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Modeling and Forecasting U.S. Mortality

RONALD D. LEE and LAWRENCE R. CARTER*

Time series methods are used to make long-run forecasts, with confidence intervals, of age-specific mortality in the United States
from 1990 to 2065. First, the logs of the age-specific death rates are modeled as a linear function of an unobserved period-specific
intensity index, with parameters depending on age. This model is fit to the matrix of U.S. death rates, 1933 to 1987, using the singular
value decomposition (SVD) method,; it accounts for almost all the variance over time in age-specific death rates as a group. Whereas
€ has risen at a decreasing rate over the century and has decreasing variability, k(¢) declines at a roughly constant rate and has
roughly constant variability, facilitating forecasting. k(¢), which indexes the intensity of mortality, is next modeled as a time series
(specifically, a random walk with drift) and forecast. The method performs very well on within-sample forecasts, and the forecasts
are insensitive to reductions in the length of the base period from 90 to 30 years; some instability appears for base periods of 10 or
20 years, however. Forecasts of age-specific rates are derived from the forecasts of k, and other life table variables are derived and
presented. These imply an increase of 10.5 years in life expectancy to 86.05 in 2065 (sexes combined ), with a confidence band of
plus 3.9 or minus 5.6 years, including uncertainty concerning the estimated trend. Whereas 46% now survive to age 80, by 2065 46%
will survive to age 90. Of the gains forecast for person-years lived over the life cycle from now until 2065, 74% will occur at age 65
and over. These life expectancy forecasts are substantially lower than direct time series forecasts of €y, and have far narrower confidence

bands; however, they are substantially higher than the forecasts of the Social Security Administration’s Office of the Actuary.

KEY WORDS: Demography; Forecast; Life expectancy; Mortality; Population; Projection.

From 1900 to 1988, life expectancy in the United States
rose from 47 to 75 years. If it were to continue to rise at this
same linear rate, life expectancy would reach 100 years in
2065, about seventy five years from now. The increase would
be welcomed by most of us, but it would come as a nasty
surprise to the Social Security Administration, which plans
on the more modest life expectancy of 80.5 years predicted
by its Office of the Actuary. We scarcely need dwell on the
importance of the future course of mortality in our aging
society. In contrast to the past, now mortality decline is a
powerful cause of population aging.

There are many ways to forecast mortality (Land 1986;
Olshansky 1988). The new method we propose here is ex-
trapolative and makes no effort to incorporate knowledge
about medical, behavioral, or social influences on mortality
change. Its virtues are that it combines a rich yet parsimo-
nious demographic model with statistical time series meth-
ods, it is based firmly on persistent long-term historical pat-
terns and trends dating back to 1900, and it provides
probabilistic confidence regions for its forecasts. While many
methods assume an upper limit to the human life span or
rationalize in some other way the deceleration of gains in
life expectancy, our method allows age-specific death rates
to decline exponentially without limit; the deceleration of
life expectancy follows without any special additional as-
sumptions. We believe that our method has important ad-
vantages over other extrapolative procedures, albeit with the
usual shortcomings of its genre.

In this article we first consider the available data and their
limitations. We then develop our demographic model of
mortality, which represents mortality level by a single index.
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Next we fit the demographic model to U.S. data and evaluate
its historical performance. Using standard time series meth-
ods, we then forecast the index of mortality and generate
associated life table values at five-year intervals. Because we
intend our forecasts to be more than illustrative, we present
them in some detail and provide information to enable the
reader to calculate life table functions and their confidence
intervals for each year of the forecast.

1. THE HISTORICAL DATA

Annual age-specific death rates for the entire U.S. popu-
lation are available for the years 1933 to 1987. For the years
1900 to 1932, these data are available annually only for the
death registration states, which form a varying subset of the
total U.S. population, and have a cruder age specificity (see
Grove and Hetzel 1968, table 51, p. 309). While data gen-
erally are available by race and sex, here we restrict our anal-
ysis to the age-specific mortality of the total population. (We
plan to extend the analysis to population subgroups in the
future, but are concerned about extrapolating differentials.)
Death rates are available for infants and standard five-year
age groups up to age 85, and for age 85 and over. There is
reason to be skeptical about measures of mortality at the
older ages. With 46% of the population already surviving to
age 80, and with future gains in life to be concentrated at
old ages, it is particularly important to deal carefully with
the older age groups. We will use a new method proposed
by Coale and Kisker (1990) and Coale and Guo (1989).

Figure 1 plots life expectancy at birth from the years 1900
to 1989. (It also plots forecasts, which should be ignored for
now.) Not surprisingly, the 28-year increase in life expectancy
between 1900 and 1987 was accompanied by more dramatic
declines in death rates at some ages than at others. The mor-
tality rate for infants fell to .067 of its initial value and that
for age group 1-4 fell to .026 of its initial value, but that for
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Figure 1. Actual U.S. Life Expectancy and Forecasts (95% Confidence
Intervals With and Without Uncertainty From Trend Term). The forecasts
use a (0, 1, 0) model with a flu dummy estimated on mortality data from
1900 to 1989. The 95% confidence intervals are shown with and without
uncertainty from drift.

age group 85+ fell to only about .58 of its initial value. These
proportions differ by a factor of 22 at the extremes!

We seek to develop a parsimonious model of the pattern
of change over time in these death rates, so that variation in
a single parameter can generate the main outlines of the
observed pattern (see Keyfitz 1981). Of course we must ac-
cept from the outset that no model can (or should) reflect
all age-time variation, some of which is highly irregular and
arises from particular historical circumstances. To illustrate,
the influenza epidemic of 1918 raised the death rate 34%
above trend overall. But whereas for persons age 55 and
above there was no increase, for persons age 25 to 34 the
death rate rose 150% above trend; death rates at the younger
ages also rose substantially (Grove and Hetzel 1968, p. 325).
Such a pattern diverges from long-run trends and thus must
remain outside the model. Likewise, from 1960 to the early
1980s the death rates for young adult males first rose sub-
stantially and then declined, dominating the behavior of the
rates for sexes combined. This likewise must be viewed as
an anomalous departure from the basic pattern of decline,
requiring special study rather than absorption into our gen-
eral model. We already have commented on the unreliability
of the rates for age group 85+; there is no point in trying to
match their erratic course. These exceptions notwithstanding,
there is an overall pattern of fairly regular change, with coin-
cident movement of death rates at all ages.

2. THE MODEL

Given an appropriate model, forecasts of the single pa-
rameter could then be used to generate forecasts of the level
and age distribution of mortality for the next few decades.
There are several familiar candidates for the model. A Brass
logit model, with the beta parameter fixed, would fit the bill.
Any one-parameter family of life tables, such as the Coale-
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Demeny Model West Female, likewise would do, with the
“level” serving as the parameter—although such a model
might not fit the U.S. experience particularly well. We could
do a principal components analysis of the matrix of death
rates, as Bozik and Bell (1989) did to forecast fertility. In
the manner of Lederman (1969), we could construct a two-
parameter model life table system using principal compo-
nents analysis and could fix one parameter and forecast the
other. We could fit a model to the logs of the death rates as
Wilmoth (1990) and Wilmoth, Vallin, and Caselli (1989)
did, including additive age and period effects and then an
appropriate number of age-period interaction terms, al-
though we would then have to forecast multiple parameters.
The method we use here has most in common with the prin-
cipal components method, with Wilmoth’s method, and with
the method of constructing the United Nations set of model
life tables (Heligman 1984). For an altogether different ap-
proach to modeling and forecasting mortality, see Rogers
(1986) and McNown and Rogers (1990), who fitted multiple
parameter curves to mortality age schedules and then fore-
casted the time series of parameter estimates. It is difficult
to obtain confidence intervals with this method. We believe
that the method pursued here offers a number of important
advantages, as discussed earlier.

