — 1dq
jdy = My - 1Ly (12.1)
1Ly =.5-[I(x) +1(x + D]
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Table 12.1: Observed values of | MY for the states and flows represented
in figure 12.4

Age State at beginning of age interval
| {ron-union) 2 (cohabitation) 3 (marriage)
Destination Destination Destination
2 3 1 3 1 2
0 0777 0421 0968 .1460 0121 0086
1 .0858 .0405 .0984 1411 0211 .0082
2 1068 0350 0759 1468 0196 0069
3 1054 0354 0829 1639 .0210 .0045
4 0832 0475 0656 1282 0216 0084
5 0939 0497 0535 1433 0214 0076
6 0617 0469 0506 1229 0251 0022
7 .0808 0580 0471 1326 0201 0078
8 0507 .0305 0655 1387 0196 .0027
9 0621 0375 0815 1430 0215 0031
10 .0854 0411 .0508 1370 0201 .0049
11 .0435 10343 .0855 1149 .0186 0032
12 0656 0521 0880 0896 0260 0043
13 0427 0313 0812 1307 0204 0071
14 .0837 0314 0851 0712 0260 0066

Source: NSFG-5. See also Bumpass and Lu. 2000.

Since for each age x, /(x) is known — a result of the recursion that starts from an arbitrary
radix or value for /(0) — the three unknowns are /(x + 1), dy and | L. One can easily verify
that the solution for (dy is

1My

=) — 1
de =1 - T

or, equivalently,

1—.5 M,
x+ ) =Ilx) ————— (12.2)
(x+1) (x) Tr 5. M,
This implies that
1 My
S Y VA

the kernel of the empirical solution to the two-state life table in chapter 3.

We can proceed in an analogous way in the multistate case provided that we account for
the fact that at each age there could be more than one flow. To do this most efficiently. it is
convenient to introduce more notation. We define the tollowing quantities:

I{(x) is the number of individuals in state i at exact age x:
ydy is the number of individuals moving from state i to state j between ages x and x + 1
| L' is the number of person-years lived in state 7 between ages x and x + 1.
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The reader should verify that the following equalities hold for all ages:

Plx+ 1) =4+ Z 1di - Z 1! Equation of tvpe I
J J

I M,l\j : 1L_i- Equation of tvpe Il (12.3)

1dy

il

L =51"x)+1"(x + 1)) Equation of rvpe 111

Since in the representation of figure 12.4 we have three different states. for each age group
we will need three equations of type I, and also three equations of type I1I. Similarly, since
there is a total of six flows or transitions, we will need six equations of type II. This amounts
to a total of twelve equations. The unknowns will be three values of //(x + 1), three values of
lLf;. and six values of ¢y or, equivalently, six values of the conditional probabilities |4y}

To generate estimates of the quantities we seek, g1, we need to solve a system of twelve
equations in twelve unknowns for each age. This is certainly not a trivial task but it is not intrin-
sically difficult. Indeed. and as we show below, calculation of the solution involves consecutive
operations of inversion of a matrix, one for each age group (except for age zero). Although the
matrix inversion operation is not always smooth, there are a number of software packages that
can handle the assignment very efficiently (see section 12.7).

Using the rates displayed in table 12.1 we solve the system of equations. one for each age
group, and then proceed to calculate the quantities /(x), dy, and ]L"Y for all three relevant
states. All calculations are based on a radix of //(0) = 1,000 for all . that is, we arbitrarily
assume that we start with a synthetic cohort of 3,000 children aged 0, one thousand in each
state. For accurate estimates, of course. it would be necessary to know the actual distribution
of children at birth among the states.

