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Forecasting Mortality: A Parameterized
Time Series Approach

Robert McNown and Andrei Rogers

Population Program, University of Colorado,
Boulder, Colorado 80309

This article links parameterized model mortality schedules with time series methods
to develop forecasts of U.S. mortality to the year 2000. The use of model mortality
schedules permits a relatively concise representation of the history of mortality by age
and sex from 1900 to 1985, and the use of modern time series methods to extend this
history forward to the end of this century allows for a flexible modeling of trend and
the accommodation of changes in long-run mortality patterns. This pilot study dem-
onstrates that the proposed procedure produces medium-range forecasts of mortality
that meet the standard tests of accuracy in forecast evaluation and that are sensible
when evaluated against the comparable forecasts produced by the Social Security
Administration.

The growing awareness of the aging of the U.S. population and its consequences has
generated increased interest in forecasts of the elderly population and of the rates of mortality
at all ages, which are needed as inputs for such forecasts. This shift in interest toward the
future elderly population has elevated the importance of forecasts of mortality, because all
of those who will be 65 years of age or older between now and 2050 have already been
born. Clearly the size and composition of the elderly population depends on the age structure
of mortality.

Despite the importance of forecasts in demography, systematic development of fore-
casting methodology has not been a major preoccupation of demographers, and forecasters
have generally relied on simple extrapolative methods and demographic accounting pro-
cedures.

Ask anyone outside the profession what he thinks demographers do and he will give a much bigger place to
forecasting than the editors of our journals give it space on their pages. Our most distinguished demographers do
not put their major efforts into forecasting . . . we assign the highest professional standing to those who derive

relations among variables in application to past data, in short who can most convincingly explain the past. (Keyfitz,
1985:60)

The practical importance of mortality forecasts calls for basic research and innovation
in the methods of demographic forecasting. This article outlines a forecasting strategy that
involves the integration of two—and ultimately three—traditionally independent approaches
to demographic forecasting: time series methods, demographic accounting, and explanatory
models (Land, 1986; Long, 1984). It is likely that a wedding of these three traditions—
combining methods and models of demography, statistics, economics, and sociology—would
produce significant gains in forecasting accuracy.

The article sets out an approach to forecasting that combines parameterized model
schedules and time series methods in generating forecasts of mortality. It demonstrates the
feasibility and accuracy of the forecasting methodology and indicates how one can extend
this approach to forecasts of mortality by cause. It describes mathematically the age- and
sex-specific structure of mortality and the evolution of this structure over time, through the
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estimation of parameterized mortality schedules. A major component of this descriptive
analysis is the fitting of parameterized mortality schedules to historical data, providing a
structure to the data, permitting a relatively concise representation of mortality by age and
sex, and enabling one to compare the structure of mortality at different points in time.

The estimation of the parameterized schedules for each year yields a set of observations
on each parameter over time. Time series methods can then be applied to the data on each
parameter to develop forecasting models of sex-specific mortality schedules and hence of
probabilities of mortality by age and sex. We conjecture that improvements in accuracy will
arise from the formal acknowledgment in the forecasting model of the pervasive regularity
in such patterns of mortality.

On Forecasting Mortality With Time Series Models

Current approaches to mortality forecasting are based on the extrapolation of mortality
rates by age, sex, race, and in more recent forecasts, cause of death. The Social Security
Administration (1987), for example, uses average annual rates of change in death rates by
cause, age, and sex (calculated over the period of 1968—1983) as the basis for extrapolation
of mortality rates through 2010. Rates of decline in the cause-specific death rates are assumed
to converge gradually to set subjectively the ultimate rates of change for the year 2011 and
beyond. .

An examination of the record of mortality forecasting indicates that projections have
mirrored the pattern of mortality prior to the base period of the forecast and have consequently
understated the decline in mortality that actually occurred in the forecast period (Olshansky,
1987). Extrapolation all too often imposes a fixed rate of change based on the history of the
time series, so this method will clearly err in forecasting phenomena experiencing turning
points or changes in rates of decline. Modern time series methodologies, on the other hand,
allow for more flexible modeling of trend and consequently offer greater possibilities for
accommodating changes in long-run growth rates. Time series methods also offer the pos-
sibility of formally incorporating behavioral information in forecasts, such as responses to
projected or hypothesized changes in socioeconomic variables. They also permit the con-
struction of confidence intervals in the forecasts, so probability statements can be attached
to forecast ranges.