Let m(x, t) be the central death rate for age x in year ¢.
We will fit this matrix of death rates by the model In[m(x,
)] = a, + bk, + &, or m(x, t) = e>**®*ex for appro-
priately chosen sets of age-specific constants, {a, } and {b,},
and time-varying index k,. Because k is an index of the level
of mortality, we sometimes will write m(x, k), by which we
will mean e**¥ K sometimes will be written k(¢) or k.
e* is the general shape across age of the mortality schedule.
The b, profile tells us which rates decline rapidly and which
rates decline slowly in response to changes in k (dIn(m, )/
dt = b,dk/dt). In principle b, could be negative for some
ages, indicating that mortality at those ages tends to rise when
falling at other ages; in practice this does not seem to occur
over the long run. When Kk is linear in time, mortality at
each age changes at its own constant exponential rate. As k
goes to negative infinity, each age-specific rate goes to 0;
negative death rates cannot occur in this model, which is an
advantage for forecasting.

The error term, e, ,, with mean 0 and variance o2, reflects
particular age-specific historical influences not captured by
the model, as discussed earlier. Despite the fact that the age-
specific death rates may vary by a factor of 1,000 in a given
year, the variances over time of age-specific components of
&x, should not differ greatly because they represent deviations
from the logs of the rates.

An entire one-parameter family of life tables can be gen-
erated from two observed life tables using this model and
viewing death rates as a function of k rather than of time.
Choose a scale for k by letting k = O for one life table and
k = 1 for the other. Then let a, = In[m(x, 0)] and b,
=In[m(x, 0)] — In[m(x, 1)]. As k varies, a family of life
tables will be generated that includes the two which form its
basis. For k between 0 and 1, the model geometrically in-
terpolates between the two life tables; for k less than 0 or
greater than 1, it extrapolates from the two tables. This
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method may be useful for some Third World countries with
little data. But when more than two life tables are available,
this procedure is inefficient and it is preferable to estimate
the a, and b, schedules along with k(¢) to minimize the
squared deviations from a given matrix of age-specific rates;
details are given in the section on “Fitting the Model.” We
will show that the period-specific life tables generated in this
way fit actual U.S. life tables quite well over the years 1933—
1987 and produce life expectancies that correspond quite
closely to actual life expectancies. (See Lee 1974, 1977 for
other applications.)

For any value of k, the fitted model defines a set of central
death rates that can be used to derive a life table. But the
procedure also can be used in reverse, to solve analytically
for the particular life tables in this family that would produce
an observed number of deaths, D(¢), for a given population
age distribution, N(x, t). The task is to find k() such that:

D(t) = X [N(x, 1) 0],

This can be done only by searching over a range of values
of k; no analytic solution is available.

This expression can be used for two purposes. First, the
original least-squares estimates of k(¢), a,, and b, do not
generate fitted life tables that imply the exact observed num-
ber of deaths for the actual historical population age distri-
butions. If desired, the discrepancy can be removed by keep-
ing a, and b, as estimated but calculating a new set of k(#)’s
as above. Second, there may be periods for which population
age distributions and total deaths are known but age-specific
death rates are not available. The model still can be fitted
using this procedure. This is particularly useful for forecasting
when, as in the United States, there is a lag of several years
between publication of total deaths and publication of age-
specific death rates. With this method, the base year for the
forecast always can be taken to be the last year for which
total deaths are available.

This method differs from forecasting each age-specific rate
independently in many ways. First, if each rate were forecast
independently, then we also would need to calculate n(n
— 1)/2 different covariances of errors, where 7 is the number
of age groups; these are necessary to find the confidence
bounds for life expectancy. Our specification exploits the
high degree of intertemporal correlation across the ages, by
making all death rates functions of the same time-varying
parameter. Their variances and covariances follow from the
autoregressive integrated moving average (ARIMA ) model
of the time-varying parameter and the assumptions of the
model. Second, each rate might be best modeled individually
by a different order ARIMA process, requiring the estimation
of many parameters. Only if each is well modeled by a ran-
dom walk with drift will the number of parameters be similar
to the number in our method. This is true whether or not k
happens to be modeled by a random walk with drift. Third,
with individual forecasts, rates in the distant future might
combine to form highly implausible age profiles. Using our
method, the individual age-specific rates are always con-
strained to belong to a life table system that fits the historical
data. Fourth, this cohesion is obtained by forecasting the
single parameter k, which itself is a kind of compromise
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among the trends in all the individual age-specific rates. This
leads to different forecasts of the individual rates than would
be obtained by modeling them individually.

After we had chosen this representation of age-time vari-
ations in mortality rates, we came upon a working paper by
Gomez (1990) that conducts an exploratory data analysis
of the matrix of Norwegian mortality rates since the 19th
century. Gomez considered a large number of possible mod-
els, involving different initial transformations of the death
rates, inclusion of cohort effects, a pure period term, and so
on. He found that the model we have chosen by an entirely
different route was best and used it as the basis of a 10-year
mortality forecast for Norway.

3. FITTING THE MODEL

To estimate the model for a given matrix of rates m, ,, we
seek the least squares solution to the equation:

In(m, ) = a, + bk, + ¢,,.

This model evidently is underdetermined, which can be
seen as follows. Suppose that the vectors a, b, k are one
solution. Then for any scalar ¢, a — bc, b, k + ¢ also must
be a solution. It also is clear that if a, b, k is a solution, then
a, bc, k/calso is a solution. Therefore, k is determined only
up to a linear transformation, b is determined only up to a
multiplicative constant, and a is determined only up to an
additive constant. In what follows, we have normalized the
b, to sum to unity and the k, to sum to 0, which implies that
the a, are simply the averages over time of the In(m,,).

The model cannot be fit by ordinary regression methods,
because there are no given regressors; on the right side of
the equation we have only parameters to be estimated and
the unknown index k(z). The singular value decomposition
(SVD) method can be used to find a least squares solution
when applied to the matrix of the logarithms of the rates
after the averages over time of the (log) age-specific rates
have been subtracted (Good 1969; Wilmoth et al. 1989).
The first right and left vectors and leading value of the SVD,
after the normalization described above, provide a unique
solution. Appendix A provides further details and an alter-
nate estimation method.

The fitted death rates derived in this way generally will
not lead to the actual numbers of deaths when applied to
given population age distributions. Furthermore, k is esti-
mated to minimize errors in the logs of death rates rather
than the death rates themselves. Using the equation given
in Section 3 on this page, we have reestimated k(¢) in a
second step, taking the a, and b, estimates from the first step
as given. We thereby find a new estimate of k such that for
each year, given the actual population age distribution, the
implied number of deaths will equal the actual number of
deaths. These values of k(¢) are found by an iterative search
and differ somewhat from the direct SVD estimates with
U.S. data after the early 1950s. This is because when fitting
the log-transformed rates, the low death rates of youth receive
the same weight as the high death rates of the older ages, yet
they contribute far less to the total deaths. Additionally, dif-
ferences in population age group sizes impart different
weights in the second-stage estimation of k.
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Unfortunately, the annual time series of death rates ex-
tends only to the open age group 85 and over, whereas our
interest extends to higher ages. Even in 1987, 30% of the
population survived to age 85 (39% of the females); we fore-
cast that by 2065 62% will do so. Under these circumstances,
failing to take account of the population distribution within
that open interval is at best uninformative and at worst may
lead to serious distortions. Coale and Kisker (1990) showed
that in populations with good data at old ages, mortality
rates increase not at a constant rate with age, as the Gompertz
curve assumes, but rather at a linearly decreasing rate. Their
procedures were based on age patterns consistently observed
in a number of populations with very low mortality: The
Netherlands, Japan, France, West Germany, Austria,
Sweden, and Norway. We apply the method suggested in
Coale and Guo (1989, pp. 614-615) to extend our death
rates up to age group 105-109, by expressing death rates at
the older ages as functions of k, a,, and b, and then searching
for the appropriate k as explained earlier. For our data, ex-
tending the life table in this way alters the calculated life
expectancy over the sample period only negligibly. In the
forecast period, however, the life expectancies calculated in
this way came to exceed those based on fewer age groups;
by 2065, e, was .7 years higher when death rates were ex-
tended up to age group 105-109 than it was when we used
age group 85+.

