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SUMMARY

We present a natural extension of the conventional accelerated failure time model for
survival data to formulate the effects of covariates on the mean function of the counting
process for recurrent events. A class of consistent and asymptotically normal rank esti-
mators is developed for estimating the regression parameters of the proposed model. In
addition, a Nelson—Aalen-type estimator for the mean function of the counting process is
constructed, which is consistent and, properly normalised, converges weakly to a zero-
mean Gaussian process. We assess the finite-sample properties of the proposed estimators
and the associated inference procedures through Monte Carlo simulation and provide an
application to a well-known bladder cancer study.

Some key words: Accelerated life model; Censoring; Cox regression; Log-rank statistic; Multiple events; Poisson
process; Proportional hazards; Rank regression; Recurrent events; Survival data.

1. INTRODUCTION

In long-term follow-up studies, individual subjects may experience recurrent or repeated
events. Examples in medical research include the sequence of asthmatic attacks, epileptic
seizures, bleeding incidents, infection episodes or tumour recurrences in individual patients,
while in industry recurrent events may result from breakdown of a certain type of machin-
ery, such as computers and automobiles. In such studies, the investigators are often inter-
ested in estimating the frequency of recurrences over time as well as assessing the effects
of covariates on the recurrence times.

One of the most significant advances in failure time data analysis since the seminal
paper of Cox (1972) was the introduction of the counting process model with the Cox-
type intensity function for recurrent events by Anderson & Gill (1982). These authors
established an elegant large-sample estimation theory for their model by using the powerful
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martingale theory. Recently, Pepe & Cai (1993), Lawless & Nadeau (1995) and Lawless,
Nadeau & Cook (1997) studied multiplicative models for the rate and mean functions of
arbitrary counting processes.

For classical survival data, an important alternative to the Cox proportional hazards
model is the accelerated failure time model, which relates the logarithm of the failure time
linearly to the covariates (Kalbfleisch & Prentice, 1980, pp. 32—4; Cox & Oakes, 1984,
pp. 64-5). As pointed out by D. R. Cox (Reid, 1994, p. 450), ‘accelerated life models are
in many ways more appealing [than the proportional hazards model] because of their
quite direct physical interpretation’. Semiparametric inference methods for the accelerated
failure time model were proposed around 1980, e.g. Buckley & James (1979), Prentice
(1978), and further studied in the early 1990’s, e.g. Ritov (1990), Tsiatis (1990), Wei, Ying
& Lin (1990), Lai & Ying (1991a, b), Ying (1993).

In this paper, we provide a natural extension of the aforementioned accelerated failure
time model to accommodate recurrent events. This extension parallels the Andersen—Gill
and Lawless—Nadeau—Cook extensions of the classical Cox proportional hazards model.
Like Lawless et al., we formulate the mean functions of arbitrary counting processes rather
than the intensity functions of Poisson processes. The proposed model retains the direct
physical interpretation of the original accelerated failure time model in that the role of
the covariates is to accelerate or decelerate the time to each recurrence. We estimate the
vector of regression parameters under this model by generalising the rank-type estimating
equations previously studied by Tsiatis (1990), Wei et al. (1990), Lai & Ying (1991a) and
Ying (1993). In addition, we estimate the mean number of recurrences by extending the
familiar Nelson—Aalen estimator. These generalisations entail some new technical chal-
lenges, which are tackled by modern empirical process theory. To avoid technical distrac-
tions, we describe the proposed estimators and the associated inference procedures in the
next section while relegating the underlying theoretical development to the Appendix. In
§ 3, we present the results of some simulation studies along with an application to a
bladder cancer study.

2. INFERENCE PROCEDURES

Fori=1,...,nand k=1,2,..., let T, be the kth event time for the ith subject. We
assume that the subjects are independent, but do not impose any dependence structure
on the recurrence times of the same subject. Define N#(t) as the number of events that
have occurred on the ith subject by time ¢ in the absence of censoring. That is,

NE() = ) (T <
k=1
where I(.) is the indicator function. Suppose that the mean function of the counting
process N¥(t) associated with a p-vector of covariates Z; takes the form
E{N¥(0)| Zi} = po(eP*1), (1)

where f, is a p-vector of unknown regression parameters, and y(.) is an unspecified
continuous function. Write T;,(8) = T e* % and