Several studies have demonstrated the power of time series methods in the analysis and
forecasting of aggregate demographic phenomena. Saboia (1974) modeled directly the pop-
ulation of Sweden, producing forecasts and confidence limits by using simple univariate
methods. Saboia (1977), McDonald (1979, 1981), and Carter and Lee (1986) applied time
series methods to fertility data. McDonald (1979) supported his empirical analysis with a
demonstration that time series equations can be derived from an underlying structural model.
He employed both univariate and transfer function models in the analysis of total live births
in Australia. Time series models of aggregate variables, such as population, total fertility,
or total mortality, ignore information contained in the age distribution of demographic
phenomena. Consequently, the forecasts from these aggregate time series models have tended
to have extremely large confidence intervals (Land, 1986).

Lee (1974) and Carter and Lee (1986) applied time series methods to forecast the levels
of fertility schedules, assuming a fixed age pattern of fertility over time. Their approach
takes advantage of the age distribution of fertility, but the constancy of this distribution
assumed in their studies yields inaccurate forecasts if the age pattern of fertility does change.
Thompson et al. (1987) permitted the shape of the fertility profile to change over time by
summarizing this age pattern with the four-parameter gamma function. Estimates of these
parameters from each of 64 years of data on fertility by age were modeled as time series
using univariate and multivariate methods.
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A general category of models representative of a wide class of time series is the auto-
regressive integrated moving average (ARIMA) model. These ARIMA models have a number
of features that make them attractive candidates for time series modeling. First, they can
approximate most time series observed in practice, incorporating either local stochastic trends
or universal fixed trends as the data indicate. Second, ARIMA models have been demon-
strated to be successful forecasting models, even in comparisons with large simultaneous-
equation models (Ascher, 1978; McNown, 1986). Third, unlike simple extrapolative models,
ARIMA models are actually reduced forms of some underlying structural model (McDonald,
1979; Zellner and Palm, 1974); they therefore implicitly embody a theoretical structure that
may or may not be expressed explicitly. Finally, there are generalizations of the univariate
ARIMA models to multivariate forms, which can also be related to an underlying structural
model (Tiao and Box, 1981), providing thereby instruments for examining directly the
relations among variables using the time series methodology (Bohara, Bradley, and McNown,
1987; Sims, 1980) and for generating forecasts of potentially greater accuracy than those of
univariate models (Kling and Bessler, 1985).

Demographers and statisticians have applied time series methods to forecast aggregate
fertility rates and total populations (Lee, 1974; McDonald, 1979, 1981; Saboia, 1977). These
procedures could also be used to model age-specific rates. Individual projections of age-
specific rates are likely, however, to produce highly irregular age profiles that are not
characteristic of known schedules:

If one were to extrapolate the age-specific death rates, age by age using virtually any formula, one would
obtain highly irregular rates within a very few cycles of projection. On a straight-line projection age by age, many
ages would soon show negative death rates. One plainly ought to summarize the rates into some minimum parameter
set. (Keyfitz, 1982:743)

A preferred approach is to model and forecast the entire age pattern of each schedule. Such
patterns may be described by means of mathematical representations called parameterized
model schedules, which are specified with the aid of a relatively small number of parameters.
Forecasts of future demographic regimes may then be obtained by projecting the temporal
evolution of each of these parameters (Rogers, 1986; Thompson et al., 1987).

Parameterized Model Mortality Schedules: The Heligman—Pollard Model

Demographers have often turned to model schedules to describe patterns of age-specific
rates in terms of a relatively small number of parameters. A large number of functions have
been developed and fitted to mortality, fertility, and migration data, for example. The results
have been extensively applied to data interpolation, smoothing, and inference as well as to
comparative analysis (e.g., see Brass, 1971; Coale and Demeny, 1966; Coale and Trussell,
1974; Rogers and Castro, 1981).

The age profile of mortality can be conveniently decomposed into three components
describing mortality probabilities in childhood, middle life, and older ages:

flx) = i) + fox) + fix),

with f(x) denoting the mortality rate, probability, or intensity at age x.
Following the pioneering work of Thiele (1872), the first and third components are
often represented as negative and positive exponentials, respectively:

filx) = a, exp(—bx),
fix) = a; exp(bsx).

Recent work (Rogers and Planck, 1983; Rogers and Watkins, 1986) exploring the fit of a
multiexponential model similar to Thiele’s, with the middle-life mortality component spec-
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ified by the double exponential distribution of Coale and McNeil (1972),

fx) = a; exp{—ax(x — wz) — exp[y(x — w)l},

showed promising results. Alternatively, Heligman and Pollard (1980) demonstrated that a
somewhat different set of component curves, representing the complete profile of mortality
probabilities as

fix) = A«*®° + Dexp[—E(lnx — In F)?] + GH*/(1 + GHY),

also provides good fits to observed data.

