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We evaluated the influence of family history on longevity by examining longevity in a cohort of
78,994 individuals drawn from the Utah Population Database (UPDB) who were born between
1870 and 1907, and lived to at least age 65. We examined Mendelian genetic and social modes
of transmission of excess longevity (the difference between observed and expected longevity)
by varying weighted kinship contributions over different classes of relatives. The genetic com-
ponent of the variation in excess longevity measured as heritability, h

 

2

 

, was approximately 0.15
(95% confidence interval [CI] 0.12–0.18). Among siblings of probands who reached the 97th
percentile of excess longevity (

 

1

 

14.8 years, currently age 95 for men and 97 for women), the
relative risk of recurrence (

 

l

 

s

 

) was 2.30 (95% CI 2.08–2.56). In sibships whose relatives were in
the top 15% of the distribution for familial excess longevity, the value of 

 

l

 

s

 

 increased substan-
tially, indicating that considering the longevity of distant relatives may be helpful in the selec-
tion of families in which to identify genes influencing aging and longevity.

HE identification and characterization of familial patterns
of longevity in humans is a critical first step in the iden-

tification and characterization of genes that affect longevity.
If family linkage studies of longevity are to prove success-
ful, there must be a reasonably high probability that longev-
ity will recur in the relatives of a long-lived individual.
Moreover, the variability of recurrence rates among differ-
ent classes of relatives contains important information about
modes of inheritance, as Risch (1) and many others have
shown. To date, most studies of the familiality of longevity
have focused on siblings or other close relatives. Our study
goal was to extend our understanding of the characteristics
of familial longevity by using a variety of techniques to ex-
plore patterns of familial aggregation of longevity in a large
population-based genealogical database.

In humans, the familial component of age at death has been
examined repeatedly over the last century by biologists, pop-
ulation geneticists, evolutionists, and demographers (2–12).
Reported heritability estimates of age at death vary widely,
ranging from nearly zero (6) to 0.33 (13), in part because of
differences in the types of paired relationships examined,
the time periods and number of generations considered, and
the quality of data among source populations. These esti-
mates are normally derived from familial correlations; as
such, they are always elevated by nongenetic factors shared
by families, but that vary within and between populations.

Previous studies of familial correlations in the duration of
life using Utah genealogies were limited to examining par-
ent–offspring and sibling–sibling correlations in families
containing twins (8,11). Here, we present a more compre-
hensive study, using life-span data on all relatives of a co-
hort of individuals born between 1870 and 1907, who lived
to at least age 65, and who were selected on the basis of hav-
ing complete vital status follow-up data. We used a combi-
nation of linear regression and parametric survival models

to evaluate the impact of familial survival on individual sur-
vival. For comparison with earlier reports on the familial
component of longevity in this and other populations, we
also used traditional methods to estimate the heritability of
excess longevity based on sibling–sibling, parent–offspring,
and spouse–spouse correlations.

In this report we begin to address the problem of select-
ing living sibships in which to identify genes contributing to
slower aging. Recently developed genetic linkage analysis
methods using carefully selected sibling (sib) pairs may
simplify the problem of mapping quantitative trait loci
(QTLs; 1,14–16). The power to detect linkage using sib
pairs depends on the magnitude of the relative risk to sib-
lings of exceeding some extreme level of the trait, given that
a proband sibling also exceeds that trait level. Using sib
pairs drawn from our subject cohort, we have calculated re-
currence risks for extreme longevity in the Utah Population
Database (UPDB).

 

M

 

ETHODS

 

The Utah Population Database

 

The UPDB consists of genealogical records originally
obtained from the Utah Family History Library, linked to
birth and death records contributed by the Utah Department
of Health, and other data of biomedical relevance (17). The
genealogical records have been linked to Utah death certifi-
cates for the years 1934–1996 using probabilistic record
linkage methods (18). About 60% of Utah death certificates
for these years can be linked to extant genealogical data.
UPDB currently describes more than two million individu-
als born between 1800 and 1998, with an average pedigree
depth of about four generations (19).

Maintenance and update of a large population database is
an ongoing process. At any point in time, many individuals
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in UPDB with known genealogical origin lack complete vi-
tal status information. It is in the context of new and ongo-
ing studies based on UPDB that new data sources are linked
to it and provide updates or previously missing information.
For example, approximately 10% of individuals born be-
tween 1850 and 1880 had no known death date. Almost 17%
of those born between 1881 and 1900 lacked death dates, al-
though only a small fraction of these could be living. There-
fore, we linked 240,000 UPDB records of individuals born
between 1852 and 1931 for whom vital data were incom-
plete, to the vital status file of the Health Care Financing
Administration (HCFA). We observed that the vital status
data we received began around 1972. If 120 years is the cur-
rent maximum human life span, we need not have searched
for HCFA records for individuals born prior to 1852. Be-
cause HCFA data are not routinely available for individuals
under the age of 65, data were not available in January 1997
(when the record linking was done) for people born after
1931. A total of 139,061 of the UPDB records matched
HCFA records, allowing us to update the records of 96,812
living individuals and the more recently deceased status of
42,249 individuals. No one born before 1870 was positively
linked to a HCFA record.

Using the combined UPDB–HCFA data, we identified a
cohort of 243,773 people born between 1870 and 1931 for
whom we had vital status follow-up in the form of either a
UPDB death record (from the genealogical data or death
certificates) or a HCFA vital status record. Of these, 78,994
were born from 1870 through 1907 (the last year during
which one could have been born and be followed during the
interval 1972–1996) and lived at least 65 years. These
records formed the basis of our analysis. The Institutional
Review Board of the University of Utah has approved this
study.