~

Nre )= % 106
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Clearly, N*(t; )= N*(t e #%1), and model (1) is equivalent to
E{N}(5; Bo)} = po(?). (2)

According to model (1), the expected number of events by time ¢ under Z; =z equals
the expected number of events by time e’°t under Z;=0. In other words, the set of
covariates Z; affects the frequency of recurrences over time by expanding or contracting
the time scale on which the events occur by a multiplicative factor of e#o% relative to that
of a zero-valued covariate vector. If there is only a single event per subject with 7; denoting
the failure time of the ith subject, then equation (2) implies that pr(T;efo% < t) = uy(t) or

log T;= —BoZi+ e, (3)

where the error terms ¢; (i=1,...,n) have a common distribution. Equation (3) is the
univariate accelerated failure time model (Kalbfleisch & Prentice, 1980, pp. 32—4).

In most applications, the follow-up time is subject to right censoring. Let C; be the
censoring time for the ith subject, which is assumed to be independent of T;, (k=1,2,...)
conditional on Z;. The familiar counting process N;(¢) as used by Andersen & Gill (1982)
records the observed number of events over the follow-up period of the ith subject. That
is,

where a A b=min(a, b). For our purpose, it is more convenient to use the observed count-
ing process on the transformed time scale:

Rt =3 ITu(B)<t A Ci(B)),

k=1
where C;(f) = C;ef%. Let us also define Y,(t; f) = I{C;(p) =1}, and

t

M;(t; B)=Ni(t; B)— f Yi(s; B) duo(s).

0
Note that N,(t; f)= N,(t e #%) and Y(t; f) =I(C;>t e #%). Note also that

t t

Yi(s; B)dN¥(s; B),  Mi(t; ﬁ)=J Yi(s; B) d{N¥(s; B) — o(5)}-

0

Ni(t; p)= J

0
In view of equation (2), M;(t; B,) (i=1,...,n) have zero means. As a matter of fact,
M;(t; Bo) (i=1,...,n) are zero-mean martingale processes if Nf(t) i=1,..., n) are non-
homogeneous Poisson processes (Andersen & Gill, 1982). In this paper, we do not impose
the Poisson structure because the independent increment assumption is rarely met in
practice, especially in biomedical applications.

Motivated by the partial likelihood score function for the proportional intensity Poisson
process model (Andersen & Gill, 1982) and the weighted rank estimating functions for
model (3) (Prentice, 1978; Tsiatis, 1990; Wei et al., 1990), we propose the following class
of estimating functions for f,:

M=

Upr=

1

f 0(t; PUZ:— Z(1; p)} dNi(1; ),

1
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where Q(t; B) is a specified weight function, and

=1 Yi(t; B)Z;
i=1 Yi(t; B)

We shall refer to U(p) as the log-rank estimating function if Q =1 and as the Gehan
estimating function if Q(t; B) =n"1Y(t; B), where Y.(t; B) =2 Yi(t; B).

As in the case of rank estimation for model (3), the estimating function U(p) is a
piecewise constant function of . We define the estimator f as a zero-crossing of U(f) or
as a minimiser of || U(B)||, where ||a| = (a’a)*. When there are only a small number of
covariates, direct grid search or the bisection method may be used to obtain [3 For high-
dimensional covariate vectors, specialised numerical methods such as the technique of
simulated annealing (Lin & Geyer, 1992) may be more efficient.

For the Gehan estimating function, it can be shown that

Z(t; p)=

U(B)=n" Z Z Y HTh<C)Zi— Z)I{log C;—log Ty, = B'(Z; — Z))},
i= =1k=1
the rth component of which is monotone in f, (r=1, ..., p). Thus, one may obtain ﬁ by
minimising the function

[ce}

Y Y X HTu<CilogCy—log T — B(Z;— Z))} 7,
i=1j=1k=1
where a* =max(0, a). This minimisation problem can be easily solved by the linear
programming technique (Barrodale & Roberts, 1973; Parzen, Wei & Ying, 1994). The
resulting estimator may be slightly different from the minimiser of || U(f)|, though they
are asymptotically equivalent.
Given [3 we estimate uy(t) by the Nelson—Aalen-type estimator fiy(t; ﬂ) where

dN, (s

folt: B) = zf Vi b

When no covariate is involved, fiy(t; 0) reduces to the original Nelson—-Aalen estimator
(Fleming & Harrington, 1991, pp. 4-5).
By some simple algebraic manipulation,

U(Bo) = Z j (t; Bo){Zi— Z(t; Bo)} dAMi(t; Bo), (4)

and, for t <max, <;<,Ci(Bo),
Lo(t; Bo) — 1o(t) = Z f Y(s ﬂo (5)
Since M(t; Bo) (i=1,..., n) are zero-mean processes, both (4) and (5) are centred around

0 for large n. In fact, (4) and (5) would be martingale integrals if N¥(¢) were non-homo-
geneous Poisson processes. Without the martingale structure, it is more challenging to
establish the asymptotic properties of (4) and (5).