In each of these representations the parameters characterizing the mortality profiles
have convenient demographic interpretations. Nonlinear curve-fitting techniques are applied
to mortality rates at each age, or a coarser age disaggregation, to obtain estimates of the
parameters. Although both the multiexponential and Heligman—Pollard models are complex
and involve a large number of parameters, their flexibility is necessary to capture the full
curvature of the mortality profile and the changes in this profile over time. Although other
model schedules may nominally seem to employ fewer parameters, they in fact do so only
by ignoring some feature of the age curve of mortality (e.g., Siler, 1983) or by adopting a
“standard” that is then shaped to fit a particular application with the aid of a few parameters
(e.g., Brass, 1971). For example, the nearly 100 probabilities of Brass’s standard can be
represented by the eight-parameter Heligman—Pollard model with the following values:

A
E

0.06008, B
1.98569, F

0.31087, C
26.71071, G

0.34431, D
0.00022, H

0.00698,
1.08800.

Figure 1 illustrates the Brass standard and contrasts its curve with those of U.S. male
mortality schedules for 1900 and 1980. (In this and subsequent figures depicting the age
pattern of mortality, the probability of dying is presented in logarithmic form to bring out
the curvature of this profile, especially at the young adult ages. The estimated parameters
for U.S. male mortality for these and the intermediate years, extending the time series to
1985, are available from the authors. The data were kindly provided by Alice Wade of the
Social Security Administration and were used by them in the development of their mortality
projections; see Social Security Administration, 1987.) The results describe in parametric
form the history of U.S. male mortality during this century. Figure 2 gives a graphical
display of this history, contrasting the evolution of male mortality with the corresponding
pattern for females.

The U.S. crude death rate has declined dramatically during this century, exhibiting
two periods of significant decline separated by a 14-year period (between 1954 and 1968) of
very modest reductions in mortality levels (Crimmins, 1981). The early period of decline
was largely a consequence of a reduction in deaths from infectious and parasitic diseases
and from influenza and pneumonia. The recent decline, on the other hand, is mostly a
result of reductions in deaths from cardiovascular diseases and from other causes at the older
ages. This history of mortality levels can be identified in the temporal patterns of the eight
Heligman—Pollard parameters illustrated in Figure 2.

The first three parameters show similar patterns for the history of male and female
early-life mortality. Parameter A, reflecting mortality at age one, exhibited a dramatic decline
for both sexes through 1945, followed by more moderate reductions. The B parameter for
each sex also declined steadily until 1945, rising slightly thereafter. This parameter measures
the difference between age 1 and age 0 mortality probabilities, with the increase in B values
indicating some convergence between these two values. Parameter C, capturing the decline
in mortality during childhood, fell throughout the period and at a slower rate since 1945.

The next three parameters create the pattern of young-adult mortality, with its char-
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Figure 1. Probabilities of Dying at Each Age: U.S.
Males, 1900 and 1980, and the Brass Standard.
Source: Social Security Administration (1987)
and Zaba (1979).

acteristic hump associated with deaths due to violence and maternal causes. The intensity
of young-adult mortality is governed by the D parameters, which moved together for both
sexes until the early 1940s. With the exception of the two spikes at 1918 (the influenza
epidemic) and the early 1940s for males (World War II), both male and female D parameters
declined persistently until 1950. This was followed by a slight divergence, with male mortality
remaining high and even rising during the 1970s. Female young-adult mortality declined
further until the mid-1950s, but it also showed a slight increase during the 1970s. The E
parameter varies inversely with the spread of the young-adult mortality hump. The sharp
increases in its values in 1940 for males and 1965 for females means the hump became
more tightly concentrated around its modal age (approximated by F). The differences between
the F parameter patterns for the sexes suggest that changing causes have played an important
role in the history of young-adult mortality. For males the modal age of the young-adult
mortality hump dropped gradually between 1905 and 1945, leveled off, and then began
rising slightly during the 1970s. For females the modal age fluctuated about a relatively
high age (between 27 and 32) until 1945, then dropped sharply to 21 years of age. This
change most likely reflects a shift in importance away from maternal deaths to violent causes
of mortality in the immediate post-World War II period.

Finally, late-life mortality, described by the Gompertz curve, is represented by the G
(the intercept of the curve at age 0) and H (slope) parameters. Both of these parameters have
shown wider fluctuations for males than for females, with H movements generally countering
those of G. The combined impact of these two counteracting changes is difficult to gauge
without numerical calculation, but old-age mortality in 1985 fell to considerably lower levels
over mortality at the beginning of this century.