Table 12.2 displays the values of j¢y/. and table 12.3 displays the values of /'(x) and
1dy. In table 12.2 the values in the first of the three columns associated with each state
correspond to the conditional probabilities of remaining in that state at the end of each one-
year interval. Thus, in the first age group and for state 1. the value in the first column is .8902
(=1 —.0657 —.0441). Although the values of 1Lf;. are implicit in table 12.3, we omit them to
avoid excessive cluttering. Finally, the estimated expected durations at age zero spent in each
of the three states are displayed in table 12.4.*

12.3.3 Interpretation of estimates

For each origin state i and for each age x. the conditional probabilities of moving trom state
to state. 14y , displayed in table 12.2 add up to 1.0. as they should. Thus, for example, the
three possible transitions for a child aged zero who lived with a mother not in a union are: (a)
to continue to experience the same living arrangement with probability .8902. or (b) to live
with a cohabiting mother with probability .0657 or. finally. (¢) to live with a married mother
with probability .0441. Combining the conditional probabilities in table 12.2 with radices
I"(0) = 1.000 for each i leads to the figures displayed in table 12.3. According to this table.
at exactly age 5 there are 837 children in state 1. 604 in state 2, and 1.559 in state 3. Note that
these numbers add up to 3.000 since there is no child mortality in our representation. and all
3,000 children in the original cohort must be in one of the three states at every age.

The columns | d,’ also have straightforward interpretations. Thus. reading down the column
1(1\‘3 we find that among the 837 children who lived with a mother not in a union at exact
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Table 12.2: Estimated values (gf'w_';:’ for the states and flows represented in figure 12.4 ‘ Table 12.4: Expected duration (or waiting time) by state and state of origin
A State at beginning of age interval State of origin (at age 0)  Expected number of years to be lived in state j =
Age ate at beginning g
2 (cohabitation) 3 (married) ' 1 (non-union) 2 (cohabitation} 3 (married)
| (non-union) cohabitation {
Destinarion Destination Destination All 40 27 a3
I 8.0 25 4.6
2
| 2 3 i 2 3 1 2 3 5 o - v
0 8902 .0657 .0441 .0823 7868 .1308 .0117 .0080 9802 3 13 6 3
0724 0427 0841 7898  .1261 .0199 .0080 .9721
'l> 2:?(1) g;()() 828] 0651 8032 1317 0183  .0070 .9747 Source: First row calculated trom table 12.3. Row entries do not atways add to 15.0 due
3 8723 0879 0398 0705 7839  .1456 .0196 0049 9756 to rounding.

8800 0715 0485 .0574 8259 .1167 .0202 0083 9714
8686 0800 0514 0485 8217  .1298 .0199 .0077 .9724

4

5 age five. 67 experience a change and begin living with a mother who is in a cohabiting union.
6 8988 0540 0472 0455 8418 1127 0236 .0027 9738

7

3

9

Similarly, 43 of the original 837 children who were in state | at exact age 5 begin living with a
married mother between their fifth and sixth birthdays. A similar interpretation applies to the
other columns.

8723 0696 0581 0416 .8371 1213 .0187 .0078 .9735
9237 .0443 0320 .0583 8162 .1254 0187 .0029 9784
9076 0533 0391 .0712 8003 .1285 .0204 .0033 .9763

The functions I (x) are not always monotonically decreasing, reflecting the fact that at every
2 1247 0188 0052 9760 X y e 18 &
10 82% ggg? 8;3@ 8::2 g?gg iéj7 8178 0032 9789 age and for each state there are both decrements and increments. Thus, it should be clear that
il 42918 '0571 '0511 ‘0775 l8394 AOSW :0244 0046 9710 it is not possible to use !'(x)/I'(0) as a measure of the _probability. for a newborn in state i,
15 ,9304 '0374 '()322 ‘0720 :81()2 1178 0197 .0067  .9736 of remaining in state / at age x. Similarly, the ratios /' (x + k)/' (x) no longer measure the
14 .8945 :0736 0318 0756 .8582 0663 .0245 .0070  .9685 conditional probabilities of remaining in state i. One can. however, use the ratios
Source: NSFG-3. See also Bumpass and Lu, 2000. ji (r)/ Zl/ 0)
i

Table 12.3: Estimared values of I'(x) and \dy for the states and flows represented in to represent the probability that anewborn will be in state i at age x. For example, the probability
figure 12.4

that a newborn will live with a married mother at age 10 is .618 (=1854/3000).