4. THE FITTED MODEL

Figure 2 plots estimates of k (and also shows forecasts,
which should be ignored until later). As shown, k declines
roughly linearly from 1900-1989, which is striking because
the pattern of change in life expectancy is definitely not linear.
k declines at about the same pace during the first half of the
period as it does during the second half: by 15.8 from 1900-

30
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Figure 2. Comparison of Mortality Forecasts to 2065, From 1900-1989
(Dots) and From 1933-1989 (Solid), With 95% Confidence Band. Both
forecasts use the (0, 1, 0) model; the forecast from 1900 has a dummy
for the influenza epidemic.
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Table 1. Fitted Values of a, and b,

for 1933-1987 (SVD)

Age group a, by
0 —3.64109 .09064
1-4 —6.70581 .11049
5-9 —7.51064 .09179
10-14 —7.55717 .08358
15-19 —6.76012 .04744
20-24 —6.44334 .05351
25-29 —6.40062 .05966
30-34 —6.22909 .06173
35-39 —5.91325 .05899
40-44 —5.51323 .05279
45-49 —5.09024 .04458
50-54 —4.65680 .03830
55-59 —4.25497 .03382
60-64 —3.85608 .02949
65-69 —3.47313 .02880
70-74 -3.06117 .02908
75-79 —2.63023 .03240
80-84 —2.20498 .03091
85-89 —1.79960 .03091
90-94 —1.40963 .03091
95-99 —1.03655 .03091
100-104 —.68035 .03091
105-109 —.34105 .03091

1944 and by 16.7 from 1944-1988. In contrast, life expec-
tancy at birth increased over these periods by 17.6 and 9.9
years, respectively. It also is striking that short-run fluctua-
tions in k do not appear much greater in the first part of the
period than they do in the second, with the exception of the
influenza epidemic in 1918. Both these features of k—its
linear decline and its relatively constant variance—are very
convenient for forecasting purposes. The linear decline of
course is not an inherent feature of the index, and it would
not hold if our series extended back into the 19th century.

The estimates of a, and b, are given in Table 1. These can
be used with forecasts of k (given later) to construct forecasts
of age-specific death rates with confidence intervals (although
see Appendix B for complications) and any other life table
measures desired.

Figure 3 shows a sampling of fitted age-specific death rates
compared to actual death rates (on a log scale) for 1933-
1987. For most age groups, the fit is very good. The major
exception is the rate for ages 20-24, which was discussed
earlier. Note that this rate, although of interest in its own
right, is very low relative to the others. Consequently, errors
in modeling and forecasting this rate will have little impact
on forecasts of life expectancy or the population age distri-
bution.

Figure 4 shows the quality of the fit in a different way, by
displaying the actual and fitted death rate schedules for all
ages in 1933 and 1987. Once again we see that the fits are
good, with the worst fits at the ages for which the rates are
low (due in part to the reestimation of k).

So far, we have treated the model of age-specific mortality
change as if it were exact and deterministic. In fact it is ap-
proximate and does not account for all the variation in the
rates. How close a fit does it provide? Viewing the fit for
each age group separately, the lowest proportion of variance
accounted for over the years 1933-1987 at any age is .830,
for age group 15-19. (This is the ratio of the variance of
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Figure 3. Actual and Fitted Log Death Rates, 1933-1987, Selected
Ages. Death rates are fitted by model in text, with k recalculated.

differences between the actual and fitted rates to the variance
of the actual rates.) For 13 of the 19 age groups, more than
95% of the variance over time is explained; for seven of these
groups, more than 98% of this variance is explained. Un-
fortunately, for age group 85+, which is numerically very
important, only 86% of the variance over time is explained.
As noted earlier, the death rate in this age group fluctuates
erratically, probably due more to measurement problems
than to behavior of the true rate. In fact the mortality data
above age 80 are highly suspect and fraught with measure-
ment problems of various sorts (Coale and Kisker 1987).
For this reason, and because it is important to have more
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Figure 4. Comparison of Actual, Fitted, and Forecast Mortality by Age,
for Sexes Combined, at Selected Dates. For 1933 and 1987, the last age
group is 85+. For 2030 and 2065, it is 85-89 and, therefore, less than
85+. Actual schedule are dots. Fitted and forecasts are solid.
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age detail at the higher ages, we do not use the death rate
for age group 85+, but instead impute death rates for age
groups 85-90 to 105-109, as described earlier.

An overall measure of goodness of fit can be obtained by
summing all the unexplained age group variances and taking
their ratio to the sum of total variances over age groups. The
advantage of this measure is that it reflects the differences
in variability of death rates. This measure indicates that
overall the fitted model accounts for .927 of the within-age
group variance. Because age group 85+ is numerically im-
portant, and poorly fitted, it pulls down the overall figure
considerably. If we ignore this age group, then the model
explains 97.5% of the variance over time in all the other age
groups, which is very good indeed.

One also might wonder whether the errors in a given year
were correlated across age groups. We have calculated the
correlation matrix for the differences between actual and
fitted rates for the period 1933-1987. The correlations often
are substantial and persist over very wide age gaps. This is
unfortunate, because we would like to avoid incorporating
this correlation matrix into the stochastic model. Appendix
B provides an extended discussion of these errors and of the
role of uncertainty in parameter estimates for a, and b,.

For any value of k we can of course calculate the implied
death rates m(x, k), and from these we can derive an entire
life table and life expectancies. The function m(x, k) is non-
linear, and ¢ is in turn a nonlinear function of the m’s. What
then is the relation between k and e,? Simulation reveals
that it is nonlinear. Over the sample range, at lower levels
of ¢y a decrease in k has an effect about twice as large as at
higher levels of ¢;, so a constant linear rate of decline in k
will lead to a slowing rate of change in life expectancy. Their
relationship may be understood in terms of the mortality
entropy measure, H (Keyfitz, 1977, pp. 62-68) which de-
clines as mortality falls. The plot of k against time (see Fig.
2) is fairly linear, whereas the plot of life expectancy against
time (see Fig. 1) is not. This is an advantage of forecasting
the death rates rather than the life expectancy directly. Direct
forecasts of life expectancy must introduce some procedure
for capturing the deceleration in gains, even when the rate
of decline in death rates is undiminished. Some discussions
of the purported deceleration in mortality decline fail to ap-
preciate this point.

5. MODELING AND FORECASTING THE
MORTALITY INDEX, K

Having developed and fitted the demographic model, we
are now ready to move to the problem of forecasting. The
first step is to find an appropriate ARIMA time series model
for the mortality index k(¢). After carrying out the standard
model identification procedures (see Box and Jenkins 1970),
we found that a random walk with drift describes k well (see
Appendix A for details). The question arises of how to treat
the influenza epidemic of 1918. One possibility is to view it
as a highly unusual event whose inclusion in the series would
inappropriately influence the results. In this case, we can fit
an intervention model that uses a dummy variable for 1918,
thereby effectively removing its influence. The other possi-
bility is to view the epidemic as a kind of event that might



664

occur again in the future and thus conveys valuable infor-
mation about the uncertainty of the forecast. In this case we
can treat the observation like any other. Fortunately, it hap-
pens that only the confidence band of the mortality forecast,
not the forecast itself, is affected by this decision. We have
elected to treat the epidemic as an anomaly and use the
intervention model. If we do not include a dummy for in-
fluenza in 1918, the parameter estimates and point forecasts
are essentially unchanged but the confidence interval for k
in 2065 (including uncertainty about drift) is 57% wider.

Our preferred model, estimated over 1900-1989, with
standard errors in parentheses, is as follows:

kl = kl—“l - .365 + 5.24ﬂu + €,
(.069) (.461)

see = .651,

R?* = 995.