Univariate ARIMA Models of the Heligman—Pollard Parameters

Plots of the model schedule parameters for the entire 1900-1985 period show a sharp
change in pattern for every parameter during the early 1940s (see Fig. 2). Although this
shift raises some interesting questions concerning the behavior of mortality, it also poses
major problems for modeling and forecasting the parameters. We experimented with time
series models of the parameters, both including and excluding the observations before 1941,
and discovered that models based on the more complete sample had inferior diagnostic
statistics and out-of-sample forecasts. Using only post-1940 data reduces the number of
observations below desired limits for time series modeling, because statistics used in model
identification and model coefficients tend to be estimated with large standard errors. Despite
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these problems, we used the shorter sample in the modeling and forecasting analysis presented
here, allowing forecast performance to override considerations of statistical significance in
the decision to retain parameters.

Univariate time series models for each of the parameters were identified and estimated
according to the methods of Box and Jenkins (1976), using the 35 observations from 1941-
1975. The final models are reported in Table 1. Of the eight parameters of the male schedule,
only parameter C was found to be most appropriately modeled as a random walk without
drift, so the forecast for C is that of no change. For the female schedule the three parameters
of the accident hump were identified as zero-drift random walk processes and were also
forecasted to exhibit no change from the base-year values.

All parameters required a logarithmic transformation and a differencing of at least order
1 to achieve stationarity. The logarithmically transformed series tend to show less hetero-
scedasticity, and this transformation also sets a lower bound of 0 on parameter forecasts.

To the extent that forecast horizons required in demographic forecasting are rather
long, proper modeling of trend is a crucial component of time series analysis. Forecasts
from univariate time series models tend to converge fairly quickly to the long-run trends

Table 1. Estimated ARIMA Models, 1941-1975

Model Q
Male Parameters
(1 — LYA(t) = e(t) —1.11et — 1) + 0.30e(t — 2) 6.422
(0.17) (0.17) (0.97)
(1 — L)B(t) =e(t) —1.22e(t — 1) + 0.3%9e(t — 2) 3.522
(0.16) (0.16) (0.99)
(1 — 0.27L + 0.11L2 + 0.22L3)(1 — L)D(t) = ef(t) 6.532
(0.17) (0.18) (0.17) (0.97)
(1 — LYE(t) = e(t) — 0.42¢e(t — 1) — 0.23 e(t — 2) 13.692
(0.17) (0.17) (0.55)
(1 — L)?F(t) = e(t) — 1.26e(t — 1) + 0.38e(t — 2) 4,63
(0.16) (0.16) (0.99)
(1 — L)G(t) = —0.02 + e(t) + 0.20 e(t — 1) + 0.38 e(t — 3) 8.58°
(0.01) (0.16) (0.16) (0.80)
(1 — L)H(t) = 0.0001 + e(t) + 0.12e(t — 1) + 0.27 e(t — 3) 8.74°
(0.0001) (0.17) (0.16) (0.79)
Female Parameters
(1 — L)?A(t) = e(t) — 0.82¢(t — 1) 6.27°
(0.09) (0.97)
(1 — L)B(t) = e(t) — 0.15e(t — 1) 9.912
(0.17) (0.83)
(1 = L)C(t) = —0.007 + e(t) 9.882
(0.006) (0.83)
(1 — L)G(t) = —0.006 + e(t) + 0.57 e(t — 1) 9.86°
(0.017) (0.15) (0.77)
(1 — L)H(t) = e(t) + 0.38 e(t — 1) 6.822
(0.16) (0.96)

Note: All models were identified and estimated using the 35 observations from 1941-1975. Each parameter has been
transformed into logarithmic form. In each reported equation, L represents the lag operator, LX(t) = X(t — 1), and e(t)
is a white noise process. Numbers in parentheses below estimated coefficients are standard errors. Q is the Ljung—Box
statistic, with the level of significance given in parentheses.

adf = 15.

bdf = 13.

cdf = 14.
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incorporated in the models, which may be either deterministic and global or stochastic and
local. In addition to the random walk processes, the models for parameter D from the male
schedule and for parameters B and H from the female schedule contain no trend. Global
trends are embodied in the remaining first-differenced models, although in several cases the
intercepts, which measure these trends, are small and statistically insignificant. Local sto-
chastic trends characterize the models of the second differenced series (A, B, E, and F from
the male schedule and A from the female schedule). Forecasts of these parameters converge
to a constant value determined by the last several observations in the sample.