 

Definition of Longevity

 

It is difficult to establish a definition of longevity that
highlights only the attributes that are of interest for a partic-
ular application. Numerous factors that are unrelated to ge-
netic predisposition to longevity are nonetheless related to
observed individual life span. Among these factors are gen-
der, birth cohort, exposure to infectious disease, variability
in social support, and behavioral factors such as smoking.
Infectious disease, social, and many behavioral factors have
substantial familial components and may mislead an assess-
ment of familial longevity due to genetic contributions.

Our approach to minimizing the influence of these poten-
tial confounding factors is to choose as an outcome variable
excess longevity, defined as the difference between an indi-
vidual’s attained age and the age to which that individual
was expected to live according to a model that incorporates
the potential confounders.

The expected longevity ( ) can be conveniently estimated
from an accelerated failure time model in the following
manner:

where 
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is the intercept, 

 

b

 

1 

 

. . . 

 

b

 

n

 

 are slope coefficients, and
the excess longevity (
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) is simply, 
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– , where 
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 is the at-
tained age in years. The excess longevity approach, as we

ŷ
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have defined it, is similar to the method applied by Bocquet-
Appel (20) in estimating the heritability of longevity at
Arthez d’Asson.

We have chosen to estimate  and 

 

l

 

 using only individu-
als who survived to at least age 65 for two reasons. First, we
are presently unable to confirm that individuals for whom
we have no death dates are alive at ages less than 65, be-
cause we rely on HCFA records for follow-up of living indi-
viduals. The inclusion of individuals for whom no follow-up
data are available can produce spurious familial aggrega-
tions of mortality or morbidity, because loss to follow-up
aggregates in families. The second reason we have excluded
individuals younger than 65 from analysis is that we are in-
terested in reducing the impact on our analyses of familial
aggregation of mortality that results from predisposition to
particular diseases, such as heart disease, cancer, or diabe-
tes. Although individuals for whom we cannot confirm vital
status or survival past the age of 65 were not included di-
rectly in the calculation of excess longevity or familial ex-
cess longevity, they were not omitted from the data set,
because they were needed to establish the genealogical con-
nections between individuals for whom longevity could be
estimated.

 

Familial Excess Longevity

 

The concept of excess longevity can be extended to the
family members of each subject, excluding those who did
not live at least 65 years. Averaging the excess longevities
of all of a subject’s family members, with an appropriate
weighting scheme, yields an estimate of the familial excess
longevity

 

.

 

 For the present analysis, we have chosen two pri-
mary weighting schemes, each corresponding to a different
model of transmission of familial longevity. The kinship co-
efficient, the probability that an individual shares a single
nuclear gene with another individual, is used as a weight in
calculating Mendelian excess longevity (21):

where 
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 is the Mendelian excess longevity for subject 
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, 
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is the set of all relatives of subject 

 

i, l
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 is the excess longev-
ity of the 
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th member of 

 

K

 

, and 

 

f(i,k)

 

 is the kinship coeffi-
cient (22), the probability that 

 

i

 

 and 

 

k

 

 share a given gene
identical by descent from a common ancestor. To assess the
impact that familial but nongenetic factors have on longev-
ity, we constructed an index of social excess longevity,
which is the average excess longevity among the spouses of
a subject’s relatives, weighted by the kinship coefficient of
the subject and the relative:

where the set 
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 is the set of spouses of the members of the
previously defined set 

 

K

 

, and 
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 is the corresponding rela-
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tive (the spouse of 

 

s

 

). If 

 

k

 

s

 

 has more than one spouse, only
the first is used. In the presence of assortative mating, ad-
justing for 

 

sl

 

 may result in a biased estimate of the effects of

 

ml

 

 on longevity. Assortative mating for longevity might
seem unlikely, but if factors that stratify the population in
some social terms also stratify the population genetically
(e.g., the country of origin of one’s ancestors), such effects
are possible.

 

Baseline Survival Analysis

 

The data set for baseline survival analysis consisted of all
individuals in UPDB who were born before January 1, 1908,
who had follow-up data in the form of a death date or a
HCFA vital status record, and who lived to at least age 65.
There were 207,655 such individuals, representing about half
(48.1%) of the individuals born prior to 1908, or 56.1% of
those for whom follow-up data were available. Table 1 shows
the proportions of individuals by cohort, sex, and religious
affiliation who made up the baseline data set. Religious af-
filiation was measured indirectly, by observing whether an
individual had been “endowed” by the age of 40. Endow-
ment is a personal pledge that signifies a deep commitment
to the Church of Jesus Christ of Latter-day Saints (LDS)
church and represents a strong religious attachment to the
church. Endowment dates are recorded among the genea-
logical data in UPDB. There are only minimal differences in
the proportions followed by sex or religious affiliation, and
a moderate drop (from about 90% to about 80%) in the pro-
portion followed as birth cohorts become more recent. The
proportions of people reaching age 65 do not differ appre-
ciably by sex or birth cohort. Individuals known to be affili-
ated with the LDS church were about 1.9 times as likely to
reach age 65 as non-LDS individuals. One reason for this is
that those who died at young ages (less than 40 years old)
could not be classified as LDS. There may also be substan-
tive reasons for this difference in survival, however. Be-
cause consumption of tobacco and alcohol is very infrequent

in the LDS population of Utah, affiliation with the church is
likely to reduce the risk of death from birth to age 65. Other
factors, such as socioeconomic factors, family support, and
genetic differences, might also conceivably play a role in
the greater longevity of the LDS population.