The coeflicient on flu indicates that k was 5.24 higher than
otherwise expected in 1918. The constant term, —.365, in-
dicates the average annual change in k, which drives the
forecasts of long-run change in mortality. Over a 75-year
horizon, we will forecast a decline in k of 75 times .365, or
27.4. The standard error of the estimate (see) indicates the
uncertainty associated with a one-year forecast; as the forecast
horizon increases, the standard error grows with the horizon’s
square root.

Figure 2 plots the past values of k along with the forecasts
based on the time series model and the associated 95% con-
fidence intervals. Two forecasts are shown: one based on a
model fitted to the entire period 1900-1989, including a
dummy for the influenza epidemic, and the other based on
a model fitted solely to the years 1933-1989, when all states
were included in the death registration area. It can be seen
that the forecasts are very similar, both in expected values
and in confidence bands. This also provides a rough test of
the structural homogeneity of the period, because we can
evaluate whether basing the forecast on the more recent data
alters the results. Table 2 lists the forecasts based on the
period 1900-1989, along with their standard errors. Later
we will interpret these forecasts after first converting them
into forecasts of death rates, survivorship, and life expectancy.

We also conducted a more thorough investigation of how
base period length affects the forecasts by trying base periods
starting in 1930, 1940, 1950, 1960, 1970, and 1980 and all
ending in 1989. Table 3 shows the results. Evidently, the
choice of starting dates from 1930 to 1960 makes little dif-
ference to either the point forecasts or the confidence inter-
vals. A starting date of 1970, however, yields a much lower
forecast for mortality; k(2065) is —47.0, versus —38.80 in
our base run from 1900. This outcome reflects the excep-
tionally rapid mortality declines of the 1970s, when k fell
on average by .548 per year versus a long-run average of
.365. In the 1980s, k resumed decline at its long-run average
rate (.363 for 1980-1989). Therefore, it is not clear why the
estimates of drift and the forecast to 2065 both indicate slower
decline (—32.2 in 2065 versus —38.80 in our base run). The
fitted models and forecasts evidently exhibit some instability
when the base period is reduced to 10 or 20 years. How
severe are the implications for the derived forecasts of life

Journal of the American Statistical Association, September 1992

Table 2. Forecasts of Mortality Index k With Standard
Errors, (From (0, 1, 0) Model With Flu Dummy
Estimated Over 1990-1989)

Date k Standard deviation
1990 -11.41 .65
1991 -11.78 .92
1992 —12.14 1.13
1993 —-12.51 1.30
1994 —-12.87 1.46
1995 -13.24 1.60
1996 —-13.60 1.72
1997 -13.97 1.84
1998 —14.33 1.95
1999 —-14.70 2.06
2000 —15.06 2.16
2001 —15.43 2.26
2002 —-15.79 2.35
2003 —-16.16 2.44
2004 —-16.52 2.52
2005 -16.89 2.61
2006 —-17.25 2.69
2007 —-17.62 2.76
2008 —-17.98 2.84
2009 —18.35 2.9
2010 -18.71 2.98
2011 —-19.08 3.05
2012 —-19.44 3.12
2013 -19.81 3.19
2014 —20.18 3.26
2015 —20.54 3.32
2016 —20.91 3.38
2017 —-21.27 3.45
2018 —21.64 3.51
2019 —22.00 3.57
2020 —22.37 3.63
2021 —22.73 3.68
2022 —-23.10 3.74
2023 —23.46 3.80
2024 —23.83 3.85
2025 —24.19 3.91
2026 —24.56 3.96
2027 —24.92 4.01
2028 —25.29 4.07
2029 —25.65 412
2030 —26.02 417
2031 —26.38 4.22
2032 —26.75 4.27
2033 -27.11 4.32
2034 —27.48 4.37
2035 —27.84 4.42
2036 —-28.21 4.46
2037 —28.57 4.51
2038 —28.94 4.56
2039 —29.30 4.61
2040 —29.67 4.65
2041 -30.03 4.70
2042 -30.40 474
2043 —-30.76 4.79
2044 -31.13 4.83
2045 -31.49 4.87
2046 —31.86 4.92
2047 -32.22 4.96
2048 -32.59 5.00
2049 -32.95 5.04
2050 —-33.32 5.09
2051 —33.68 5.13
2052 —34.05 5.17
2053 —34.41 5.21
2054 —34.78 5.25
2055 —-35.14 5.29
2056 —35.51 5.33
2057 —35.87 5.37
2058 —36.24 5.41
2059 —36.61 5.45
2060 -36.97 5.49
2061 —-37.34 5.53
2062 -37.70 5.56
2063 —38.07 5.60
2064 -38.43 5.64
2065 —38.80 5.68
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Table 3. Forecasts of k From Various Base Periods Ending in 1989

Starting date Base per Constant Standard error Standard error Forecast Standard error
k(2065) length (drift) of constant of equation k(2065) of forecast
1930 60 —.406 .071 .550 -419 4.80
1940 50 -.382 .071 .500 —40.1 4.36
1950 40 —.342 .079 .500 -371 4.36
1960 30 -.351 .094 .516 -37.7 4.50
1970 20 —.473 .104 .465 —47.0 4.06
1980 10 —.278 137 434 —-32.2 3.78

NOTE: All base periods end in 1989. In each case, a random walk with drift was fit to the data.

expectancy at birth? Results to be discussed later indicate
that in the neighborhood of k = —38.8, a variation of unity
in k implies a variation of .3 in life expectancy. Therefore,
the forecast of k using data back to 1970 implies life expec-
tancy greater by about 2.5 years; using data back to 1980
implies life expectancy less by about 2 years. From the point
of view of forecasts based on relatively long time series, the
results shown in the table are reassuring, because instability
only emerges as the base period gets substantially shorter.

In addition, we tested our procedure by fitting models to
earlier portions of the data set and forecasting over the later
portions for which the outcome is known. Figure 5 shows
forecasts from a model fitted to the period 1933-1962 and
used to forecast over the 26-year period from 1963-1989.
The forecast does very well over this horizon, which is 90%
as long as the base period. In another test, we fitted a model
to data for 1900-1944 and forecast from 1945-1989. This
forecast (not shown ) is right on target at the end of the period,
and the actual k stays very well within the confidence band.
Taken together, these experiments provide some basis for
confidence in the approach taken. We must keep in mind,
however, that no amount of analysis of the past can assure
us that dramatic structural changes will not occur in the
future.
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Figure 5. Within-Sample Forecast of Mortality Index, k Model Fitted on
1933-1962; Forecast for 1963-1989.

As noted earlier, the estimation of the drift term is central
to the forecasts, and of course its value cannot be known
with certainty. The confidence intervals plotted in all the
figures are based entirely on the estimated variance of the
error term of the fitted model. For models without drift this
is appropriate, because it has been shown that the effect of
the standard error of parameter estimates is relatively small
(Box and Jenkins 1970, pp. 267-269). In our model, taking
account of parameter uncertainty increases the standard error
of the forecast by less than 1% in the first year, by 6% after
10 years, by 25% after 50 years, and by 36% after 75 years
(see Appendix B).