We prove in the Appendix that n~*U(f,) converges in distribution to a zero-mean
normal random vector with a covariance matrix that can be consistently estimated by
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V(Bo) and V(f), where

V(ﬁ)=n_1i D;(B)Di(B)’, Di(ﬁ)=J 0(t; PUZ;— Z(1; p)} dM(t; ),

14

t
My(t; B)=Ni(t; B)— J Yi(s; B) dfio(s; P).

0
These results parallel those of Pepe & Cai (1993) and Lawless et al. (1997) for multi-
plicative models. To test the null hypothesis Hy: f = f§,, one may use the quadratic form
n= U (Bo)V "X Po)U(B,), which is asymptotically chi-squared on p degrees of freedom
under H,. This class of statistics generalises the weighted log-rank statistics for survival
data (Prentice, 1978; Fleming & Harrlngton 1991, Ch. 7) to recurrent events.

We also show in the Appendix that n*( /3 Bo) is asymptotically zero-mean normal. As
evident from Theorem 2 given in the Appendix, an analytic estimation of the limiting
covariance matrix for 3 would entail estimating the derivative of y(.), which may not be
done reliably in finite samples. Therefore, it is challenging to make inferences about subsets
of B, when p is greater than 1. In the case of p=1, it is straightforward to construct
confidence intervals for 8, by inverting the asymptotically standard-normal test statistic
n~U(Bo)/ VE(Bo) or n™ 2 U(Bo)/ VE(B).

We propose to estimate the covariance matrix of ﬂ and to construct confidence intervals
for individual components of f, by applying a resampling technique due to Parzen et al.
(1994). Specifically, let ,B* be the solution to

U(B)= Z Di(B)G;,
i=1

where (G4, ..., G,) are independent standard normal variables. We may also obtain ﬁ*
by solving U( ﬁ) G, where G is zero-mean normal with covariance matrix n¥/( ﬁ) By the
arguments of Parzen et al. (1994), n*( ﬁ ﬁ*) has the same limiting distribution as
n¥( /3 Bo). To approximate the distribution of [3 we obtain a large number of realisations
of p* by repeatedly generating the normal random samples (Gy, ..., G,) or the normal
random vector G while fixing the data {N;(.), C;, Z; .} (i=1,...,n)at their observed values.
The covariance matrix of ,B can then be estimated by the emp1r1cal covariance matrix of
,8 *. In addition, confidence intervals for individual components of B, can be obtained from
the percentiles of the empmcal distribution of ﬂ * or by the Wald method. The (1 — 2a)
percentile interval is [,B(a), ﬁ(l » 1> where ﬁ(a) and /3(1 » are the 100ath and 100(1 — o)th
percentiles of ﬁ*

When model (1) holds, two estimators of f, with distinct weight functions, ﬁQ and
ﬁQ , say, should yield similar answers since they are both consistent. On the other hand,
,BQ and fBy, tend to differ if model (1) is incorrect. Thus, we may check the adequacy of
model (1) by comparing ﬁQ and ,BQ This approach was previously taken by Lin (1991)
and Wei et al. (1990) for the univariate proportional hazards and accelerated failure time
models. Let [,BQI, ﬁ .1 satisfy

|:UQ1('[2>IQ‘1]:| _ l: 'il=1DQ1yi('[:gQ1)Gi:|
UQZ(/?&) 'i’=1DQ2,i(ﬁQ2)Gi ’

where Uy,, Ug,, Dg,; and Dy, ; are U and D; associated with Q, and Q,. Also, let Q
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be the empirical covariance matrix of Bél — [?32. Then the quadratic form
S=(Bo, — B, !(Bo, — Bo,)
is asymptotically chi-squared on p degrees of freedom under model (1).
Let W(t)=n*{fio(t; B) — uo(t)}. We prove in the Appendix that W(t) converges weakly
to a zero-mean Gaussian process. As in the case of f5, it is difficult to estimate the limiting

covariance function of W(t) analytically. We again appeal to the resampling approach.
We show in the Appendix that W(¢) has the same limiting distribution as

W(e)=n* {ﬁo(t; B = folts B9+ Y. Bt B)G,},

where

th .
H py= | Gl
o Y(s;5)
Thus, we may use the simulated distribution of W(.) to make inferences about ,(.) along
the lines of Lin, Fleming & Wei (1994).