 

Table 1. Characteristics of the Baseline Data Set

 

Birth Year and
Characteristics

UPDB
Total*

Followed

 

†

 

65

 

1

 

‡

 

n

 

Percent

 

n

 

Percent

 

,

 

1870 130,909 116,092 88.7 59,779 45.7
1870–1879 63,218 57,137 90.4 28,140 44.5
1880–1889 81,578 69,669 85.4 35,699 43.8
1890–1899 92,932 76,692 82.5 42,618 45.9
1900–1907 82,270 66,927 81.4 41,419 50.3
Male 230,030 199,826 86.9 103,146 44.8
Female 220,877 186,691 84.5 104,509 47.3
LDS 176,962 159,357 90.1 113,699 64.3
Not LDS 273,945 227,160 82.9 93,956 34.3
Total 450,907 386,517 85.7 207,655 46.1

 

Note

 

: UPDB 

 

5 

 

Utah Population Database; LDS 

 

5 

 

affiliated with Church of
Jesus Christ of Latter-day Saints.

*Total individuals in UPDB genealogy born between 1870 and 1907.

 

†

 

Total individuals in UPDB genealogy born 1870–1907, with either a death
date or HCFA follow-up.

 

‡

 

Total individuals in UPDB genealogy born 1870–1907, with follow-up
data, who lived at least 65 years.

Figure 1. A. Fit of various parametric models of baseline survival
at age 65 for members of the UPDB population. B. Distribution of
excess longevity among members of the cohort.

 

Table 2. Baseline Model for Excess Longevity

 

Covariate Beta

 

§

 

SE

 

||

 

p

 

¶

 

Years

 

**

 

95% CI

 

††

 

Female* .0313 .00046

 

,

 

.0001 2.55 2.48–2.63
Birth year

 

†

 

.0007 .00001

 

,

 

.0001 0.05 0.046–0.054
LDS

 

‡

 

.0159 .00052

 

,

 

.0001 1.29 1.20–1.37

*Effect of being female (compared to male).

 

†

 

Year of birth (as a continuous variable).

 

‡

 

Affiliation with Church of Jesus Christ of Latter-day Saints.

 

§

 

Beta 

 

5

 

 slope of regression model.

 

i

 

SE

 

 

 

5

 

 standard error of regression estimate.

 

¶

 

Probability under null hypothesis.
**Change in life expectancy associated with a unit change in covariate.

 

††

 

95% confidence interval around estimated change in life expectancy.



 

FAMILIAL EXCESS LONGEVITY

 

B133

 

Only a limited set of potential covariates was available
for the baseline analysis: sex, year of birth, and religious af-
filiation. Expected life spans ( ) used in the estimation of
excess longevity and familial excess longevity were calcu-
lated using parametric (accelerated failure time) survival
analysis methods (23). Parametric methods require that the
distribution of failure times be specified prior to fitting the
model. We compared the fits of models based on the lognor-
mal, Weibull, log-logistic, and exponential distributions
with the observed survival of the baseline data, as summa-
rized by Kaplan-Meier (nonparametric maximum likeli-
hood) estimates of survival probabilities (24). Figure 1A
shows the fit of several models. The lognormal and log-
logistic models appeared to provide the best fit for the ob-
served data (the log-logistic model is not shown in Figure
1A—its fit is virtually identical to that of the lognormal
model); a Weibull distribution also fit the observed data
quite well. The exponential distribution is clearly inappro-
priate for the observed data. Coefficient estimates were sim-
ilar in all models.

We used the lognormal model to estimate excess longev-
ity and familial excess longevity among members of the co-
hort. All the available covariates—female gender, year of
birth, and religious affiliation—were significantly related to
survival past age 65 in the baseline data set. Table 2 lists the
slope coefficients (

 

b

 

), standard errors, confidence intervals
(CI), and 

 

p

 

 values from the lognormal model of survival
past age 65 among members of the baseline data set. The
“Years” column in Table 2 shows the difference in expected
life span given a unit change in the corresponding covariate
in comparison to an LDS male born in 1900; 95% CIs
around the estimated change in life span are also given. Af-
filiation with the LDS church is associated with better sur-
vival past the age of 65. This is likely to be due, at least in
part, to the fact that members of the LDS church rarely use
tobacco or alcohol. Our subsequent analyses are adjusted
for all the baseline covariates given in Table 2.

 

Regression Methods

 

Multiple linear regression methods were used to evaluate
the relationship between excess longevity in cohort mem-
bers and familial excess longevity using each of the two
weighting schemes described above. The statistical package
R (25) was used for all regression analyses. The software
package BUGS (26) was used for the Gibbs sampling analy-
ses (see below).

 

Adjustment for measurement and sampling error.—

 

Each of our indices of familial excess longevity has an asso-
ciated variance estimate, which is dependent on both the
variability of longevity among the relatives of a subject and
the number of relatives for whom follow-up data were
available. Thus, familial excess longevity in UPDB is mea-
sured with error, and we can estimate the standard error of
our excess longevity estimates from our primary data. It is
well known that the use of covariates that have been mea-
sured with error in regression models results in a bias to-
ward the null. It is less well known that the inclusion of sev-
eral such variables in a multiple regression model can

ŷ

 

produce overestimates as well as underestimates of the ef-
fects of interest (27).