6. FORECASTS OF DEATH RATES AND
LIFE EXPECTANCY

We now can use the mortality model to generate forecasts
of the central death rates. Forecasts of the logs of represen-
tative rates are shown in Figure 6. Most of the forecasts match
up well with the actual rates in 1989, but the rates for age
groups 1-4 and 20-24 are forecast to drop quite suddenly.
This is a consequence of the way the model was fit. A similar
model easily could have been constrained to pass through
the actual rates at the end of the base period, but with some
deterioration in the goodness of fit for the rest of the base
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Figure 6. Selected Age-Specific Death Rates: Actual and Forecasts.
Forecasts are based on 1900-1989, using model (0, 1, 0) with a flu
dummy.
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Table 4. Forecasts of Age-Specific Death Rates per 100,000 at Five-Year Intervals, 1990-2065 (Sexes Combined)
Date
Age group 1990 1995 2000 2010 2020 2030 2040 2050 2065
0-1 932 790 669 481 345 248 178 128 78
1-4 35 28 23 15 10 7 5 3 2
5-9 19 16 14 10 7 5 4 3 2
10-14 20 17 15 1 8 6 4 3 2
15-19 67 62 57 48 40 34 28 24 18
20-24 86 78 71 58 48 40 33 27 20
25-29 84 75 68 54 44 35 28 23 16
30-34 97 87 78 62 50 40 32 25 18
35-39 138 124 111 90 72 58 47 38 27
40-44 221 201 182 150 124 102 84 69 52
45-49 370 341 315 267 227 193 164 139 109
50-54 613 572 533 464 403 351 305 265 215
55-59 965 907 853 754 666 589 520 460 382
60-64 1,511 1,432 1,357 1,218 1,094 982 882 792 674
65-69 2,233 2,119 2,010 1,810 1,629 1,466 1,320 1,188 1,015
70-74 3,361 3,187 3,022 2,718 2,444 2,198 1,976 1,777 1,515
75-79 4,979 4,693 4,423 3,930 3,491 3,102 2,756 2,448 2,050
80-84 7,748 7,323 6,921 6,182 5,623 4,933 4,407 3,936 3,323
85-89 12,267 11,687 10,609 10,108 9,177 8,331 7,564 6,868 5,942
90-94 19,099 18,341 16,915 16,246 14,987 13,827 12,758 11,774 10,439
95-99 29,744 28,864 27,188 26,390 24,869 23,442 22,102 20,844 19,095
100-04 46,334 45,554 44,053 43,329 41,933 40,600 39,325 38,104 36,364
105-09 72,195 72,100 71,956 71,906 71,845 71,831 71,861 71,930 72,097

NOTE: Forecasts of the mortality index are based on the (0, 1, 0) model with a dummy for the flu year, fit to data from 1900-1989. See the text for the method of calculating the death rate forecasts
from the forecasts of the mortality index. Confidence intervals for these forecasts may be calculated for each rate by using the procedure described in the text.

period. (To do this, set a, equal to In(m, ), where T is the
terminal period, and apply SVD as before, disregarding the
normalization rule for k). We prefer to accept the discon-
tinuity, which affects only rates that are absolutely very low
in any event and have little influence on life expectancy.

Figure 4 shows the shapes of the age profiles that we fore-
cast for 2030 and 2065. Two trends stand out in relation to
the earlier profiles, which also are shown. First, the hump
in mortality at young adult ages becomes more pronounced;
second, by 2065 the death rates for age groups 1-4, 5-9, and
10-14 become virtually identical. The reader can assess the
plausibility of these patterns.

Table 4 contains forecasts of all the five-year death rates
for 1990, 1995, 2000, and every tenth year thereafter through
2065. Infant mortality rates are forecast to fall to less than
one per thousand, which is perhaps implausibly low. Neither
Table 4 nor Figure 6 gives confidence intervals for the death
rate forecasts, but these can be derived using the information
in Tables 1, 2, and 4 (see Appendix A). For shorter forecast
horizons, these confidence intervals are too narrow; see the
detailed discussion in Appendix B. The same information
can be used to calculate death rate forecasts for every calendar
year.

From the forecasts of death rates, it is straight forward to
calculate life tables and life expectancy at birth. Table 5 con-
tains forecasts of /, (proportions surviving from birth to exact
age x) for five-year age groups for periods as in Table 4. In
1987, about 46% of births survive to age 80 in a period life
table. We forecast that by 2065, 46% will survive to age 90.

Figure 1 plots the forecasts of life expectancy along with
their associated confidence intervals. There are several points
to note. First, the forecast definitely is not a linear extrapo-
lation of the trend in life expectancy, in contrast to the fore-
cast for k. Instead, life expectancy is forecast to increase

slowly relative to past trend and at a rate that declines over
the forecast horizon. Second, the confidence interval is sur-
prisingly narrow; even by 2065, the 95% interval based only
on the variance of the innovation terms is only plus 3.1 or
minus 3.7 years; uncertainty from the estimated trend term
raises these numbers to 4.1 and 5.2. These augmented in-
tervals are shown by dotted lines in Figure 1. Third, of course,
is the substance of the forecast, which foresees a 10.5-year
increase in life expectancy over the next 75 years, in contrast
to the Social Security Actuary and U.S. Census Bureau fore-
cast of a 5.7-year increase (Wade 1989); reasons for the dif-
ference between the forecasts will be discussed later. Our
forecast is low, however, compared to the recent extrapolative
forecast by Guralnik, Yanagishita, and Schneider (1988),
who anticipated life expectancy of 88.7 in 2040, whereas we
expect only 83.1. Of the 10.5-year gain in life expectancy we
forecast over the years 1989-2065, 2% of the gain in person-
years lived occurs below age 15, 24% occurs in the working
years 15-64, and 74% occurs at age 65 and older. Between
2064 and 2065, 86% of the gain in person-years lived occurs
at age 65 and older. Table 6 shows forecasts of life expectancy
at different ages and periods.

Why, as noted above previously, are the confidence bands
on life expectancy so narrow? There are several reasons. One
reason is that k hews so closely to a linear trend over the
period, resulting in a narrow confidence band for its forecast.
A second reason is that the entropy of the life table is de-
creasing, making life expectancy less responsive to errors in
forecasting k and age-specific death rates. Thus, whereas the
width of the 95% confidence interval for k in 2065 is 70%
of its decline from 1900-1989, the comparable figure for e,
is only 36%. A third reason is that we have chosen to remove
the influence of the 1918 epidemic, and a fourth reason is
that errors in forecasting individual death rates tend to be
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Table 5. Forecasts of Numbers Surviving to Exact Ages Out of 100,000 Births at Five-Year Intervals,
1990-2065 (From Period Life Tables With Sexes Combined)
Date

Age 1990 1995 2000 2010 2020 2030 2040 2050 2060 2065
0 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000 100,000
1 99,120 99,253 99,366 99,544 99,672 99,764 99,830 99,878 99,912 99,926
5 98,985 99,143 99,276 99,483 99,631 99,737 99,812 99,866 99,904 99,919
10 98,890 99,062 99,208 99,434 99,596 99,712 99,794 99,853 99,895 99,911
15 98,791 98,977 99,134 99,380 99,556 99,682 99,773 99,837 99,883 99,901
20 98,458 98,671 98,853 99,143 99,357 99,514 99,631 99,718 99,783 99,809
25 98,033 98,285 98,503 98,854 99,118 99,318 99,469 99,585 99,673 99,710
30 97,622 97,915 98,170 98,586 98,902 99,143 99,329 99,472 99,582 99,628
35 97,148 97,490 97,789 98,280 98,657 98,947 99,172 99,346 99,482 99,539
40 96,480 96,888 97,247 97,840 98,301 98,659 98,939 99,158 99,330 99,402
45 95,420 95,921 96,365 97,108 97,694 98,157 98,523 98,814 99,046 99,144
50 93,669 94,297 94,860 95,818 96,590 97,214 97,718 98,128 98,461 98,604
55 90,837 91,636 92,362 93,620 94,661 95,523 96,239 96,835 97,333 97,550
60 86,550 87,565 88,500 90,153 91,556 92,749 93,765 94,632 95,373 95,702
65 80,235 81,500 82,681 84,813 86,673 88,296 89,714 90,953 92,037 92,528
70 71,723 73,275 74,745 77,451 79,872 82,036 83,969 85,694 87,234 87,940
75 60,561 62,419 64,204 67,561 70,643 73,464 76,039 78,384 80,514 81,504
80 47,098 49,256 51,364 55,423 59,256 62,850 66,201 69,311 72,183 73,532
85 31,780 33,972 36,166 40,531 44,821 48,992 53,007 56,840 60,471 62,206
90 16,953 18,681 20,470 24,202 28,091 32,078 36,108 40,131 44,101 46,055
95 6,290 7,220 8,226 10,462 12,983 15,763 18,771 21,968 25,314 27,030
100 1,301 1,569 1,874 2,608 3,520 4,621 5,920 7,418 9,113 10,031
105 104 131 163 248 363 515 710 955 1,254 1,427
110 0 0 0 0 0 0 0 0 0 0

NOTE: Forecasts of the mortality index are based on the (0, 1, 0) model with a dummy for the flu year, fit to data from 1900-1989. See the text for the method of calculating the death rate forecasts

from the forecasts of the mortality index. Proportions surviving are derived from the death rates in Table 1 using standard procedures.

offsetting in the life expectancy calculation (see Ap-
pendix B).