Age State 1 There are two types of life expectancy, or expected waiting times, that can be derived from
i = | (non-union) i = 2 (cohabitation) i =3 (married) increment — decrement life tables. The first is an unconditional expected duration representing
1 " = v, 5 Py T S 2 the average duration of time lived in a particular state, regardless of origin. According to table
IH(x) 1dy iy =) 14y 14; Fx i < i 12.4, the expected number of years spent in states 1, 2, and 3 by the members of our fictitious
0 1,000 66 44 1,000 82 131 1,000 12 8 cohort are respectively 4.0 years, 2.7 years, and 8.3 years. This means that a member of the
1 984 I 42 861 72 109 1155 23 9 original cohort (regardless of his/her starting state) is expected to live 4.0 years of his life
2 966 ’7 37 760 49 100 1.274 23 9 between ages zero and 15 (exactly) with a mother who is not in a union, 2.7 years with a
3 915 80 36 706 50 103 1.378 27 7 mother in a cohabiting union, and the remaining years with a mother in a marriage. These
4 875 63 42 641 37 75 1484 30 12 figures add up to 15.0; we have accounted fully for all of the first 15 years of life.
5 837 67 43 604 29 78 1559 31 12 The second kind of waiting time or duration in a state is called “conditional,” and it is
6 787 3 3 376 26 65 1,637 32 + important to understand the difference between unconditional and conditional waiting times
7 772 >4 ;ii 53l 2 62 :32? :; ]g or duration (Schoen, 1988). The unconditional duration or life expectancy in state j at age x,
2 77%2 13 ;3 -55;:& 2(7) 28 1.81() é% 6 eJ(x) — the number of years of life to be lived in state j after age x — can be directly calculated
10 7:?7 54 52 409 1‘8- 51 1.854 35 10 from the values ot ; L{‘ (v > x)implicit in table 12.3. By construction these values are additive.
11 704 27 25 403 31 42 1,893 34 6 In particular,
2 7 363 28 30 1,920 47 9 )
:’; ;}Z ; 33 355 26 2 193 38 13 > el (0) = e0)
14 728 54 23 327 25 22 1.945 48 14 J
15 724 — — RET S— — 1928 — -

In our case this is fifteen years since there is no child mortality.

Source: NSFG-5. See also Bumpass and Lu, 2000. Calculated from table 12.2. Note that By contrast, the conditional expectations or conditional duration. L[/‘j(,\~) — the expected
number of years to be lived in state j by those who are in state / at exact age x ~ must be

the sum of /' (x) for each row should be equal to 3.000. Discrepancies are due to rounding.
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estimated using the trajectory followed by members ot the cohort who occupy state ¢ at exact
age x and then calculating the time spent in state j. These calculations are tedious but not
intrinsically difficult.

Suppose that there are /! (x) children who are in state { at exact age x. We then estimate a new
set of life tables for a cohort with I (x) members who start in state / and for whom the starting
age is not zero but age x. From these newly estimated life tables we will obtain unconditional
expectations or values e/ (y)forall j and for v > x. These values are associated with the /;(x)
children in the new initial cohort, not with the original cohort of children. To avoid confusion
we will label these unconditional expectations €/(y) for y > x. It follows that the quantities
we seek, W (x), are indeed the values e/ (x). It also follows that the total number of years
lived after exact age x by those who are in state 7 at age x must equal

ZI//”’("‘)
J

The values displayed in the first row of table 12.4 correspond to ¢/(0) whereas those in the
remaining rows are the quantities Wii0)5 An interesting feature revealed by these quantities
is that children born to a married mother will spend most of their first fifteen years of life in
such a state, whereas those born to mothers not in a union or in a cohabiting union will spend
much of their first fifteen years of life in those same states.

12.4 Formalization and Generalization of Relations

We now examine more closely the nature of the functions l(x+ 1) and dy and explore key
interrelations between them.