Because we were interested in adjusting for the effects of
social as well as biological transmission of longevity, we
chose an approach based on Gibbs sampling (27) to correct
for the measurement error in our data. Briefly, Gibbs sam-
pling is an approach to Markov chain Monte Carlo model-
ing, in which possible parameter values are repeatedly gen-
erated from a defined set of prior distributions; the proposed
values are accepted or rejected according to a conditional
likelihood defined by the model. After a “burn-in” period
during which the parameter estimates converge, the ob-
served distribution of the accepted parameter values can be
used to make inferences about the true joint distribution of
the parameters.

We assumed that the estimated values of familial excess
longevity were normally distributed around the (unknown)
true values for familial excess longevity, with variance equal
to the square of the estimated standard errors. The excess
longevity estimated for an individual was then modeled as a
linear function of the individual’s sex and birth year (both
assumed to be measured without error) and the unknown
true values for Mendelian and social excess longevity, as
follows:

where 

 

l

 

 is the individual’s excess longevity (as defined
above); 

 

a

 

 is the intercept; 

 

b

 

1

 

 . . . 

 

b
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 are slope coefficients
for, respectively, birth year, gender (0 for male, 1 for fe-
male), 

 

tml

 

 (the true Mendelian excess longevity), and 

 

tsl

 

(the true social excess longevity), and 

 

ε

 

 represents the error
in the fit of the model.

 

Familial Correlations and Heritability Estimates

 

For comparison with other reports in the literature, we
calculated heritability (

 

h

 

2

 

) estimates using methods derived
from those of Rao and colleagues (28), and transmissibility
(

 

t

 

2

 

) estimates using the methods of Rice and coworkers (29).
Sib–sib correlation coefficients for excess longevity are
given for pairs of sibs chosen at random from each nuclear
family with at least two sibs born no later than 1907 and
who survived to age 65 (or greater); there were 42,812 such
families. Parent–offspring correlations are given for one
child chosen at random from the sib pair sample for those
families with follow-up data on both parents; there were
19,575 such families. The same strategy was used to iden-
tify grandparent–grandchild pairs (

 

n 

 

5 

 

25,903), aunt/uncle–
niece/nephew pairs (

 

n 5 29,512), and first cousin pairs (n 5
29,305). In addition, we identified all pairs of same-sex (n 5
472) and opposite-sex twins (n 5 238) meeting our inclu-
sion criteria and random pairs of maternal half-sibs (n 5
3,398).

Rao and associates (28) identify through path modeling a
set of coefficients that, in principle, can be estimated from a
set of familial correlations. Because we do not have direct
data on shared environments, we cannot estimate the full set
of parameters from our data. In particular, it is tempting to
treat maternal half-sibs as “half-sibs reared together” (as we

l α β1+ gender⋅ β2+ birthyear⋅
β3+ tml⋅ β4 tsl ε+⋅+ ,

=
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have done) and paternal half-sibs as “half-sibs reared apart,”
but because many of the paternal half-sibs in our data were
raised in polygamous households (which may occupy some
intermediate state between “reared together” and “reared
apart”), we have not tried to exploit this particular contrast.
We have estimated the parameters c (effect of common en-
vironment), r (correlation of midparent genotype with com-
mon environment), and h (effect of genotype on child’s phe-
notype) from the Rao model.

The “unitary” model of Rice and colleagues (29), which
was employed by Bocquet-Appel (20), does not estimate h2

directly. Rather, the unitary model allows the estimation of
the total transmissibility (t2) of a trait, including both ge-
netic and cultural transmission. The model does allow, how-
ever, for testing of the hypothesis that there is no cultural
transmission.

Determination of Relative Risk
Relative risks of recurrence in multiple classes of relatives

(lr, where r is one of: parents, siblings, aunts and uncles,
first cousins, first cousins once removed, or second cousins)
were calculated for purposes of fitting several models of sin-
gle-locus and multiple-locus inheritance described by Risch
(1). Values of lr were estimated using the method of Bai and
colleagues (30), using all members of the cohort who had
surpassed the 99th percentile of the excess longevity distri-
bution as cases, and 5,000 random individuals from the co-
hort who did not exceed the 97th percentile of excess lon-
gevity as controls. The number of controls was selected
arbitrarily to provide reasonable precision while not produc-
ing overwhelming numbers of relatives. Bai and colleagues
note that recurrence risk estimates will be biased by the
usual practice of selectively omitting members of families
that have been previously selected as either “case” or “con-
trol” families. Unbiased estimates of recurrence risk result
from including all kin of a given class in the analysis, even
if those same individuals are tabulated multiple times (ei-
ther as relatives of cases, or controls, or both). Although rel-
ative risk estimates calculated by this method are unbiased,
the variance of such estimates has not been described. We
therefore report bootstrap estimates (31) for the variance
and confidence intervals for lr.

We fit several models of inheritance to the observed val-
ues of lr, following the approach used by Risch (1). Model I
is a single-locus model (which, however, cannot be distin-
guished from the additive effects of multiple loci), in which
the excess relative risk (lr 2 1) is halved with increasing
degree of relationship. Model II assumes an infinite (or very
large) number of loci with small individual effects, in which
the relative risk decreases by a power of .50 with each addi-
tional degree of relationship. Model III includes both a sin-
gle major locus and an infinite number of loci of small ef-
fect; therefore the fits of Models I and II can be compared to
the fit of the more general Model III. We estimated values
for relative risks under each model by maximum likelihood,
assuming the observed values of lr were normally distrib-
uted around the predicted values with variance given by the
bootstrap estimator.