All models reported in Table 1 show satisfactory diagnostics as summarized by the Q
statistics of Ljung and Box (1978), which indicate no significant residual autocorrelation.
Although the statistical insignificance of some coefficients in the reported models suggests
possible overparameterization, we have retained these insignificant coefficients because they
improve forecasting performance. We attribute their lack of statistical significance to the
large standard errors produced by the shortened sample. The use of second differences for
some series may appear surprising, raising the issue of possible overdifferencing. Although
individual coefficients in some cases exceed unity, they will still satisfy the conditions for
invertibility. A simple necessary condition is that the summation of the moving average
coefficients be less than 1. According to the invertibility criterion, none of the series appears
to be overdifferenced. Again the choice of second differencing is based on the superior
forecasting performance of the resulting stochastic trend models relative to. that of the
corresponding first-differenced, deterministic trend models.

To generate reliable forecasts of age-specific mortality probabilities (the ¢,), our meth-
odology requires that the time series models be capable of providing satisfactory forecasts of
the model schedule parameters. Nonupdated forecasts of both the parameters and the mor-
tality probabilities are evaluated over the 10-year holdout period, 1976-1985. The accuracy
of these out-of-sample forecasts is evaluated by using mean absolute percent error (MAPE)
and Theil (1966) statistics. The Theil statistic reports the root mean squared error of the
model forecast relative to that of the “naive” no-change forecast, with values less than unity
indicating greater accuracy for the model forecast. Forecasted and actual mortality schedules
are compared graphically in Figure 3, and summary statistics on forecast errors are displayed
in Table 2.

The forecast errors observed for the mortality probabilities are related to underlying
errors in the parameter forecasts. For the male mortality schedule the most serious absolute
percentage errors are for infant mortality (MAPE = 20.9 percent). These large errors can
be traced to the problems in forecasting the B parameter (MAPE. = 41.9 percent), which
experienced a change in trend at the end of the estimation period. After a decade of fairly
flat values (1965~1975), this parameter began to rise sharply, reflecting some convergence
in mortality probabilities at the ages of 0 and 1. The failure of the forecasts to capture this
shift in trend highlights the progress against infant mortality that was achieved during the
period of 1976-1985.

Relatively large forecast errors also appear for males at 20 years of age, and these are
a reflection of the errors in forecasting the D parameter, which measures the intensity of
young-adult mortality. From the late 1960s through 1980, mortality rates for young adults
were rising against a tide of falling rates at all other ages. Easterlin (1980) suggested that the
observed increase in mortality rates at these ages can be attributed to the stress experienced
by this unusually large cohort from competitive pressures for jobs and education. With the
maturation of this cohort, mortality probabilities for young adults turned down after 1980,
a change that is not captured by the forecasts at these ages. Figure 3 shows vividly the failure
of the forecasts to capture the downward shift in the accident hump between 1980 and 1985.

Despite these errors in male mortality forecasts, the overall forecast accuracy is high.
The largest mean absolute error is 20.9 percent, and at only three other ages are the MAPEs
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Figure 3. Forecasted Versus Observed Probabilities of Dying: U.S. Males and Females, 1976, 1980, 1985

greater than 10 percent. The model forecasts are superior to the naive no-change forecasts
at all but two ages, and for one of these (80) the errors are small (MAPE = 5.8 percent).
At many ages the improvement over the no-change forecast is substantial, with model root
mean squared errors being less than one-third of those for the no-change forecast at the ages
of 5 and 50-60.

The fit between the actual and forecasted schedules for each year is measured by the
mean absolute percent error across the 18 age categories. These statistics increase from 3.8
percent to 11.7 percent as the horizon lengthens from 1 to 10 years, implying a reasonably
strong association between actual and forecasted rate schedules at each year.

A similar degree of accuracy holds for the female mortality forecasts. Female infant
mortality is forecasted with greater accuracy (MAPE = 9.0 percent) than for males. Females
did not show the same degree of convergence of age-0 and age-1 mortality as did males over
the forecast period. The largest MAPE:s are at the peak age of the accident hump (20) and
at 30—40 years of age, at which point adult mortality bottoms out before rising to its higher
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Table 2. Forecast Error Statistics

Male Female
Mean absolute Mean absolute

Parameter % error Theil % error Theil

Parameters
A(t) 11.6 0.87 48 0.26
B(t) 41.9 1.09 18.0 1.03
C(t) 29 0.54

D(t) 12.9 1.05

E(t) 5.6 0.37

F(t) 0.7 0.31
G(t) 10.9 0.41 26.7 0.86
H(t) 0.8 0.46 0.3 1.01

Mortality Probabilities
Age

0 209 0.67 9.0 0.31
1 57 0.36 6.7 0.34
5 4.0 0.22 6.9 0.40
10 19.0 0.87 14.4 0.90
15 8.1 0.59 6.1 0.64
20 16.7 1.14 12.4 0.97
25 8.8 1.00 5.5 047
30 4.0 0.56 14.2 0.79
35 10.0 0.66 18.4 0.89
40 1.3 0.64 12.6 0.62
45 74 0.44 7.7 0.51
50 3.3 0.28 5.0 0.54
55 2.0 0.18 6.3 0.68
60 3.5 0.28 6.1 0.95
65 43 0.47 11.5 4.36
70 438 0.51 8.3 0.82
75 5.1 0.67 5.2 0.43
80 5.8 1.52 5.6 0.90