72.4.1 The nature of |d’

What is 1d2° in our illustration? It is the number of children who reached exact age x with a
mother in a cohabiting union and whose mother was married when they (the children) reached
age x + 1. This quantity is a result of a multiplicity of flows, some involving only one transition,
others involving more than one transition. some involving moves away from state 3 and others
moves into state 3. For example, it includes children whose mothers were in a union at age x
and then married at age v +68 (0 < § <) and stayed married until age x 4 1. But it also includes
children whose mothers experience a potentially more complicated sequence of moves such
as: cohabiting when the chiid is age x, marrying when the child is x + 6 (0< § <1). divorcing
when the child is x + 8" (8 < 8'), entering another cohabiting union at age x + 8" (5 < §")
and, finally, marrying again and staying married until the child reaches age x + 1. Thus. lz/"
is affected not just by flows inro state 3 but also by those out of it. The quantity. therefore.
excludes individuals who start in state 2, move to 3. and then exit this state without reentering
it before attaining age x + 1. It also excludes individuals with multiple transitions. such as the
one described before but with an extra transition out of state 3 without reentry before age x + 1.
1t is clear then that if rates of exits our of state 3 were lower. the quantity ]d\z.3 could be higher.

In most applications either the time intervals are very short or the rates are so low that the
likelihood that an individual will experience multiple events in a single time interval is remote.
But even in the most conservative case. that is, when only one move per individual per time

. . . i . .
interval is permitted. 1dy is no longer to be considered a measure of pure decrements, except
when J is an absorbing state.
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12.4.2 The nature of I'(x + 1)

We already noted that the function /' (x + 1) in table 12.3 is not strictly decreasing with age. For
example the value attained by Bxyat age 7 (=1696) represents an increase relative to the value
of 13(6) (=1637). This occurs because /> (x) reflects the ebb and flow of marriage as well as of
the other phenomena. In the case of state 3, between ages six and seven there is a decrement
of about 39 caused by divorces, and another decrement of 4 caused by transitions toward
cohabitation. But there are also increments of 37 and 65 accounted for by transitions from
state | and state 2 respectively. Clearly, the function /' (x + 1) is influenced by the magnitude
of the transition rates (into and out of the state) and also by the magnitude attained by the
functions // (x) for all J different from ;.

12.4.3 General linkages

These linkages between the various states are rendered more fully if we construct a matrix
containing the sources of increments and decrements for each state i. This matrix, which we
call I(x + 1), contains as elements the values /Y (x + 1), the number of individuals who were
in state { at exact age x and end up in state j by age x + 1. Fori # j the function /Y (x + 1)
is equivalent to 1d{ ; indeed, these values represent the number of individuals who move
from state / to state j in the age interval. By contrast, the values of the function ‘//(x + 1)
represent the survivors of the original “cohort™ of individuals who started out in state / at age
x. Therefore it must be a strictly decreasing function of age that depends on the initial value
{1i(x) on the one hand, and on the decrements consisting of all those individuals who moved
out of state i, namely

i
PICS
J#

on the other.

We can now establish the link between the elements of /(x + 1) and those of I(x) via lhe
quantities jd’ . Y Ina very general situation when we have non-absorbing states i = 1, ...,

I(x + 1) =1l{x)— D) (12.4)
or., in longhand:
11](x+1) Pa+rn o MR+ w0 0
Ma+D Fa+n o Harn || 0 A 0
o+ 2+ . Azm 1y, 0 0 KEx+D
Z_ld.\l»/ -t gl
J
—d? YT dy o g
—1(17/\"] —ldfz x> ldé’l
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The matrix D(x) is a matrix of increment and decrements. Quantities in th_e diagonal entries,
the cells (i. i), are decrements associated with state { (the sum of allvthe ldv'(j or exits out gf ).
By contrast, quantities in off-diagonal columns, the cells (L. i) ar‘e mc»rememsA for sEale i. ‘

The matrix equation (12.4) preserves all the information c0n§31ned in equation of type I in
expression (12.3). The diagonal elements of matrix [(x + 1) will alwgys be smaller than the
corresponding elements at age x since the values in the diagonal of mamx Dareall decremems.
They are like the /(x)’s in a simple death process.6 The number of individuals who are in state
iat ZC)(actly age x + 1, which we symbolize as /' (x + 1), must be thle sum of thfs elements in the
corresponding column of the matrix /(x + 1). Thus, for example, /' (x + 1) is mmplykthle sum of
the elements of the first column of I(x + 1), namely ‘ll(.H— 1)+21’(x+ D4+ (x+ 1),
However, the similarities with the simple life table stop there. In p_articulan it is not the ca§e
that the sum of decrements for state i over all ages x will add up to /(0), as is in fact the case in
the single decrement table. Since each of the quantities \dyY expresses a frequency of events,
the ratio to the number of years lived or total exposure in the interval (x, x -+ 1) will represent
a rate. [n the notation of the life table we ought to have that

ij
1 d,r
1Lk

i
my =

where ldij is the number of transitions from state i to state j in the(age interval}, (L is‘the
total number of person-years lived by those who were in state i during the age interval in a
stationary population, and 1my are transition rates for the stationary population. . .