As in Lin et al. (1994), we recommend that the log transformation be used in the
construction of the confidence intervals/bands for yug(.), which not only restricts the
resulting intervals/bands to be positive, but also improves the coverage probabilities in
small samples. With the log transformation, the 95% confidence intervals for p,(t) based
on the Wald and percentile methods are, respectively,

flo(t) exp { £ 1:96n~*6(t)/fi (1)},
Lho(t) exp{ —n"*Eogys5(t)/Ao(1)}, Ao(t) exp{—n~*Eq0s(0)/flo(2)}],
where the argument ﬁ in fy(t; 3) is suppressed, é(t) is the estimated standard error of

I/j/(t), and &y.055(t) and y.995(t) are the estimated 2-5th and 97-5th percentile points of
W(t). In addition, the 95% equal-precision confidence band for uy(t) (t; <t <1,) is

flo(t) exp { £ o9sn™*6(1)/do(1)},
where .05 is the estimated 95th percentile of sup,, <,<.,| W(t)/é(t)|.

In many applications, the investigators are interested in estimating the frequency of
recurrences associated with a given set of covariate values, say z. This is particularly useful
in predicting the recurrence experience for individual patients. It is evident from equa-
tion (1) that the mean of N*(t) associated with z, denoted by u(t|z), is equal to the baseline
mean function u,(t) if the covariates are centred at z. Thus, one can use the above formulae
for uo(t) to make inferences about u(t|z) upon replacing the Z;’s by (Z;—z). Without
transforming the data, one would estimate u(t|z) by A(t|z):= fi,(e” *t; B), and approximate
the distribution of n* {fi(t|z) — u(t|z)} by

i=1

W(t; 2)=nt {ﬁo(eﬁ’zu B)— fio(e” 7t )+ Y Hi(eh"s; B)Gf}'
3. NUMERICAL RESULTS

3-1. Simulation studies

A series of simulation studies was conducted to assess the performance of the proposed
inference procedures. We considered randomised trials with n/2 subjects in each of the
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two groups, and consequently considered model (1) with Z being a single dichotomous
covariate. Recurrent events were generated from both Poisson and non-Poisson processes.
For the Poisson processes, the gap times between successive events are independent
exponential variables; for the non-Poisson processes, the conditional distribution of the
kth gap time X, given X, _, is the same as that of Gumbel’s (1960) bivariate exponential
distribution with correlation of 0-25. The hazard rate for each gap time was 1 or &°
depending on whether Z =0 or 1. The follow-up time was censored by an independent
Un[0, 3:5] random variable, which resulted in on average 2-3 and 2:6 observed events
per subject in the Poisson and non-Poisson cases, respectively.

Table 1 summarises the main results of the simulation studies, showing the Monte Carlo
estimates for the biases and standard errors of [3 and fy(¢) (t=1,3), the means of the
standard error estimators for ,B and fio(t), and the coverage probabilities of the 95%
confidence intervals for f, and uo(t) based on the percentile and Wald methods. Each
entry was based on 1000 simulated datasets. For each dataset, 1000 samples of (G, . . ., G,)
were generated to approximate the distributions of ﬁ and f,(t). The estimates of f, were
obtained by the bisection method with the accuracy of +0-001. The true value of S is
0-5; the true values of {u(1), uo(3)} are (1, 3) and approximately (1:18, 3-35) in the Poisson
and non-Poisson cases, respectively.