We could have proceeded, as some have done, by modeling
and forecasting life expectancy directly. The 50-year forecast
(to 2038) from a direct ARIMA model of life expectancy is
92.3 years, with a confidence interval 13.9 years wide. The

forecast from our preferred procedure, based on the mortality
index, is 82.9 in 2038, with a confidence band only 6.4 years
wide. Evidently the procedure suggested here leads to dra-
matically different forecasts that are both lower and (appar-
ently) more certain. We believe our procedure incorporates
prior understanding of the nature of the process of mortality

Table 6. Forecasts of Remaining Life Expectancy at Exact Ages at Five-Year Intervals, 1990-2065 (From Period Life Tables With Sexes Combined)

Date

Age 1990 1995 2000 2010 2020 2030 2040 2050 2060 2065
0 75.83 76.68 77.49 79.04 80.48 81.84 83.13 84.34 85.50 86.05

1 75.50 76.25 76.99 78.40 79.75 81.04 82.27 83.44 84.57 85.12

5 71.60 72.33 73.05 74.45 75.78 77.06 78.28 79.45 80.58 81.12
10 66.66 67.39 68.10 69.48 70.81 72.08 73.30 74.46 75.59 76.13
15 61.73 62.45 63.15 64.52 65.83 67.10 68.31 69.48 70.59 71.13
20 56.93 57.63 58.32 59.67 60.96 62.21 63.40 64.56 65.66 66.20
25 52.16 52.85 53.52 54.83 56.10 57.32 58.50 59.64 60.73 61.26
30 47.37 48.04 48.69 49.98 51.22 52.42 53.58 54.70 55.78 56.31
35 42.59 43.24 43.87 45.12 46.34 47.52 48.66 49.77 50.84 51.36
40 37.87 38.49 39.10 40.31 41.50 42.65 43.77 44 86 45.91 46.42
45 33.26 33.85 34.44 35.60 36.74 37.85 38.94 40.00 41.04 41.54
50 28.83 29.39 29.94 31.04 32.13 33.19 34.24 35.27 36.26 36.75
55 24.64 25.16 25.68 26.71 27.73 28.73 29.73 30.70 31.65 32.12
60 20.73 21.21 21.68 22.63 23.57 24.51 25.44 26.35 27.25 27.68
65 17.16 17.59 18.02 18.89 19.75 20.61 21.47 22.31 23.14 23.54
70 13.88 14.27 14.65 15.43 16.21 16.99 17.75 18.52 19.26 19.63
75 10.96 11.30 11.63 12.31 12.99 13.66 14.33 15.00 15.65 15.98
80 8.36 8.63 8.90 9.44 9.98 10.53 11.08 11.62 12.16 12.42
85 6.18 6.37 6.57 6.97 7.37 7.78 8.18 8.59 9.00 9.20
90 4.46 4.59 4.72 4.99 5.27 5.54 5.82 6.10 6.38 6.52
o5 3.10 3.18 3.27 3.43 3.60 3.77 3.93 410 4.26 4.34
100 1.91 1.98 2.04 2.16 2.27 2.37 2.46 2.55 2.64 2.68
105 .00 .00 A1 31 48 .63 .76 .88 .99 1.04
110 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00

NOTE: Forecasts of the mortality index are based on the (0, 1, 0) model with a dummy for the flu year, fit to data from 1900-1989. See the text for the method of calculating the death rate forecasts
from the forecasts of the mortality index. Life expectancies are derived from the death rates in Table 1 using standard procedures.
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decline, which after all is effected only through reductions
in death rates at specific ages.

7. COMPARISON TO SOCIAL SECURITY FORECAST

Our forecasts differ significantly in both method and out-
come from those prepared by the Actuary of the Social Se-
curity Administration (Wade 1989) and used by the U.S.
Census Bureau as well. The Actuary’s forecasts combine age-
specific trend extrapolation with the views of medical experts
on ultimate cause-specific (but not age-specific) rates of
mortality decline, which are phased in gradually, with com-
pletion by 2010. The medical expert’s views make the ulti-
mate rate of decline substantially slower than the historic
trends and imply that all age-specific rates ultimately decline
at the same pace, which is sharply inconsistent with past age-
specific trends. Confidence intervals (high-low intervals) are
assigned subjectively. (See Alho and Spencer [1989] for a
derivation of objective confidence intervals for these fore-
casts.) Alho (1990) found that the use of experts by the Ac-
tuary hindered rather than helped the forecasts in the past,
in the sense that statistical time series models would have
performed better.

We forecast a life expectancy of 86.05 by 2065; the Actuary
projects a life expectancy of 80.45 (sexes averaged for the
Alternative II forecast), or 5.6 years less. The age distribution
of mortality in the Actuary’s forecasts also is quite different
than ours. The Actuary forecasts a female life expectancy of
84.7 in 2070; we forecast an identical sexes-combined level
for 2054. Comparison of the age-specific death rates in the
two forecasts reveals a clear pattern of differences. Up to age
group 30-34, our death rate forecasts are much lower than
the Actuary’s; however, after this age, their forecasts are much
lower than ours (Wade 1989). This pattern is to be expected,
because their procedure eventually makes all age-specific
death rates decline at the same rate and ours let each decline
at its own specific historical rate. Because death rates have
tended to decline more rapidly at younger ages and less rap-
idly at older ages, the observed pattern is generated.

To assess the implications of our mortality forecasts for
population aging, we used them to prepare population fore-
casts based on assumptions that were otherwise identical to
those of the “middle” scenarios of two official forecasts: Spe-
cifically, we replicated the fertility and migration assumptions
of each, but combined these with our mortality forecasts.
The Social Security Administration foresees an elderly de-
pendency ratio (65+/20-64) of .411 in 2065, whereas we
forecast .470; our forecast implies that payroll taxes will need
to be 14% higher than the figure under their forecast, other
things equal. The comparison with Census Bureau forecasts
is their .436 versus our .480; our forecast implies a 10% higher
payroll tax rate in 2065.

8. THE ROLE OF AIDS

The first reported cases of AIDS in the United States oc-
curred in 1981; the numbers have grown each year since.
The resulting AIDS deaths are of course reflected in the total
registered deaths from which our mortality index, k, is com-
puted. By 1986 AIDS deaths raised adult male and female
mortality in the United States by .7 and .07% (Curran 1988);
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AIDS is now the fifteenth leading cause of death overall.
Calculating the rate of decline in k from 1980-1989, a period
that spans rising mortality from AIDS, we find an average
annual decline of .363, as compared to .365 in our fitted
model for 1900-1989. This is essentially zero difference,
suggesting that AIDS has not yet led to a structural discon-
tinuity of the sort that would invalidate these forecasts. We
must remember that the past 90 years have witnessed many
important changes in diseases and their treatment, including
the discovery of penicillin and other antibiotics.

One alternative to ignoring AIDS altogether would be to
incorporate extraneous forecasts of AIDS mortality, includ-
ing its age incidence, by simply adding them to the forecasts
we have given, with a slight adjustment for competing risks.
Given the current state of knowledge, however, the problems
in forecasting U.S. AIDS mortality appear so considerable
that nothing useful along these lines could be done (Curran
1988; Gail and Brookmeyer 1988; Lamp et al. 1990). For
these reasons, we have not incorporated AIDS mortality into
our forecasts in any specific way.