The observational counterpart to ymY are the quantities (MY, or the ratios DY/ 11\1‘r gt
observed transitions from i to j in the age interval to the estimated midperiod population in
the age group. N

Just as we can arrange the values of |dY in a matrix. so we can create a matrix for the values
of the observed transition rates, | My :

/ ‘ k
oMY oM My
’ ) 2j 23 - 2k

Moy = | THME XM M 1M (12.5)
M M M My

which is obtained when we divide the quantities in the matrix D(x) by the corresppnding values
of exposure. This matrix equation is equivalent to equation ot type II ip expression (12.3).

Let us assume that the functions representing the number of survivors in each state are
linear between any two ages, that is, that the values of | L can be generated as the average of
Ii(.r) and /' (x + 1). Similarly. we assume that the values 1L1\/ = 5 ("I/(x + 1)) are a good
representation of the number of person-years lived in the age interval (,xl'._ x4+ 1)by ‘those who
moved from state i to state j. If so, we can arrange the vaiues of (LY in a matrix and use
matrix notation again to write the tollowing:

Lx)=.5-[I)+1x+ D] (12.6)

a matrix equivalent of equation of type III in expression (12.3).
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Substituting (12.6) into (12.5) we shall obtain the solution for /(x + 1) as:
I+ 1) =1x) I —.5- MW+ .5 M) (12.7)

where [ is the identity matrix and the superscript “—1" stands for the inverse of the matrix.
This is a formal solution to the simultaneous equations we introduced in expression (12.4).
Note that expression (12.7) is the matrix equivalent of the two-state solution where

/ \ ; 1—.5 M,
D=0 T
To calculate {/(x + 1) associated with each state we need to solve for the corresponding
values using expression (12.7) for each age group. As in the two-state case, these values are
sufficient to calculate all other quantities of interest. The process cannot get started, however,
unless we specify a radix, /(0), which in our example was set to be [/ (0) = 1,000 for all j.
We showed that calculations needed to construct increment—decrement life tables are, in
principle at least, fairly simple: one needs to invert a matrix for each and every one of the age
groups or time intervals considered relevant, and then calculate the quantities of interest from
the resulting estimates. These quantities are then assembled in the form of life tables, one for
each state. With a few states (less than four) and a handful of age groups, matrix inversion
presents few difficulties, and can be done expeditiously with a hand calculator. When the
number of states and age groups is larger, however, matrix inversion becomes tedious and can
be better handled by a computer. In the last section of this chapter we provide some suggestions
regarding software to accomplish these tasks.

12.4.4 Introduction of mortality or other absorbing states

Although in examples such as the one considered above, it is in principle justified to neglect
the existence of an absorbing state, this may not always be the case. For example, to model
the dynamics of HIV/AIDS or of health conditions at older ages, we will need to explicitly
introduce mortality.

The introduction of an absorbing state presents no added difficulties but does require a
suitable redesign of matrices and vectors, one that facilitates interpretations and simplifies
numerical manipulations. If we were to introduce mortality in the example of children's family
life experiences we would need to include an additional state and all associated transitions.
The matrices would normally be arranged in such a way as to have death as the last state to be
considered (the last row in matrices /(x), [(x + 1), M(x)). By convention we set the last row
of matrices /(x + 1), D(x), and M (x) to zero to reflect inactivity in the absorbing state. Aside
from these changes in the design of our matrices, no other modifications are required.