The relative risk to siblings, ls, was also calculated at a

variety of other cutpoints using the method described above.
We repeatedly calculated the recurrence risk of extreme
longevity in the siblings of “proband” subjects with excess
longevity greater than or equal to each percentile of the dis-
tribution from 85% to 99% in 2% intervals, relative to sib-
lings of subjects whose excess longevity was less than that
of the probands. This is a variant of the method proposed by
Gu and Rao (15). Because in the actual conduct of a sib-pair
study one will encounter pairs of sibs with differing ages
(and differing excess longevities), we estimated the relative
risk for each percentile of proband (x) and sib (y) longevity,

where l1 and l2 are the excess longevity of the proband and
sib, respectively. The method of Bai and colleagues (30) as-
signs “proband” status to both members of a sib pair, so it is
reasonable to assume that ls[x,y] 5 ls[y,x], and that departures
from symmetry are the result of measurement error. We thus
estimated the ls[x,y] for x Þ y as (ls[x,y] +ls[y,x])/2.

In order to determine whether the addition of information
on more distant relatives usefully increased the estimate of
ls, we selected all those sibships from our random sample for
whom the estimated Mendelian excess longevity among all
family members except siblings was greater than the 85th
percentile of the distribution of Mendelian excess longevity
in the population (approximately 2.3 years). We estimated
ls among this subgroup in the manner described above.

RESULTS

Figure 1B shows the distribution of excess longevity
among the 78,994 subjects in the UPDB–HCFA cohort.
Note that the distribution of excess longevity among cohort
subjects is not centered on zero. This is because cohort
members were alive in 1972, regardless of year of birth, so
cohort members born in every year prior to 1906 had to be
more than 65 years old at follow-up. Although the distribu-
tion is fairly close to a normal distribution, it is somewhat
skewed. This is probably due to mixing observations on de-
ceased subjects (with death dates) and living subjects (with
censored death dates), because the distribution appears in-
creasingly normal for earlier cohort birth years (data not
shown). A total of 7,997 subjects (10.1% of the cohort) were
still alive at the time the HCFA records were linked in 1997.
The median family size among members of the cohort was
1,987 (with a range from 2 to 41,824); the mean family size
was 3,112. The median total kinship with followed biologi-
cal relatives (the denominator for mli) among members of
the cohort was 4.5 (range 0.5–28.3), with a mean of 5.0.

Table 3A shows the relationship of both of our indices of
familial excess longevity to individual excess longevity among
cohort members, as estimated by a multiple linear regres-
sion model simultaneously incorporating each of the indi-
ces. A strongly significant Mendelian effect (ml) is apparent
in the data, about 5 months of excess longevity (0.41 3 12
months) for every excess year of survival of a subject’s rela-
tives. Individual excess longevity, as we have measured it,
already takes into account variation resulting from one ma-
jor social factor: the subject’s LDS church affiliation. The
very small effects associated with social excess longevity
(sl) independent of effects associated with church affiliation

λs x y,[ ] P l1 x≥ l2 y≥( ) P l x≥( ),⁄=
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suggest that little residual variation is patterned along fam-
ily lines, after the baseline model has been fit to the data.

The slope estimates given in Table 3A are interpretable in
terms of years of excess longevity per year of familial ex-
cess longevity, but the slope estimates for ml and sl cannot
be easily compared to one another because the variance of sl
is greater than that of ml. In order to facilitate direct com-
parison of the magnitude of Mendelian and social effects,
we standardized the excess longevity measurements by
transforming them into standard normal deviates (by sub-
tracting the mean and dividing by the standard deviation of
each measurement). The results of the regression analysis of
standardized excess longevity (given in Table 3B) can be
used to directly compare the strength of the Mendelian ef-
fect with any residual social effect. In Table 3B, the residual
social effect appears to be essentially nil. Adjusting for the
measurement error via Gibbs sampling has very little im-

pact on the slope estimates for either Mendelian or social
excess longevity (Table 3C).

Table 4 gives the familial correlation and crude heritabil-
ity results. All the correlation coefficients are significantly
different from zero. The estimated value of h2 from the Rao
model is 0.147, nearly the same as the crude h2 of 0.149 ob-
tained by doubling the parent–offspring correlation. The es-
timate of t2 from the Rice model (0.168) is approximately
equal to the sum of h2 and c2 from the Rao model (0.175). It
is apparent from the comparison of expected to observed
values in Table 4 that a substantial residual association of
like-sex and like-generation individuals persists despite the
use of excess longevity as an outcome variable. For exam-
ple, the like-sex twins are correlated at a level beyond the
expected value, and the opposite-sex twins are less corre-
lated than expected. First cousins are more correlated than
expected, while parent–offspring and grandparent–grand-
child pairs are less correlated than expected. These patterns
suggest that the estimates of heritability given in Table 4
should be viewed with some caution, although the inclusion
of a large and varied set of kin comparisons should increase
the robustness of the estimates. It is also worth noting that
the parameter m from the Rice model is a direct estimate of
the effect of assortative mating. Our estimate of this param-
eter is nearly zero, suggesting that the influence of assorta-
tive mating on these data is minimal. We also calculated
Spearman’s rank correlation for parent–offspring and sib–
sib correlations, in order to evaluate the sensitivity of herita-
bility estimates to the normality assumptions implicit in
both the regression and correlation analysis. For both com-
parisons, the Spearman correlation was within 1% of the
Pearson correlation, indicating that the normality assump-
tion did not have an important influence on these results.