Table 1. Summary of the simulation studies on the estimation of B, and po(t)

Poisson process Non-Poisson process
Log-rank Gehan Log-rank Gehan

n=>50 100 n=50 100 n=>50 100 n=>50 100

| Bias(f)| 0-01 0-00 0-01 001 0-01 001 001 001

se(f) 020 015 021 015 024 018 024 018

Mean of est. SE(f) 021 015 022 015 026 018 026 018
Coverage of 95% cr’s

percentile method 094 094 095 0% 093 093 094 093

Wald method 096 094 096 095 095 094 096 094

| Bias(fio(1))] 0-01 000 0-01 000 0-00  0-00 0-00 000

SE(fio(1)) 017 013 018 013 024 017 024 017

Mean of est. SE(fo(1)) 018 013 018 013 024 017 024 017
Coverage of 95% cr’s

percentile method 094 093 094 094 093 094 093 093

Wald method 096 094 095 094 094 095 094 094

| Bias(fio(3)) 0-02 000 002 001 0-02 000 0-03 001

SE(f1o(3)) 046 035 047 035 059 042 0-59 042

Mean of est. SE(fio(3)) 046 034 047 034 056 041 057 042
Coverage of 95% cr’s

percentile method 091 093 092 093 092 093 092 093

Wald method 093 094 094 094 093 094 093 09

As is evident from Table 1, the proposed inference procedures perform well in practical
situations. Specifically, both ,B and [iy(t) are virtually unbiased. Their standard error esti-
mators are very accurate. The confidence intervals for f, and po(t) have reasonable cover-
age probabilities, although the percentile method tends to be slightly anti-conservative in
small samples.

3-2. Bladder tumour data

We now illustrate the proposed methods with the well-known bladder cancer data
reported by Byar (1980). These data were obtained from a randomised clinical trial con-
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ducted by the Veterans Administration Co-operative Urological Group. One hundred and
eighteen patients with superficial bladder tumours were admitted to this study between
1971 and 1976. The tumours were removed transurethrally and patients were randomly
assigned to one of three treatments: placebo, pyridoxine or thiotepa. The average follow-up
was about 31 months in all three treatment groups, but some patients were followed as
long as five years. Bladder tumours tend to recur repeatedly. By the end of the follow-up,
62 patients had experienced at least one recurrence of tumours, among whom 39 had two
or more recurrences and 28 had a third recurrence; the largest number of recurrences for
a patient was 9.

As pointed out by Byar (1980), the goal of the analysis should be to determine the
effect of treatment on the frequency of tumour recurrences. Our illustration focuses on
the comparison between the placebo and thiotepa groups. There are 48 patients with a
total of 87 observed recurrences and 38 patients with a total of 45 observed recurrences
in the placebo and thiotepa groups, respectively. The investigators suspected that the
frequency of recurrences might be associated with the number and sizes of the
tumours present initially at the time of randomisation. Thus, we consider model (1) with
Z;=(Zy;, Z5,Z3;), where Z; indicates by the value 1 versus O whether the ith patient
was on placebo or thiotepa, Z,; denotes the initial number of tumours for the ith patient,
and Zj; denotes the diameter, measured in centimetres, of the largest initial tumour for
the ith patient. Both Z,; and Z;; range from 1 to 8.

The estimates of the regression parameters are presented in Table 2. The bisection
method with the accuracy of +0-00001 was employed to find the estimates of f,, and
10000 simulations were used to approximate the distribution of . The results differ
slightly between the log-rank and Gehan estimating functions and also between the percen-
tile and Wald confidence intervals. The treatment assignment is marginally significant at
the 5% level. The initial number of tumours is highly significant whereas the size of the
largest initial tumour is non-significant. Incidentally, the chi-squared goodness-of-fit statis-
tic S has an observed value of 0-995 on 3 degrees of freedom, providing no evidence against
the assumed accelerated failure time model.

Table 2. Regression analysis of the multiple tumour recurrence data for patients
with bladder cancer

Estimating Parameter  Estimated 95% confidence intervals
function Covariate estimate SE Percentile Wald
Log-rank Treatment 0-542 0312 (0-076, 1-269) (—0-071, 1-154)
Initial number 0-204 0-066 (0-102, 0-357) (0-074, 0-334)
Initial size —0-038 0-084 (—0-237,0:094) (—0-203,0-127)
Gehan Treatment 0-657 0314 (0-125, 1-354) (0:042, 1-273)
Initial number 0218 0-086 (0-098, 0-445) (0-048, 0:387)
Initial size —0022 0-101 (—0219,0-183) (—0-220,0-176)