12.4.5 Closing the multistate table

As in the case of a simple life table. the calculation of quantities corresponding to the last age
group or duration presents some difficulties. In chapter 3 we saw that to close the table we
needed to assume that the population was stationary above some high age. w. This enabled us
to set the following equation:

l{w)

x iww

(12.8)

Ly =

to solve for the unknown value of the number of person-years lived.
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In the multistate case we proceed in an analogous fashion. The only difterence is that we n_mst
now account for several states of interest. i = 1.2. ..., k. Thus in the example of marriage
and union formation and dissolution we need to apply equation (12.8) three times because
there are three values ooLfD for which we need to solve. As the reader must have guessed, the
operation involved is simply a matrix multiplication:

Liw) = l(w) - [M{w)]™ (12.9)

where L(w) and [(w) are diagonal matrices. M(w) is a (k x k) matrix constructed by taking
into account only & non-absorbing states.

12.5 The Simplest Case: A Two-state System

In this section we briefly review the explicit solution for the two-state case. We do this becausev
the expressions for the relevant quantities are revealing of the dynamics of the process and of
the consequences of some of the underlying assumptions. ‘ N

Suppose we have a two-state system with no absorbing state. The solution f?)r the con(%tlonal
probabilities of staying in states 1 and 2 in the age interval x o x + 1 (!17,: and | p;°) and
of moving from state 1 to state 2 and from state 2 to state I in the age interval x to x + [,
(1¢!2 =1~ piland 7' =1 —p). are:

M)
L+.5 M2 +.5. M2

1+.5 MY — 5. M7
I+.5 MP+.5. M2

1 _
1Py =

12
19

(M3
1+.5 M2V +5. M2

s bS5 MP - 5oM7 12!
P ST s M T 5 MP ‘

I

The reader should verify that this solution results from expression (12.7) with the following
2 x 2 matrix M(x):

12 12
1M - M )
M) =
&) <-1M_%‘ (M2

A comparison of the conditional “survival” probabilities for Fh.is case with Atl'IOSE 9btair}ed
in the simple life table is revealing. The expression for the conditional probability of moving
from state 1 to state 2 in the simple life table is given by the ratio | M /(1 + S My ) which is
approximately equal to the product of | My - (1 —.5- 1 My). This prod.u.ct expresses directly the
implications of the assumption of linearity: it is tantamount to requiring that all evemvs occur
at the midpoint of the interval, at which point there should be a fragFlon qf approximately
(1 —.5. | M,) of the original survivors who will be exposed to an attrition glve‘n by 1‘M>\:

In the case of a two-state system with two flows the conditional probabilixy of moving from
state 1 to state 2 can be interpreted analogously. We first sgrvive 1nd1v1dual§ in state 1 ;}tﬁage X
up to the middle of the interval (x. x 4 1). We do this E)y using the quantity ( 1 —ﬂ.S S M) We
then apply the rate | M}* and the factor (1 — .5 - (M21), the latter accounting t.or the fact that
some individuals who move from | to 2 will experience a move back to the original state. Thllg?s
the probability that an individual in state | at exact age x is in state 2 atexactage x + L. 1q,",
is:

M2 s MY (-5 M
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which. when the rates are small. is approximately equal to:

My
I+.5 M +5. M2

A . L 5
An analogous derivation results in the second equation for lq(]‘

12.6 Alternative Solutions: The Case of Constant Rates

The solution expressed by equation equation (12.7) rests on the assumption that the functions
1/ (x) are linear in unit intervals. This implies that the underlying risk w'/(a) in the unit
interval, (x < ¢ < x+41),is increasing. In some cases it may be more accurate and convenient
to assume that the rates are approximately constant in an interval. This implies that {(x)’s are
nonlinear (exponential) functions of age. An analogous consequence follows in the multistate
case: all the quantities {17(x 4+ 1) become an exponential function of the rates ;M\’ . The only
caveat here is that we are dealing with an array of functions and that the expressions involve
matrices, not scalars. Indeed, the solution for the matrix I(x + 1) is now

Ix + 1) =1(x) - exp{—M(x)} (12.10)

where I(x + 1), I(x) and M(x) are the same matrices defined before. Expression (12.10) is
somewhat meaningless without a definition for the matrix-valued exponential function. Just as
in the one-dimensional case, the function exp(¢), where ¢ is any real number, can be expressed
as an infinite series of the form (1 + ¢ + ¢~/2! + ¢3/3 4+ ). soitis possible to define
exp( @), where Q is an n X n matrix, as

exp(Q) =1+ Q- [Q1PU/2Y+[QP (/30 + - -

In most cases the rates will be sufficiently small that only the first or first two elements in the
series will be necessary to approximate well the quantity on the left of the expression. If so. the
solution for the multistate life table system is even simpler than in the case when I(x + 1) was
assumed to be linear. This is because no matrix inversion and at most one matrix multiplication
Is required.