Table 5 shows rates of recurrence and relative risks of re-
currence (lr) of excess longevity greater than or equal to the
99th percentile for various classes of relatives. Bootstrap
confidence intervals are given for each estimate of lr. Also
shown in Table 5 are the predicted values of lr from Risch’s

Table 3. Multiple Linear Regression: Effects of Familial Excess 
Longevity on Excess Longevity

Weighting*
Slope
(years) SE 95% CI

A. Unstandardized Linear Regression Model

Mendelian† 0.41 0.012 0.39–0.43
Social‡ –0.002 0.011 –0.02–0.02

B. Standardized Linear Regression Model

Mendelian 0.123 0.0036 0.12–0.13
Social –0.0005 0.0036 –0.01–0.01

C. Standardized Regression Model Adjusted for Measurement Errors§

Mendelian 0.122 0.0031 0.12–0.13
Social –0.0008 0.0036 –0.01–0.01

*Weighting scheme used to calculate familial excess longevity.
†Mendelian 5 all relatives included, kinship weights.
‡Social 5 spouses of biological relatives, weighted by kinship to relative.
§Adjusted via Gibbs sampling (see text).

Table 4. Familial Correlations and Heritability of Excess Longevity for Pairs of Individuals Surviving at Least 65 Years, One Random Pair 
per Family

Correlation Pairs Observed

Rao Model* Rice Model†

Formula Expected Formula Expected

Like-sex twins 472 0.249 0.136 — —
Opposite-sex twins 238 0.078 c2 1 g2 1 2 grc 0.102 — —
Sib–Sib 42,812 0.107 c2 1 g2 1 2 grc 0.102 2t2(l 1 mt2)t2 0.086
Parent–Offspring 19,575 0.074 c2 1 g2 1 2 grc 0.102 t (l 1 m)t2 0.086

Maternal half-sib 3,398 0.101 0.065 — —

Grandparent–Grandchild 25,903 0.015 — — t2(l 1 m)(l 1 mt2)t2 0.044
Aunt/Uncle–Niece/Nephew 29,512 0.021 — — 2t3(l 1 mt2)2t2 0.044
First cousins 29,305 0.029 — — 2t4(l 1 mt2)3t2 0.022
Parameter estimates r ,0.001

c 0.167 t 0.506
h 0.384 m 0.016
h2 0.147 t 0.409

h2 1 c2 0.175 t2 0.168

*Path models described in Rao et al. (28). Parameters k and z set to one; m and b set to zero; . P (proportion of opposite-sex twins) 5 .35.
†Path models described in Rice et al. (29).
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Model I (single locus) and Model II (infinite loci of small
effect), along with the maximized log likelihood values for
each model. The predicted relative risks for Model III (one
major locus and infinite loci of small effect) are not shown
because the maximum likelihood under Model III was achieved
when the multiplicative effects were all set to one—equiva-
lent to Model I. The difference in fit between Model III
(equivalent in this case to Model I) and Model II is of mar-
ginal statistical significance: x2

1 5 4.04, p 5 .044.
Table 6 and Figures 2A and 2B show our estimates of ls

for sibling pairs reaching the various percentiles of excess
longevity. The recurrence risk, ls, among sib pairs over age
65 of achieving the 97th percentile of excess longevity
(114.8 years) was 2.30 (95% CI 2.08–2.56). For a male born
in 1900, who was affiliated with the LDS church, this level
of excess longevity corresponds to age 95. For a female
born in 1900, who was affiliated with the LDS church, this
level of excess longevity corresponds to age 97. Figure 2A
shows the estimated ls for pairs of sibs with differing values
of excess longevity, such as would be encountered in con-
ducting a sib pair study.

Table 6B gives the ls estimates for sibships selected be-
cause the kinship-weighted excess longevity among their
family members (excluding sibs) was greater than the 85th
percentile of familial excess longevity (2.3 years). The val-
ues of ls observed in these selected sib pairs are higher than
those reported in Table 6A by a factor ranging from about
1.2 at the 85th percentile of proband longevity to about 1.7 at
the 99th percentile. In Figure 2B the values of ls are shown,
along with CIs for both the sib pairs selected from the entire
cohort and the sib pairs with high familial excess longevity.

Table 5. Recurrence Risks of Extreme Longevity (Excess 
Longevity . the 99th Percentile) in Various Classes of Relatives

Category Degree Controls Cases RR 95% CI

Model
Prediction

I II

Sib/Parent 1 0.013 0.031 2.31 1.97–2.67 2.32 2.44
Uncle/Aunt 2 0.015 0.023 1.51 1.28–1.78 1.66 1.56
First cousin 3 0.012 0.018 1.51 1.34–1.71 1.33 1.25
–once removed 4 0.012 0.013 1.11 1.02–1.23 1.16 1.12
Second cousin 5 0.011 0.013 1.18 1.05–1.29 1.08 1.06
Log likelihood –8.92 –10.94

Notes: All relatives of the specified type with follow-up data were selected
for all individuals whose excess longevity exceeded the 99th percentile (17.5
years), and 5000 controls selected from the bottom 97% of the distribution of ex-
cess longevity. Model I is a single major gene model, and Model II is a model
with an infinite number of alleles of small effect, as per Risch (1990). See text
for additional description.