For comparison, we also analysed these data using the Andersen—Gill model. The
corresponding parameter estimates are 0-524, 0-201 and —0-040, with robust standard
error estimates of 0-262, 0-064 and 0-076. These numbers are very close to those of the
log-rank estimating functions shown in Table 2. Previously, Wei, Lin & Weissfeld (1989)
formulated the marginal distributions of the first four recurrences with proportional haz-
ards models. Their estimate for the overall treatment effect is 0-549, with a robust standard
error estimate of 0-285.
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Figure 1 shows the estimation for the mean frequency of recurrences from month 5 to
month 60 for a patient on thiotepa who has a single initial tumour that is 1 centimetre
in diameter. It is not surprising that the mean function of recurrences for such a patient
is fairly low since thiotepa is effective in reducing tumour recurrences and a smaller number
of initial tumours is associated with a lower recurrence rate.

30 - L

2.5

2.0

1-5

Mean number of recurrences

10 20 30 40 50 60

Follow-up time (months)

Fig. 1. Bladder tumour data: Estimated mean frequency of tumour recurrences over follow-up

time for a patient on thiotepa who has a single initial tumour that is 1 centimetre in diameter.

The point estimates are shown by the solid line, pointwise 95% Wald confidence intervals by

dotted lines and 95% equal-precision confidence bands by dashed lines. The confidence intervals
and bands are based on 1000 simulations.

4. REMARKS

In general, it is hard to solve the estimating equation U(f) =0 when the dimension of
covariates is high. As mentioned in § 2, the Gehan estimating equation U(f) =0 or U(B)=G
can be solved efficiently and reliably through the conventional linear programming tech-
nique. If the model fits the data reasonably well, then the solution to the Gehan estimating
equation will be similar to the solutions to other estimating equations and may be used
as the initial search value for the latter. It suffices for most practical purposes to make
inferences based on the Gehan estimating function.

Lin & Wei (1992) provided a different approach to analysing multiple events data with
accelerated failure time models. They formulated the marginal distribution for the time
to each type of event measured from study entry with a univariate accelerated failure time
model in the form of (3) and derived the joint distribution for the regression parameter
estimators of the marginal models. Their method can only handle a small and equal
number of recurrences per subject, and does not provide global estimation of the under-
lying mean function. The approach taken in this paper is more natural and efficient for
handling recurrent events, especially when there are long strings of events or when the
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numbers of events vary substantially among the study subjects. The generalisation of the
accelerated failure time model provided in this paper parallels the Andersen—Gill/
Lawless—Nadeau—Cook generalisation of the Cox model to counting processes, while the
Lin & Wei method shares the spirit of the Wei et al. (1989) approach to analysing genuine
multivariate failure time data.

We have so far restricted our attention to time-invariant covariates. For survival data,
Cox & Oakes (1984, pp. 64-8), Robins & Tsiatis (1992) and Lin & Ying (1995) studied
the accelerated failure time model with time-dependent covariates. To accommodate time-
dependent covariates in the accelerated failure time model with recurrent events, we
generalise equation (1) to

t

E{NF(0)|Z;} =N0<J el dS>, (6)

0

which may also be formulated in terms of equation (2) with the redefinition of

Tu(p)= J

0

Ty,
eﬁ Z(s) ds.

A similar modification is made to C;(f). In addition, redefine

(T D NERQEH)
o= 3 [ {aw - IR DU iy
* rf—le ; e A
pip)= [ foun - == O s

where Q;(t; f) (i=1, ..., n) are p-dimensional processes involving Z; and possibly . Then
the arguments of Lin & Ying (1995), along with those given in the Appendix, can be used
to show that the results of § 2 continue to hold for time-dependent covariates.

Lawless et al. (1997) considered the proportional means model

E{dN} ()| Z;} = "% ® duo(1), (7)

and provided a class of estimators for f,, which includes the Andersen—Gill estimator
as a special case; Pepe & Cai (1993) studied similar models for rate functions. In
general, models (6) and (7) are different. It would be worthwhile to develop methods for
determining which of the two models is more appropriate for a given dataset.

Models (6) and (7) coincide if covariates are time-invariant and g, is a straight line
through the origin, i.e.