Note: All statistics are computed from nonupdated, out-of-sample forecasts for
1976-1985. Missing numbers for parameter forecasts correspond to random walk
models.

levels due to senescence. As in the case for males, the time series models do not anticipate
the decline in mortality rates in the accident hump for females during the last 5 years of
the forecast. In fact, the 1985 accident hump is sufficiently diminished to eliminate the
trough in mortality probabilities around the ages of 30—40 observed in prior years. The
forecasted mortality profile also shows a leveling of this trough, but not to the degree exhibited
by the actual schedule.

A final anomaly in the female forecasts is the large Theil statistic at the age of 65. The
plot of actual mortality probabilities for 1976 shows an unusual deflection in the actual
schedule below the almost linear relation between the logarithm of g, and age, which is
characteristic of senescent mortality. Since the Heligman—Pollard schedule imposes a smooth
Gompertz curve on senescent mortality, the forecasts of mortality from the schedule cannot
capture this irregularity. The errors are not large by the MAPE criterion, but the coincidental
accuracy of the no-change forecast leads to the extremely large Theil statistic.

The fits between forecasted and actual mortality schedules are close across all ages,
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again showing a looser correspondence as the forecast horizon widens. The MAPE statistic
calculated for the 18 observed age intervals grows from 3.9 percent in 1976 to 13.6 percent
in 1985. Considering both the overall fits at each year and the summary statistics over the
10 years, the forecasts of female mortality appear acceptable in terms of accuracy.

Forecasts of U.S. Mortality

The analysis of holdout sample forecasts demonstrates the viability of the forecasting
methodology for horizons of moderate length. In this section, the ARIMA models are
reestimated through 1985 to produce true forecasts of mortality through the year 2000.
Although it is not possible to evaluate the accuracy of these forecasts until the end of this
century, some perspective can be gained from a comparison of the model’s forecasts with
those of the Social Security Administration for the years 1990 and 2000 (Social Security
Administration, 1987). To enhance this comparison the Heligman—Pollard model was fitted
to the mortality probabilities implied by Social Security Administration mortality rate pro-
jections. The comparison is illustrated in Figure 4. Divergences in forecasted mortality rates
can therefore be traced to different implicit assumptions about the future of the Heligman~
Pollard parameters.

Reestimation of the ARIMA models with the 10 additional observations yielded only
small differences from the results reported in Table 1. The additional data resulted in
estimated parameters with smaller standard errors, but otherwise the estimates and the model
diagnostics remain qualitatively unchanged.

In Figure 2 the historical time series for the male and female parameters are extended
from 1986 through 2000 with the parameter forecasts from the updated models. The implied
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Figure 4. Alternative Forecasts of Probabilities of Dying: U.S. Males and Females, 1990 and 2000
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Table 3. Life Expectancies in 2000

Males Females

Social Security Social Security

Age Model Administration Model Administration
0 72.79 73.58 80.77 81.26
20 53.77 54.77 61.34 62.15
40 35.45 36.23 41.95 42.75
60 18.66 19.08 23.91 24.58
70 11.97 12.24 16.13 16.77

parameter values for 1990 and 2000 from the Social Security Administration projections
are also shown in these plots. Figure 4 presents comparisons of the entire mortality profiles
from the two sets of forecasts, and Table 3 shows the two sets of projected life expectancies
at various ages for the year 2000.

For males, the model forecasts call for lower infant and childhood mortality probabilities
than shown by the Social Security Administration projections. This reflects the more rapid
decline in the A parameter (measuring mortality at the age of 1) and a greater convergence
of age-0 and age-1 mortality probabilities produced by the rise in B generated by the ARIMA
model. Both of these parameter forecasts maintain trends established during the 1970s and
early 1980s.