How is one to choose between alternative procedures to estimate the required conditional
probabilities of an increment—decrement table? A good answer would be that under very
general conditions. the linear method is to be preferred on the grounds of simplicity and ease
of calculations. However. it is known that the assumption of linearity leads to a fair amount of
inaccuracy when the underlying risks are decreasing rapidly (Schoen. 1988), and that it may
even lead to outright impossibly negative values when some or all of the transition rates are
very large (Hoem and Funck-Jensen, 1982: Nour and Suchindran, 1984). Thus. the exponential
method. or alternatively the so-called “mean duration of transfer method™ (Schoen. 1988). are
to be preferred on the grounds of consistency.

12.7 Programs for the Calculation of Increment-Decrement Life Tables

There a number of computer programs available for calculation of increment—decrement life
tables. In the late seventies. Willekens wrote a quite general program implementing the linear
solution. but unfortunately it was not made widely available. The first program to be quite
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broadly accessible was designed and written by Robert Schoen. The corresponding Fortran
code is fully included in his book (Schoen, 1988). The main limitation of this program is that
it restricts estimation and calculations to a four-state multistate system.

More recently, Andrei Rogers. a pioneer in the application of increment—decrement tables
procedures, made available a DOS-compatible program that performs fairly general calcula-
tions using the assumption of linearity (Rogers, 1995b). Since the program runs on any PC
with minimum memory requirements, it is an attractive option. Its only limitation is that the
number of output functions associated with the estimated life tables is fairly restricted.

Pete Tiemeyer and Glen Ulmer, two former Ph.D. students at the Center for Demography and
Ecology, University of Wisconsin, wrote a C++- program that can run on any PC with minimal
memory and hard disk space requirements. The program implements the linear solution and
can handle any number of states and time intervals (Tiemeyer and Ulmer, 1991). Finally, it
outputs a very large number of functions and outcomes. The program with accompanying
instructions for installation and implementation s freely available from the authors.

Inevitably each empirical application will demand attention to special conditions, data inputs
and outputs. Most of the available software is not general or flexible enough to handle a very
broad class of applications or to implement alternative solutions (exponential instead of linear).
Thus, in most cases it will be up to the researchers to create their own tool for estimation and
calculation of increment—decrement tables. Qur suggestion is to use general software packages
such as STATA, S-PLUS. or MATLAB that are conducive to mixing preprogrammed routines
(such as matrix inversion) with user-defined subroutines ( forexample those required to estimate
conditional life expectancies).

NOTES

1. 1In this notation ; MY corresponds to the transition rate between state i and state j in the age group

x, x + 1. The rates A/ (x) are the continuous version of the 1M s.

The reader should remember that the assumption that /(x) is linear in one-year intervals is equivalent

to assuming that jay = .5, and that p(x) is a monotonically increasing function of x.

3. It is important to remember that the system of equations in (12.3) rests on the assumption that we
know the values of MV'\‘/. Normally this requires that the observed rates be identical to the ones in the
stationary population.

4. The quantities displayed in tables 12.2, 12.3, and 12.4 were obtained using the matrix solution
discussed later in this chapter. These estimates are slightly different from those that one would
obtain solving the system of 12 equations for each age group. Because of these ditferences, the
empirical relations between estimated quantities (such as \dy and | MYy do not exactly correspond
to what is implied by the expressions in equation (12.3).

5. Notice that for each j in the table. ¢/(0) is NOT equal to the weighted average of the values Wiy
fori =1.2.3.

6. Because D(x) is a matrix of decrements AND increments. there is no compelling justification to
write expression (12.4) with a negative sign. We could have just as well have written /(x) + D(x)
and changed the sign of the cells of the matrix D(x).

[ ]
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