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TABLE 2

Estimates of Longevity for Fossil Hominids

Life Span Incremental
Hominid Species (years) Change
Australopithicus afarensus 46.6 84
Homo habilis 55.0 7’0
H. erectus 62.0 10'9
H. sapiens (pre-historical) 72.9 49'1
H. sapiens {contemporary) 122.0 )

Note: Estimates based on hominoid body size range from 42-44
years for Australopithecus to 50 years for Homo erectus.
Incorporation of brain mass increased estimates for Homo habilis
from 43 years to 52-56 years and for Homo erectus from 50 years to
60-63 years.

SOURCE: Carey and Judge (2001).

See also: Aging and Longevity, Biology of; Evolutionary
Demography.
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LIFE TABLES

The life table is a device that describes a cohort’s or
a population’s mortality experience. The life table,
sometimes called table of mortality (table de mor-
talité in French, and similarly labeled in most lan-

guages other than English) is one of the oldest and
probably the single most valuable tool in demogra-
phy. It has many applications that range well beyond
mortality analysis. It is called a table, because in its
classical presentation it is made of a number of nu-
merical columns representing various indicators of
mortality, but the information it contains can be also
conveyed in graphical form.

The concept of a life table comes from a cohort
perspective. If one could follow a birth cohort of
100,000 individuals through time in a closed popula-
tion (a population without in- and outmigration),
the number of survivors at various ages would corre-
spond to the “number lett alive at age x,” in the life
table its /. column. The difference between survivors
at two consecutive ages, x and x+n, would corre-
spond to the number of deaths between x and x+n,
in the life table denoted by . The ratio of ,d, to
I, produces another column of the life table, the
probability of dying between age x and x+#, denoted
by ,g.. Thus, data on cohort survival can be readily
converted into a life table.

In its classical form, the life table includes the
following columns:

X = exact age

[

. = number still alive at age x

«d. = number dying between ages x and x+n =
[.\’ - l.\' + 1

g, = probability of dying between ages x and
x+n, conditional on survival to age x =
A

WP = probability of surviving from age x to age
x+n, conditional on survival to age x
= l,\+n / Z,\’

40, = average number of person-years lived in
the interval between age x and x+u by those
dying in the interval

L. = number of person-years lived between

=X
ages x and x+n =nl+,a,,d,
2 = death rate between ages x and x+n
= HLi,\ / PILX
T, = person-years lived above age x (sum of ,L,
for ages x and higher)
é, = expectation of life at age x = T, / I,
Traditionally, a life table where n = 1 is called
an “unabridged” or a “single-year” life table, and
the left subscript can be omitted. A common alterna-




tive is to use 5-year age groups starting with age 5,
and to present information for the age group 0-4
(that is, below exact age 5) in two groups: age 0 (i.e.,
less than age 1) and ages 1-4. In this case, the life
table is called “abridged.” It formerly was common
practice to end a life table with an open-ended age
interval starting at age 85. With the large propor-
tions of survivors to age 85 in many low-mortality
populations, though, the preferred practice is to
present more detailed information above age 85, car-
rying it up to age 100 and concluding with an open-
ended interval above that age. Because of the distinc-
tive mortality differences between the sexes, life ta-
bles are commonly also presented separately for
males and for females.

Although the life table is in principle a cohort
concept, it is not commonly used in this fashion.
The reason for this is both practical and substantive.
Exhaustive cohort mortality data are rarely available,
because that would require systematic death regis-
tration for a period spanning 100 years or more. In
other words, it would be necessary to wait for a co-
hort to be extinct or near extinct to be able to con-
struct a full cohort life table and obtain an accurate
estimate of its life expectancy at birth. Accuracy
would be compromised if the population was not
closed—that is, if it were depleted not only by death
but also outmigration—and if death registration in-
cluded deaths of immigrants. A further and more
substantive drawback of cohort life tables is that they
refer to a period stretching over a century, during
which mortality conditions are likely to have
changed. For descriptive and policy purposes, typi-
cally less heterogenous and more timely information
is necessary.