Both male mortality profiles show minimum mortality probabilities occurring at a
younger age than has been exhibited historically, and mortality under the Social Security
Administration projection rises to a well-defined accident peak at the age of 23. The ARIMA
model predicts a tempering of the concentration in young adult mortality. The forecasts of
D from the ARIMA model are flat throughout the projection period and at a value slightly
lower than implied by the Social Security Administration projections. More dramatic is the
decline in E from the model, which implies an increase in the dispersion around the midpoint
of the accident hump. This midpoint, defined by F, rises slowly in both forecasts, but reaches
a higher age (23.3 in 2000) in the model forecast. The general tendency for young male
adult mortality, according to the model, is an attenuation of the accident hump as the large
post—World War II birth cohort passes through the violence-prone years. (A reviewer sug-
gested the possible influences of changes in fuel costs and in the legal age of drinking.)

The more optimistic picture for youth and young-adult mortality described by the
model forecasts is reversed at the higher ages. The model forecasts for senescent mortality
are largely driven by the G parameter, which is projected to decline by about 25 percent
over the projection period. This rate of decline is slower than that implied by the Social
Security Administration projections (43 percent), which envision a pattern that is comparable
to the rate of decline over the previous 15 years.

The lower senescent mortality probabilities under the Social Security Administration
forecasts also account for the correspondingly greater life expectancies projected at every
age. In the year 2000 the largest gap in projected life expectancies is 1 year at the age of
20. Model projections imply the following gains over 1985 life expectancies: 1.64 years at
0, 1.19 years at 40, and 0.87 year at 60. These may be compared with gains of 4.16, 2.75,
and 1.86 years at these ages over the 1970-1985 period.

The differences between the two projected mortality schedules for females are similar
to those for males. Infant and youth mortality probabilities are lower under the model
projections, again reflecting a rapid decline in the A parameter from the ARIMA model
forecasts. Young-adult mortality is also slightly lower in the model projection, and both
forecasts still show a distinct accident peak at 20 years of age. The shape of the accident



Forecasting Mortality: A Time Series Approach 657

peak under the model forecast is static in this case, since the three relevant parameters were
modeled as random walk processes. Senescent mortality is projected to fall more rapidly
according to the Social Security Administration projection than is indicated by the ARIMA
model. Again, the model forecasts reflect a more moderate decline in the G parameter (20
percent vs. 42 percent). The lower senescent mortality of the Social Security Administration
projections translates into greater life expectancies at all ages, although the gap is always
less than a year. The model forecasts of life expectancy gains for females are also more
conservative than the record of the previous 15 years.

These comparisons show the sources of divergences in the two projections and can
provide the basis for informed debates and revisions. Comparison with previous trends
suggests that the model forecasts may be too conservative in predicting senescent mortality
and that the Social Security Administration may be underpredicting the gains in infant and
youth mortality. Such revisions or similar sensitivity analyses could be conducted by intro-
ducing changes in sets of future parameter values.

Future Research: Models for Mortality by Cause and Multivariate Models

A natural extension of this methodology is to mortality by cause. Demographers have
long been interested in causes of death, how the cause structure of mortality has changed
over time, and how it differs across populations. Parameterized model schedules offer a
powerful instrument for representing mortality by cause and for allowing comparisons across
time or subgroups. Preston (1976), for example, presented graphically the age profiles of
mortality for several important causes. With these charts, one can observe the incidence of
a particular cause of death at each age and how this pattern varies with overall levels of life
expectancy. Compact representation of mortality by cause at each age across a number of
years is facilitated by the estimation of cause-specific mortality functions. Since the param-
eters of these functions capture the complete age and cause structure of mortality, they can
be used as variables in behavioral analysis and time series forecasting.

Several issues must be addressed in the extension of the methodology to mortality by
cause. It is clear from the profiles displayed by Preston (1976) that the age structure of
mortality varies by cause. Variations of the Heligman—Pollard model or the multiexponential
model (Rogers, 1986; Rogers and Watkins, 1986), found suitable for modeling a wide range
of demographic phenomena, may have to be modified to fit the data on cause-specific
mortality. There is no research of which we are aware that provides guidance on the choice
of model schedules for cause-specific mortality, but preliminary tests of the Heligman—
Pollard model and the flexibility and wide range of applications of the multiexponential
model give us confidence that both can also be applied here.

A multiple time series model would permit an examination of linkages among different
causes of death and the introduction of socioeconomic variables as predictors of the cause-
specific model parameters. Boulier and Paqueo (1988) rightly observed that despite “an
extremely rich body of empirical work describing the influences of biological, demographic,
and environmental factors on mortality, there is yet no formal theoretical model of mortality
that can be used to organize and synthesize the vast quantitative literature” (p. 249). Never-
theless plausible linkages between aggregate socioeconomic variables and mortality have
been identified. Land and McMillan (1980), for example, established the existence of strong
linkages between cause-specific mortality rates and variables measuring exposure to risk,
general living standards, specific social and economic conditions, and public health practices.
The variables they examined in their regression analysis would also be suitable candidates
for a multiple time series analysis. Of course, for forecasting purposes the socioeconomic
variables must also be predicted within the time series framework in the generation of
mortality forecasts.
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Alternatively, the multiple time series model can be used to make conditional predic-
tions of mortality based on alternative projections of demographic and other socioeconomic
determinants (Sims, 1982). For example, one could analyze the effect of an exogenous
reduction in the parameters of a particular cause of death, such as cardiovascular disease,
on the probabilities of death from other causes. The validity of these conditional projections,
as in any other model-based projection, would depend on the constancy of the relations
among the variables examined—in this case among the parameters of the different causes
of death.