9. SUMMARY AND CONCLUSION

We have constructed a simple but powerful one-parameter
family of life tables that closely fits the pattern of age-specific
mortality in the United States from 1933 to the present. The
time trend in k, the parameter of the fitted life tables, is
essentially linear from 1900 to the present; the parameter
declines by the same amount in each of the two halves of
the 90-year period. We use standard statistical methods to
model and forecast the index of mortality as a random walk
with drift, which implies that each age group’s mortality
continues to decline at its own age-specific exponential rate.
From the forecasts of rates and their confidence intervals,
we construct forecasts of life expectancy. We anticipate that
it will rise by about 10 years to 86.05 in the year 2065, with
a 95% confidence band of plus 3.9 or minus 5.6 years (in-
cluding uncertainty about the trend term). Experiments in-
dicate that the method performs well over intervals for which
mortality is known, and that major variations in the length
of the base period have relatively modest effects on the fore-
casts for the year 2065. The analysis also demonstrates that
for life expectancy to rise to such a high value as 100 by
2065 would require a radical break in historical trends.

All purely extrapolative forecasts assume that the future
will be in some sense like the past, and this forecast is no
exception. Information from other sources may help us an-
ticipate ways in which the future will be unlike the past and
thereby lead to improved forecasts, although use of such in-
formation has its own problems. In any event, because this
forecast spells out carefully what will happen if long-run
trends continue, it can serve as a useful benchmark for as-
sessing the assumptions and outcomes of other forecasts.

APPENDIX A: COMPUTATIONAL PROCEDURES

The SVD procedure is available in many statistical packages; we
used Gauss. If SVD is not available, a close approximation to the
SVD solution for this application can be found as follows. Choose
the normalization used above; the k’s sum to 0 and the b’s to unity.
Then a, must equal the average over time of In(m, ). (This follows



Lee and Carter: Forecasting U.S. Mortality

from setting the average value of k to 0.) Furthermore, k, must
(very nearly) equal the sum over age of (In(m,,) — a,), since the
sum of the b,s has been chosen to be unity (this is not an exact
relation, however, since the error terms will not in general sum to
0 for a given age). All that remains, then, is to estimate the b,s.
Each b, can be found by regressing, without a constant term,
(In(m,,) — a,) on k, separately for each age group x.

Time series estimation was done by Regression Analysis for Time
Series (RATS) using a nonlinear least squares procedure. A similar
model with an ar(1) term added was marginally superior, but we
preferred the (0, 1, 0) model on grounds of parsimony. The preferred
model had a DW statistic of 2.42 and a Ljung-Box Q statistic of
37, significant at the .090 level. We also experimented with nu-
merous other specifications; all gave essentially the same point fore-
casts and differed only slightly on the confidence bands. We also
used an automated nonparametric frequency domain method to
forecast k. This method, which was carried out without an inter-
vention term for the influenza epidemic, generated a point mortality
forecast nearly identical to the one based on time domain Box-
Jenkins method (see Doan 1990, section 7-12).

To make the old age adjustments, we first estimated k in the way
described, using observed death rates only up to 85+. We then used
the implied fitted death rates for 75-79 and 80-84 to derive the
death rates up to 105-109, using the Coale and Guo procedure.
We did not adjust any death rates between 65 and 84.

If we ignore other sources of error (see Appendix B), then the
confidence bounds on k can be used to calculate confidence bounds
on life expectancy, because it is assumed that all age-specific rates
vary together over time with k (correlations among logs of rates
are assumed to be unity), so there is no cancellation of variations
in rates. The approximate upper 95% confidence bound for the
forecast of m,, is given by the point forecast in Table 4 times
exp(2b,sey,); for the lower bound, the factor is exp(—2b,sey). by
is given in Table 1, and sey, is given in Table 2.

APPENDIX B: THE STRUCTURE AND MAGNITUDE OF
ERRORS IN THE MORTALITY FORECAST

Our analysis of forecast error so far has focused on the error in
forecasting the mortality index, k, while ignoring errors in fitting
the original matrix of mortality rates. This appendix explores the
forecast errors more completely.

The log of each age-specific mortality rate is forecast s periods
ahead from base period ¢ using the following equation:

forecast[In(my )] = 4, + lA(t+.vf)x s

where the " indicates an estimate (for a, and b,) of a forecast (for
k,). The true value of In(m, ), assuming the model specification
and data are correct, is given by:

ln(mx,t+s) = (ﬁx + ax) + (Rl+s + ut+s)(Bx + ﬁx) + Ex 1455

where a, and B, are the errors in estimating a, and b, and u,., is,
as before, the error in forecasting k ahead s periods from base
period ¢.
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The forecast error, E, .., is their difference:
Eyiis = ox + ex a5+ (Bx + By) thyas + ﬁxl’&ﬁ-s-

There are four error terms in this expression, but actually u is
itself the sum of two errors due to innovations and error in esti-
mating drift. To incorporate forecast uncertainty in k due to the
estimate of the drift term, we reasoned as follows. Innovation terms
after 1989 must be independent of the error in estimating the drift
term; therefore, their influence on the forecast error is additive with
that of the error terms. If the forecast interval is s, then the associated
forecast error variance is the sum of the cumulated error variance,
s*see?, and the squared error associated with estimate of the drift,
(s*sec)?, where sec is the standard error of the estimate of the
constant. Thus the standard error of the forecast is the square root
of [sxsee? + (s*sec)?]. In our model, see = .653 and sec = .0696.

It is not clear exactly how these different sources of error may
be correlated with one another. Informal experiments and use of
the bootstrap indicate no correlation of errors in estimates of a,
and b, and modest negative correlations across ages in the b, esti-
mates. To get an idea of their relative importance, we will assume
them to be independent. Under this assumption the variance of
E, .. is given by

2 _ 2 2 h2 .2 2 (2 2
OExpts = Ooxprs T Oox + by s T Uﬂx(kz+s + o).

The question is whether the term b2s2 dominates the others, for
this is the only term included in the forecast intervals shown in the
tables and graphs.

The variance of the term ¢, ., is estimated by the variance of the
error in fitting age group x within the sample period, which is readily
calculated. 4, is simply the average over time of the log of the death
rate for age x, so its error variance is the variance of In(m, ) divided
by T, the number of observations of m,.

The error variance in the estimate of b, is obtained less easily.
An analytic expression is available for errors in SVD estimates in
the usual case when these arise from sampling error or measurement
error in the data. In our application such errors are minimal, and
errors arise instead from genuine departures of the rates from the
simple model posited due to omitted historical influences. For this
reason we used a bootstrap procedure to estimate the variance of
the estimator of b,. We constructured 400 pseudo-data matrices
by adding errors to the matrix {In(m,,) — In(m,,.)}. The errors
were obtained by sampling with replacement from the corresponding
age column of the matrix of residuals from the initial fit of the
model to the matrix of observed rates (that is, based on the first
elements of the SVD analysis). We then used our SVD procedure
to reestimate {b,} for each pseudo-data matrix. From the results
we calculated variances and covariances for {b,}. Following
Freedman and Peters (1984, p. 151), we did not inflate the errors
to compensate for their reduction in fitting.