The limitations of cohort life tables have led de-
mographers to design period life tables, based on the
concept of “synthetic” cohorts. A synthetic cohort
is a hypothetical cohort of persons subject through
their life to the age-specific mortality rates of one
specific period. This contrasts with a real cohort
where each age-specific rate pertains to a different
year. The theoretical construct of synthetic cohorts
allows one to construct period life tables and com-
pute life-cycle indexes (such as the life expectancy at
birth) on the basis of observations relating to, and
hence reflecting the mortality conditions for, a well-
defined and relatively short time period. In practice,
the period chosen is most often a single calendar
year, or a two-year period bracketing a census count,
or a quinguennium.
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Life Table Construction

The construction of a period life table is not as
straightforward as for a cohort, because many of the
life table functions, including survivors at various
ages, are not directly observable. One related life
table function that can be estimated from actual data
is ,M,, the set of age-specific death rates in the pop-
ulation. This is commonly calculated as D,/ ,N,,
where D, is the number of deaths between age x and
x+1 observed in a population during a specific peri-
od, and ,N, is the population aged x to x+n at the
middle of that period. The basic step in constructing
a period life table is to estimate death probabilities,
«qc, for the synthetic cohort, from ,M,, the age-
specific death rates observed in a population for a
particular period.

Strictly speaking, ,M, is not exactly equivalent
to ,m, the mortality rate observed in the corre-
sponding synthetic cohort. This is because in a co-
hort (real or synthetic), ,m, results from ,d, and L,
both of which are entirely produced by mortality
conditions. That is, in a cohort, the number of survi-
vors at various ages (and thus the corresponding
person-vyears lived) is fully a product of underlying
mortality conditions. Similarly, the number of
deaths in the age-interval is also the product of mor-
tality conditions applied to the number of survivors.
Thus ,m, is an unbiased mortality measure. By con-

trast, ,M, is the product of specific mortality condi-

2
tions applied to the population in the corresponding
age-group, ,N,. Unlike ,L,, ,N, is not entirely pro-
duced by the mortality conditions to which the syn-
thetic cohort is subject. It is also affected by the age
distribution of the actual population within that age
group, which is itself the product of past fluctuations
in the number of births, past variations in mortality,
and past migration. Thus ,M, and ,m, can differ. For
most purposes, however, the difference is not large
enough to produce significant differences in life
table indexes such as life expectancy at birth. In life
table construction, it is common to assume that ,M,
= m,; there are, however, more involved methods
of construction that do not require this simplifying
assumption.

The second operation in constructing a period
life table involves converting the set of 1, to ,q,.
This is done by using the following exact equation,
derived from the equation for L, specified earlier:
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This equation relates an age-specific mortality rate
in a cohort (real or synthetic) to the corresponding
probability of dying in the age interval x to x+n.
After this operation, one can readily calculate the
number of survivors at various ages in the synthetic
cohort and the remaining columns of the life table.

This equation shows, however, that ,m is not
the only input for the ,m, to ,q, conversion. The
conversion also involves ,a,, the average number of
person-years lived between x and x+n by persons
dying during the age interval. These values are usual-
ly not readily available in a population. When deal-
ing with an unabridged life table, it is not conse-
quential to make the assumption that life table
deaths occur on average at the middle of the single-
year interval (ja, = 0.5).

When dealing with five-year age groups, there
are a number of methods for estimating ,a, in a pop-
ulation. One method involves graduation techniques
that yield reliable results but that are not easy to im-
plement. Another strategy consists of borrowing ,4,
from another population with comparable mortality
levels and patterns and for which ,a, values have
been accurately estimated. The assumption that ,a,
= n/2 is also used sometimes in abridged life tables.
For the first two age groups (for ages 0 and 1-4),
however, this assumption is seriously inadequate be-
cause mortality risks decrease rapidly within this age
range, and thus deaths are more concentrated to-
ward the beginning of the age interval rather than
equally distributed. At these ages, it is possible to use
estimation equations based on empirical popula-
tions at various mortality levels. These equations
permit the estimation of 4y and 4a, from the re-
corded level of m,. Similar adjustments may be
necessary in very old age groups, in which the re-
verse phenomenon occurs: deaths are more concen-
trated toward the upper end of the age interval.

with ,N,, ,D,, and ,a, in hand, all life table col-
umns can be derived. It is also necessary to choose
an arbitrary value for /), called the radix of the life
table, to which the columns I, ,d,, ,L., and T, are
proportional. [t is common to choose 100,000 as the
value for I,. At the other end of the life table, for an
open-ended age interval starting at age x*, it is usual-
ly assumed that Lo = Lo / M-

An abridged period life table for the female pop-
ulation of Austria in 1992 is presented in Table 1. In
its first two columns, this table also shows the empir-
ical data—population numbers by age, derived from
census statistics and numbers of deaths by age, de-

rived from vital statistics—from which the life table
was calculated.