Two immediate extensions of our work are suggested by the time series tradition in
demographic forecasting. The first is the development of confidence intervals for the mortality
probability forecasts. Standard errors of the parameter forecasts are provided directly in the
ARIMA modeling methodology. However, since the mortality probabilities are nonlinear
functions of the parameters, computation of their forecast standard errors requires either an
asymptotic approximation or a bootstrap simulation (Efron and Gong, 1983; Peters and
Freedman, 1985). We are currently investigating the application of the bootstrap procedure
to our forecasting methodology.

The second direct extension of our work is the application of multiple time series
methods to forecast the Heligman—Pollard parameters (Thompson et al., 1987). The uni-
variate models yield independent projections of each parameter, ignoring potential gains in
accuracy arising from taking into account the covariation among the eight parameters. Future
work will apply the vector autoregression methodology (Sims, 1980) to the simultaneous
modeling and forecasting of the eight parameters.

Summary

Long (1984) and Land (1986) discussed three modeling traditions in population fore-
casting: demographic accounting, time series analysis, and explanatory modeling. Demo-
graphic accounting provides a structure in the form of accounting identities that permits the
generation of long-term projections for detailed population subgroups from assumptions
concerning age-specific mortality, fertility, and migration rates. Because of the need for such
long-range, detailed predictions, the Census Bureau has relied on the demographic ac-
counting procedure, employing “informed judgment” and “historical continuity” in the
assumed age-specific rates of demographic change. The use of an essentially nonstatistical
method of projection, particularly the use of informed judgment in establishing future rates
of births and deaths, has made difficult any inferences concerning the precision of the Census
Bureau’s projections. Stoto (1988) found that the range of population values encompassed
in past Census Bureau projections does not correspond to meaningful confidence intervals.
Land (1986) called for a “statistical perspective” in demographic forecasting, which, at a
minimum, would yield confidence intervals about population forecasts.

We have demonstrated how the estimation of a model mortality schedule for each year
over a period of time yields a set of observations on each parameter that can be modeled
and forecasted with time series methods. Inserting the forecasted parameter values into the
mathematical expression for the model schedule produces forecasts of mortality probabilities
at each age and hence of the entire mortality profile. Our application of this procedure to
data on male and female mortality probabilities for the first 86 years of this century yielded
forecasts of age-specific mortality of reasonable accuracy, confirming the viability of this
methodology.

Our modeling strategy contains two sources of forecasting error that must be weighed
against the gains obtained from imposing a flexible structure on the mortality age profile.
First, there are errors in approximating mortality by age with an algebraic function and in
estimating the parameters of this function with a small number of observations on mortality
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by age. The approximation errors are quite small, with mean absolute percentage errors of
5.5 percent or less in each year. Second, the time pattern of each parameter of the model
schedule is represented by a parsimonious ARIMA model, whose coefficients are also esti-
mated with error. This appears to be a larger source of error than the use of the model
schedule, as indicated by the large errors in forecasting certain parameters.

Our pilot study illustrates the use of the time series methodology in a real mortality
forecasting situation and analyzes the accuracy of out-of-sample forecasts in a simulated
forecasting environment. The procedure produces medium-range forecasts that are sensible
when evaluated against those of the Social Security Administration and that meet standards
of accuracy in the holdout sample evaluation. The introduction of cohort effects would no
doubt further improve the proposed methodology.

To some extent, the strength of the methodology with the proposed extensions goes
beyond forecast accuracy. Forecasts of the parameters produce a schedule that captures the
fundamental characteristics of the age distribution of mortality. Smooth curves showing
mortality probabilities at single-year age intervals can be inferred from the forecasted pa-
rameters. The parameterized schedules and their forecasts provide a convenient summary
of entire mortality distributions, and their representation by parameters provides a useful
instrument for comparing mortality at different points in time or across populations. Fur-
thermore, the forecasts of individual mortality probabilities can be traced to assumptions or
projections of individual parameters, providing a convenient basis for the comparison of
mortality forecasts obtained from different sources.
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