Table 6. Recurrence Risk Estimates for Excess Longevity in 
Siblings at Various Percentiles of the Distribution

Percentile
Excess

Longevity
Number of
Sib Pairs

Relative
Risk (l) 95% CI

A. Entire Cohort

85% 9.0 13,190 1.29 1.24–1.34
90% 10.7 6,849 1.45 1.38–1.54
95% 13.2 2,134 1.66 1.55–1.80
97% 14.8 1,023 2.30 2.08–2.56
99% 17.5 135 2.36 1.89–2.95

B. Pairs of Sibs Whose Mendelian Excess Longevity (ml) Was Greater Than the 
85th Percentile (2.3 years)

85% 9.0 3,335 1.59 1.52–1.67
90% 10.7 1,905 1.86 1.74–1.98
95% 13.2 675 2.24 2.02–2.44
97% 14.8 378 3.36 2.96–3.79
99% 17.5 64 3.98 2.96–5.21

Figure 2. A. Filled contour plot showing ls for sib pairs with differ-
ing values for excess longevity. B. Estimates of ls and 95% confi-
dence intervals at varying percentiles of excess longevity for random
pairs of siblings, and for pairs of siblings whose familial excess lon-
gevity (excluding sibs) was greater than the 85th percentile (12.3
years).
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Except for the 99th percentile of proband longevity, the CIs
for the ls estimates in the two sets of sibs do not overlap.

DISCUSSION

We have shown that excess longevity aggregates in fami-
lies, and that the pattern of this familial aggregation is con-
sistent with a relatively simple model of inheritance involv-
ing the additive effects of one or more loci. Overall, a modest
portion (10–20%) of the variability in excess longevity ap-
pears to be heritable. Of particular interest is the portion of
the variability in excess longevity that may arise from inter-
individual differences in rates of aging. By including for
analysis only individuals who survived to at least age 65, we
have attempted to reduce the proportion of the variability in
excess longevity that is unrelated to variation in the rate of
aging. Nevertheless, at least a portion of the remaining vari-
ability in excess longevity among those over age 65 will be
due to variation in susceptibility to common life-threatening
diseases, unrelated to rates of aging. Therefore, the results
presented here do not allow us to distinguish long-lived sib-
ships without genes for slower aging from long-lived sib-
ships with genes for slower aging; ways of addressing this
problem are considered below.

The exclusion of individuals under the age of 65 has the
potential to bias our results, if the characteristics of those in-
cluded differ in important ways from those of the source
population. The primary difference that we observed be-
tween the source population and the data we analyzed was
the greater likelihood that an individual affiliated with the
LDS church would survive to age 65, compared to non-LDS
individuals. LDS affiliation continues to influence longevity
after the age of 65, and our estimates of excess longevity are
adjusted for this effect. Both our cohort and our reference
population contain large numbers of people not classified as
LDS-affiliated by our criteria. Nevertheless, it is possible
that the differential loss of non-LDS individuals from our data
set, which may be due in large part to behavioral differences
such as tobacco and alcohol use, has led us to underestimate
the magnitude of the influence of behavioral variability on
longevity in the Utah population in general. If this is so,
then our estimates of the heritability of longevity should be
higher than those observed in other studies of samples with
similar characteristics, such as Bocquet-Appel’s (20). Be-
cause our estimates of the heritability of longevity are some-
what lower than the majority of published estimates, it seems
unlikely that a bias of this sort has had an important influ-
ence on our results.

The inclusion of living subjects among our cohort, moti-
vated by considerations of power and the possible use of
living subjects for linkage studies, has the potential to intro-
duce a bias away from the null. A sibling of a subject born
after 1900 has a greater probability of being censored (hence
having an artificially small value of excess longevity) than a
sibling of someone born earlier. Because the same is true for
the subjects themselves, this could introduce spurious corre-
lations of excess longevities among sibs. Alternatively, a
conservative bias could be introduced because our measure-
ment of longevity is less precise (due to censored observa-
tions) in families with a high proportion of longevity. We
evaluated the potential for bias by excluding sibs born after

1900 from the regression analyses and found no meaningful
differences among the effect estimates (results not shown).

We have attempted to reduce confounding from nonge-
netic familial influences on longevity by adjusting for affili-
ation with the LDS church (which discourages the con-
sumption of alcohol and tobacco by its members), and for
average excess longevity among the spouses of a subject’s
relatives (as a proxy for environmental influences that ag-
gregate in families); however, these adjustments do not re-
move all possible confounding by environmental factors. It
is also possible that members of the LDS church are geneti-
cally more similar to one another than to nonmembers, in
which case we may have overcorrected our excess longevity
estimates, leading to underestimation of heritability and re-
currence risks.

Furthermore, although path analysis does not meaning-
fully alter our h2 estimates of excess longevity, we have ob-
served that the fit of expected to observed correlations be-
tween the sexes and across generations is probably affected
by residual gender and birth year effects not completely elim-
inated by the use of excess longevity. Examining the herita-
bility of familial frailties (10) may ultimately prove to be more
productive than examining the heritability of longevity per se.