E{N¥(t)|Z;} = ePo%t. (8)

For the bladder tumour data, the fact that fi,(.) looks linear in Fig. 1 may explain why
the Andersen—Gill estimates are similar to those of Table 2. It is interesting to study the
asymptotic efficiency of the proposed f relative to the Lawless—Nadeau—Cook-type esti-
mator under model (8). It can be shown that the asymptotic relative efficiency is equal
to 1 at fy=0 provided that the same weight function is used for both estimators.
For nonzero f,, the asymptotic relative efficiency is slightly below 1 when the under-
lying process is Poisson and the log-rank weight function is used for both estimators.
The asymptotic efficiencies for non-Poisson processes require further investigation.
Incidentally, for exponential survival times, the rank estimator under the accelerated failure
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time model is more efficient than the maximum partial likelihood estimator under the
equivalent proportional hazards model (Lai & Ying, 1991a).
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APPENDIX
Asymptotic properties of U(B), B and po(t; B)

We assume the following regularity conditions:

(i) N; and Z; are bounded,

(i) (N¥,C,Z;)([i=1,...,n) are independent and identically distributed,

(iii) Q has bounded variation and converges almost surely to a continuous function g,

(iv) Ci(Po) has a bounded density and yu, has a bounded second derivative.
In this Appendix, the integration is taken from 0 to oo unless otherwise indicated, the summation
is always taken over i =1 to n, and the limit taken as n — co. We first study the process

n"*U(Po, t):=n"* ‘z”:l L Q(s; P Zi— Z(s; Bo)} dNi(s; Bo)-

THEOREM 1. Under conditions (i)—(iil), n~*U(Bo,.) converges weakly to a zero-mean Gaussian
process with covariance function
it

B(t,t")=E [ f q($){Z 1 — 2(s)} dM(s; Bo) f qONZy — 2(x)}" dM; (x; ﬂo)}

0 0

where Z(t) =lim Z(t; B,).
Proof. We first prove the weak convergence on a finite interval [0, t] such that limn =Y (z; B,) >
0. Let

Uy(t)=n"% Z Mi(t; Bo), Upz(t)=n"* Z Z;M(t; Bo).

For each t, both Uy(t) and U,,(t) are sums of n independent and identically distributed
zero-mean terms. Thus, the finite-dimensional convergence of (Uy,, Uy,z) follows easily from the
standard multivariate central limit theorem. In addition, {M,(t; f,);i=1,...,n} and {Z,M,(¢; B,);
i=1,...,n} can be written as sums/products of monotone functions and are therefore ‘manageable’
(Pollard, 1990, p. 38; Bilias, Gu & Ying, 1997, Theorem 2.1). It then follows from the functional
central limit theorem (Pollard, 1990, p. 53) that (Uy,, U,z) is tight and converges weakly to a zero-
mean Gaussian process, denoted by (#}s, #uz). By the Skorokhod—Dudley—Wichura theorem
(Shorack & Wellner, 1986, p.47), we can construct in another probability space an equivalent
process of (Uy, Uyz) such that the weak convergence becomes almost sure convergence. Since
Z(t; B,) and Q(t; B,) are of bounded variation and converge almost surely to z(t) and q(t), we
can show through integration by parts that n=2U(f,,t) converges weakly to the zero-mean
Gaussian process

J q(s) dWyz(s) — j a(s)Z(s) AWy (s).
0 0

A straightforward variance-covariance calculation verifies that B(t, t*) is the covariance function
of the limiting process. Finally, we can argue along the lines of Ying (1993) that the weak conver-
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gence result holds without the tail restriction. O

To study the asymptotic properties of f, we need to establish the asymptotic linearity of U(pf)
in a neighbourhood of 8,. Let u( ) be the limit of n~'U(pB)and .4 (B,) be a compact neighbourhood
of f, on which | U(B)| is minimised to obtain ﬁ It is not difficult to show that n~*U(B) converges
to u() uniformly on A"(B,).

THEOREM 2. Under conditions (i)—(iv), for any sequence d,— 0,

sup [ U(B) = U(Bo) + An(B — o) | /(n* + 1] f — Bo )} = o(1) (A1)

18— Bol<d,
almost surely, where

= Jq(t)E[Yl(t; Po){Zy — 2(0)} 2] d{gio(0)t},

a®? = aa’ and io(t) = duo(t)/dt. Furthermore if u(p) =+ 0 for all pe N (P,) but B+ Bo and A has full
rank, then ,8 is strongly consistent and n*( ﬁ Bo) converges in distribution to zero-mean normal with
covariance matrix A~*BA~*, where B = B(c0, ).