Table B1 evaluates the share of the forecast error for the logs of
a few representative death rates in 2065 arising from each source.
It shows that in 2065 the error in forecasting the mortality index
dominates the errors in fitting the mortality matrix. Even in the

Table B1. Sources of Error in Log Age-Specific Death Rate Forecasts for 2065

. k, b errs k forc
Age group Total o fit m o2 a, o2 b, (05Keis)? okol B%02 k forc share o k forc share o
0 .6682 .0156 .0054 .0097 .00039 .6371 .953 .976
20-24 2449 .0115 .0020 .0089 .00036 2221 .907 952
40-44 .2199 .0010 .0018 .0008 .00003 .2163 984 .992
60-64 .0714 .0018 .0006 .0014 .00005 .0675 946 973
80-84 .0796 .0028 .0006 .0019 .00008 0742 .932 .966

NOTE: The forecasts of k for 2065 is —38.8, which was used to calculate (02K )2 The forecast variance for k in 2065, ¢2, is 60.39.
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Table B2. k’s Share of the Standard Errors of Age-Specific
Death Rate Forecasts and Life Expectancy
Date (forecast horizon)
Age group 1990 (1) 1999 (10) 2014 (25) 2065 (76)
0 .37 .80 .93 .98
20-24 .28 .69 .88 .95
40-44 .54 .90 97 .99
60-64 .36 .78 .93 97
80-84 .32 74 91 97
€ .81 .98 .99 1.00

worst of the five age groups examined, the standard error based
solely on the forecast of k is 95% of the standard error based on all
sources.

We also examined the sources of error for shorter run forecasts,
for which the outcome is not so favorable. For the five selected age
groups, Table B2 gives the size of the standard error derived from
k alone as a proportion of the standard error calculated for all
sources (corresponding to the last column of Table B1). From these
figures we must conclude that the confidence intervals based on k
alone seriously understate the errors in forecasting individual age-
specific death rates over shorter horizons, say less than 15 years.

What about life expectancy? When passing from errors in fore-
casting the age-specific death rates to errors in forecasting life ex-
pectancy there is bound to be very substantial cancellation of age-
specific errors, whereas the error in forecasting k applies to all age
groups and does not cancel at all. Therefore, error in k should be
relatively more important in this case. We will consider this point
in some detail.

First, note that errors in the log of mortality differ from those in
mortality itself. If In(m, ;) = Ii(m, 14+5) + E, 4, then the error in
m, .. is approximately E i, .s (since exp(Ey ) is approxi-
mately 1 + E,, for small values of FE, ), which we will
call 0, ;4.

Second, note that if m, ., is overestimated by an amount 60, .,
then é, for time ¢ + s will be reduced by roughly 6, ;4T +s, Where
T, +s1s the total years lived above the middle point of the age group
x and the life table radix, /y, is unity. This is a linear approximation
that evaluates T ,+s, a random variable, at its expected value. The
error 0, .., consists of a component 7, .+, which is perfectly cor-
related across x, and a component ¢, .., which is assumed inde-
pendent across x. Letting & denote an expectation, we can then
express the approximate error variance of &, as a function of the
error components as

Var(é) = 6(2 "7x,1+sTx,t+s)2 + 6’{ > (¢x,l+sTx,I+s)2}-

Repk}CiDg Nxers DY Mg islhyrsby and Gxirs DY Mg (o + x s
+ Bukx,+s T Bxhits), and substituting variances, we get

Var(§) =o¢ 31+s(2 bxﬁlx,ﬁsTx,tﬂ)2 +2 (lhx,l+sTx,l+s)2

2 2 2 2 2
X (o'wt + O ex,t+s + aﬂxk21+s + o'ﬂxo'uﬁs)-

This expression can be evaluated to find the approximate error
variance of life expectancy forecasts at each horizon, under the
assumption that different sources of error at a given age are un-
correlated and that the error sources other than k are uncorrelated
across age. These assumptions probably overstate the contribution
of these non-k errors to uncertainty in life expectancy forecasts,
because although the age group residuals ¢, .. are indeed correlated
across age, by construction of k these errors must exactly cancel in
the sense that the fitted death rates must produce exactly the correct
number of deaths in each sample calendar year, given the actual
population age distribution. Any tendency for the forecasts to be
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wrong in the same direction for all age groups is in principle absorbed
by k. The calculations of the standard error of ¢, ignore this con-
straint and thus probably overstate the role of the non-k errors.

Results of evaluating the expression are shown in the bottom
row of Table B2. In 1990 k accounts for 81% of the standard error
in the forecast of life expectancy; by 1994 (not shown) this rises to
95%. The approximation for Var(é,) developed above is evidently
good, because when restricted to the term in o2, it matches the
exact result very closely.

We conclude that for life expectancy forecasts, it is reasonable
to restrict attention to the errors in forecasting the mortality index
and to ignore those in fitting the mortality matrix, even for shortrun
forecasts. For individual death rate forecasts, however, confidence
intervals based on k alone are a reasonable approximation only for
forecast horizons greater than 10 to 25 years. If there is particular
interest in forecasting these individual rates over the shorter term,
then the other sources of error can be incorporated in the confidence
interval as was done previously.

[Received September 1990. Revised July 1991.]
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Comment

A common criterion for evaluating forecasting method-
ologies is the accuracy with which the forecasts match the
eventual realizations of the actual data. Users of forecasts
must choose among alternative forecasting models before
such facts become available, however. Unwilling to wait for
several decades to pass before writing this comment, I analyze
the methodology of Lee and Carter using criteria suggested
by Keyfitz (1981), Long (1984), and Rogers and Woodward
(1991): (a) the transparency of assumptions used to generate
the forecasts, (b) the ability of the model to generate measures
of forecast uncertainty, (c) the extent of disaggregation (by
age, sex, and race) permitted by the model, and (d) the qual-
ity of the data on which the forecasts are based.

Lee and Carter have presented a methodology for fore-
casting mortality that falls squarely within the extrapolative
tradition of demographic forecasting. They intend their fore-
casts to be more than illustrative, presenting projections that
clearly trace the implications of the continuation of historical
trends. These projections can serve as a benchmark for the
comparison and evaluation of official forecasts. As a set of
benchmark forecasts, these will be most useful if we clearly
understand the process generating the forecasts.

The singular value decomposition (SVD) is applied to the
matrix of age-specific central death rates for each calendar
year in this century. This decomposition yields an index of
mortality, k,, and a set of age-specific constants, b,, which
relate the central death rates, m, ,, to the index of mortality.
In particular, d(In m,.,)/ dt = b,dk,/ dt. Because k, is modeled
as a random walk with drift, it is projected to decline at a
constant linear rate. Therefore, each age-specific mortality
rate is predicted to decline at its own constant exponential
rate, as determined by the individual b, parameters. In fact,
as stated at several points in the article and as shown in their
Figure 6, each central death rate is forecasted to decline “at
its own specific historical rate” (p. 665). From this analysis
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it becomes clear that forecasts of mortality identical to Lee
and Carter’s will be produced by directly projecting each age-
specific mortality rate at its own historical rate of exponential
decline. Because the forecasts produced by straight extrap-
olation of individual mortality rates are the same as those
generated indirectly from Lee and Carter’s mortality index,
the two methods are equivalent, despite the authors’ state-
ments to the contrary (p. 661).

Viewed in these terms, the Lee and Carter forecasts can
be given high marks in terms of transparency of assumptions.
Their projections capture the implications of a continuation
of past exponential trends in age-specific mortality rates, un-
complicated by expert opinion or assumptions about medical
advances, delay of deaths by cause, or ultimate levels of life
expectancy.

Lee and Carter claim that ““variation in a single parameter
can generate the main outlines of the observed pattern” (p.
660), meeting Keyfitz’s (1981) criterion of parsimony in
representing the mortality profile. Actually their methodol-
ogy involves 23 parameters—the b, coefficients that capture
the rates of change in each age-specific mortality rate, relative
to changes in the mortality index k,.

There are disadvantages to mortality forecasts that are
straight projections of individual age-specific central death
rates. One concern is that if each age-specific rate is allowed
to change at its own individual rate, the projected age profile
of mortality may depart from plausible, historically observed
patterns (Keyfitz 1981). Evidence of this outcome is seen
in Lee and Carter’s Figure 4, in which the projected profiles
for 2030 and 2065 are characterized by several irregularities:
mortality rates that are constant across ages 1-14, a very
sharp rise to a prominent accident peak for young adults,
and a strong upward curvature of senescent mortality rates
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