We have found that the observed patterns of recurrence
of extreme longevity in various classes of relatives are con-
sistent with a single-locus model of inheritance. As we have
noted, however, these results do not indicate that variability
in excess longevity is the result of variation at only a single
locus—rather, they suggest that inheritance of a single vari-
ant allele at one of an unknown number of loci is sufficient
to affect the probability of living to an extreme age. Although
the particular loci at work may differ between families, this
result is encouraging for those who wish to pursue linkage or
association studies in order to identify loci responsible for
excess longevity. It is also worth noting that the fit of a
model of infinite loci with tiny multiplicative effects, repre-
senting a “worst-case” scenario for linkage and association
studies, is not much worse than that of the single-locus model.

The maximum ls we observed among random pairs of
sibs is about 2.3 (the 95% CI for the 97th percentile is 2.1–
2.7). This is considerably lower than was found by Perls and
colleagues (32) for sibs reaching similar age thresholds. In
that study of sibs of centenarians from Massachusetts, ls
ranged from 3.5 for survival to 84, to 4.0 for survival to age
94. There are differences in design and data between these
two studies that may account for much of the difference in
the magnitude of the observed recurrence risks. The Perls
study used as a reference group the siblings of individuals
who died at exactly age 73, whereas we have based our
comparisons on sib pairs drawn from the entire contempora-
neous population. The restricted variability in Perls’ refer-
ence set increases the chance that unobserved confounding
factors or random fluctuation widened the gap between the
sibships of centenarians and the reference sibships used in
that study. Moreover, the magnitude of the effects of unob-
served confounding factors such as tobacco and alcohol
consumption might be greater in the Massachusetts-based
sample employed by Perls than in our Utah-based popula-
tion. Perls also reported a substantial difference between aver-
age sibship sizes for centenarians (4.5 siblings per proband) and
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controls (3.2 siblings). We found no difference between the av-
erage sibship size for subjects with excess longevity greater than
14.8 years (8.05 siblings per proband) and subjects with excess
longevity between –1.0 and 11.0 years (8.00 siblings).

If familial excess longevity information is used to select
sibships for study, the probability of recurrence of longevity
among sibs of a long-lived proband increases. There are sev-
eral important implications of this observation. First, the en-
hancement of recurrence risks by incorporating information
on the longevity of more distant relatives suggests that the
trait is transmissible through multiple generations (relative re-
currence risks significantly greater than unity in distant rela-
tives confirm this). Second, the use of familial excess longevity
information to stratify a set of sib-pairs (assuming a sufficient
number of pairs are available) might enhance the probability of
finding linkage by increasing the probability that the sib pairs
used really are segregating predisposing alleles.

Given favorable assumptions about heterogeneity, our
results suggest that adequate power for a successful nonpara-
metric linkage analysis of excess longevity might be achieved
with a moderate number of sib pairs, using anonymous poly-
morphic markers throughout the genome and/or markers
for specific candidate loci. Similar approaches have already
mapped naturally occuring genetic variants contributing to lon-
gevity in fruit flies and mice (33–36). It should also be possible
to identify large pedigrees with multiple members who have
excess longevity greater than some critical value. If, as
seems likely, relatively rare alleles at multiple loci enhance
longevity, parametric or nonparametric linkage in such large
kindreds may prove to be more useful in mapping genes for
longevity than sib-pair methods.

An alternative to linkage analysis is to perform genetic
association studies to test whether a specific allele or class
of alleles at a strong candidate locus is more frequent in
long-lived cases from sibships at high risk for genetically
transmitted excess longevity, as compared to the allele fre-
quency in controls. For example, the e2 allele at the apoli-
poprotein E locus is increased in frequency in centenarians
(37) and associated with lower mortality from multiple
causes in longitudinal studies of elders (38,39). Similar work
should be done to test whether human genetic loci homolo-
gous to loci associated with extended life span in other spe-
cies (for review, see ref. 40) also harbor alleles significantly
associated with longevity. The use of information on both
individual and familial longevity to select individuals for
association studies has the potential to increase the power of
such studies as well.

Because of the complexity that underlies life span as a
phenotype, the success of genetic linkage and association
studies of longevity may be enhanced by restricting analy-
ses to families that show signs of slower aging beyond sim-
ple longevity. Such families could include, for example,
those in which quantitative biomarkers associated with age-
specific mortality from multiple causes fall within ranges
that predict better than average survival. Appropriate traits
include high age at last natural pregnancy taken to term (41),
high age at natural menopause (42,43), low resting body
temperature (44), low resting heart rate (45–48), low periph-
eral blood leukocyte count (49–52), and high percent-pre-
dicted forced expiratory volume in one second (FEV1;

51,53–55). Several of these biomarkers have also been shown
in twin studies to be largely under genetic control [meno-
pause (56,57); heart rate (58); leukocyte count (59); and
FEV1 (60)]. Another feature predicted for families carrying
genes that slow aging is lower age-specific mortality from
multiple age-related diseases (heart disease, cancer, stroke,
etc.), as compared to control families. Relatively long-lived
families with biomarker values predicting better survival,
and lower age-specific mortality from multiple causes, should
be most likely to harbor genes that slow aging.

Conclusions
We have shown that excess longevity among a large co-

hort of individuals drawn from the UPDB has a substantial
familial component. The patterns of inheritance are consis-
tent with Mendelian inheritance of genes affecting longevity.
We have adjusted our estimates for both direct and indirect
environmental influences on longevity, although residual
effects of shared environment may still be present in our
data. Our results lend support to the notion that genes con-
tributing to extreme longevity in humans may be identifi-
able by genetic linkage and genetic association approaches.
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