Proof. Write U(f)— U(B,) as

[Z fQ(t; PHZ;— Z(t; B} {AN,(t; B) — Yi(t; B) duo(t o= P %)}
-2 fQ(t; BoZi — Z(t; Bo)} {dNi(t; Bo) — Yi(t; Bo) duo(t)}]

+2 JQ(t PUZi— Z(t; PYY(t; B) d{po(t o™ P %) — puo(1)}. (A2)

Applying the technique of Ying (1993, Theorem 1), we can show that the first term of (A2) is of
order o(n?). By Taylor series expansion,

Ho(t ePo™ Py — o (£) = {4io(t) + o(1)}tZH( o — ).
Thus, the second term of (A2) is

) JQ(t; PUZi— 2t Bt B)Z; d{pio(D)t}(Bo — B) + o(n| B — o) = An(Bo — )+ o(n || f — fo )

almost surely. Combining the preceding approximation with (A2) gives (A1).

Now, since n 1U(ﬂ)—w(ﬁ) uniformly in A4(f,) and u(B)=*0 for B+ f,, we have ﬁ—-»ﬁo In
addltlon the deﬁmtlon of /3 and (Al) imply that n‘lU(ﬁ) o(1). Thus, it follows from (A1)
that n3( [3 Bo)=A"'n"*U(By) + o(1) when 4 is invertible. The asymptotic normality for B then
follows from Theorem 1. O

The consistency of the covariance matrix estimators V(f,) and V(B) is a special case of the
following more general result.

THEOREM 3. Suppose that the assumptions of Theorem 2 are satisfied. If B - Bo, then
V(B¥)— B.

Proof. By the uniform strong law of large numbers (Pollard, 1990, p. 41),
n 'Y Ni(t; B~ ENi(5; B), n” Y. f)—~ EYi(5; )

uniformly in ¢ and . These approximations, together with similar ones for Z, can be used to show
that

2

nty H Di(p) — JQ(t){Zi—Z'(t)} dM;(t; Bo)



Accelerated failure time models 617

Thus, to prove that V(f})— B, it suffices to show that

®2

nty [ J q(){Z; — 2(1)} dM,(z; ﬁo):l - B,

but the latter readily follows from the strong law of large numbers. O
Finally, we deal with the weak convergence of W and W,

THEOREM 4. Under conditions (1)—(iv), both W(.) and W(.) converge weakly to a zero-mean
Gaussian process with covariance function

CdAM(s; Bo) L [ _ )
a(t, ”)=E<[L m+b(f)f1 1L q()Z1 — 2(s)} dM (s, ﬁo)}

s dM,(s; Bo) , . S ) .
X[L'ﬁg@gﬁ+bwm»J;q@wrﬂ@umu&mq>
where

b=~ | 70l

Proof. An asymptotic linearity similar to (A1) of Theorem 2 holds for fi,, that is
sup I {fo(t; B) — Bo(t; Bo)} — b'(E)n*(B — Bo) | = o(1) (A3)

t€[0,71, 18~ Boll <d,
for any d, — 0 and for 7 such that limn~1Y(z; B,) > 0. Applying (A1) and (A3) with g = B, we have,
uniformly in ¢ € [0, 7],

W(t) = n*{o(t; Bo) — po(t)} + b'(t) A~ n"2U(Bo) + o(1)
1 g dMl(Sﬂ ﬁo) 1 «
=n"* —————— 4+ b(t)A"n"? qs){Z; — 2(s)} dM(s; Bo) + o(1), (A4)
ZLE%@&» 2, Fololh
where the second equality follows from the arguments given in the proof of Theorem 1. In view
of (A4), the finite-dimensional convergence of WW(.) to the desired Gaussian process follows from
the multivariate central limit theorem together with a straightforward covariance calculation. As
in the proof of Theorem 1, the tightness can be established via the modern empirical process theory
(Pollard, 1990). ) .
Applying (A3) twice with = f and = *, we obtain
W(e) = b/t (B— ) +n~* ¥ nHi(s; H)Gi+ o(1).
On the other hand, applying (A1) twice and noting that n~*U( ff) =o0(1), we have
n~FU(B*) = An*(B — B*) + o(1).
Thus,
W(t)=b()A"'n"* Y. D(B)G, +n~* Y nHy(t; P)G;+ o(1).

Then, by the multivariate central limit theorem and a simple covariance calculation, W converges
in finite-dimensional distributions to the limiting Gaussian process of W. The modern empirical
process theory can again be used to prove the tightness. |
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