The functions of the life table describe the level
and age-pattern of mortality of a population. The g,
and ,m, columns are two related ways of showing
how the risk of mortality varies by age, conditional
on survival to age x. The ,d, column, if divided by
ly, can be viewed as the probability for a newborn to
die in a particular age group. The [, column, divided
again by [y, corresponds to the probability of surviv-
ing from birth to age x. More generally, [, /I, (with
y > x) corresponds to the probability of surviving
from age x to age y, conditional on survival to age
x, and 1 — [,/ 1, is the probability that a person who
survived to age x will die between age x and y. Fur-
thermore, (I, —1,) / I, is the probability that a new-
born will die between ages x and y, and (T, - T,) /
Iy is the number of years that a newborn can expect
to live between ages x and y. Figure 1 shows L, ,q,,
and ,d, functions for the female population of Swe-
den. These data, presented for four different years
during the twentieth century, illustrate how the age-
pattern of life table functions varies as a country ex-
periences mortality decline.

Perhaps the most widely-reported life table
measure is &, the life expectancy at birth. In a peri-
od life table, it corresponds to the average number
of years that a newborn cohort would live if subject-
ed through the life course to the age-specific mortal-
ity rates of the particular period to which the life
table pertains. By extension, this number can be said
to represent the length of life an average individual
can expect at birth under the given mortality condi-
tions. In a life table pertaining to an actual cohort
that is now extinct, &, corresponds to the observed
mean age at death for that particular cohort. Life ex-
pectancy, as was indicated above, is also calculated
for ages other than zero. For age x, é, can be inter-
preted as the number of years that an individual can
expect to live above age x, conditional on survival to
age x.

Life Table Applications

The life table has many applications beyond the
measurement of mortality. One of these applications
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FIGURE 1

Graphical Representation of Unabridged Life Tables for Females, Sweden 1900, 1933, 1967, and 2000
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concerns the relationship between the mortality level
of a population and its age structure. In particular,
a life table can be conceived as a stationary popula-
tion, which is a population closed to migration,
where the annual number of births (B) and mortality
conditions (embodied in the life table) are constant
over time. If these conditions apply, the population
will have an age distribution, ,N,, that is propor-
tional by a factor B/l to the L, column of the life
table, and a total population size, P = B é,. The an-
nual number of deaths in this population will equal
the annual number of births, and the crude death
and birth rates will have the value of 1/¢,. In this
population all demographic parameters, including
total population size, are constant over time. The
growth rate of this population is zero—hence the
designation “‘stationary.”

[t follows that if a population can be assumed
to be stationary, population parameters can be di-
rectly translated into life table parameters. For ex-
ample, in a stationary population, é = P/ B, and ,L
= ,N,. I, / B. Also, in a stationary population, the
observed distribution of deaths, ,D,, is proportional
to the distribution of deaths in the life table, ,d..
Thus, the observed mean age at death equals &y,
which is not the case in non-stationary populations.
These equalities are usetul for estimating mortality
or other single-decrement processes in any popula-
tion or sub-population that can be assumed to be
stationary.

The life table can also be used to project a popu-
lation in the future. If a particular life table can be
assumed to represent mortality conditions of a spe-
cific population between time t and #+5, and if there
is no migration between t and t+5, the population
aged x to x+5 at time f, sN,(t) can be projected to
time +5 using the ;L. column of the life table and
the following equation:

SN,HS (t + 5) = 51\’_‘,(‘1‘) j[‘_,\’_r_i
L

Sty

This equation rests on the assumption that the pop-
ulation is stationary between age x and x+5, an as-
sumption that is not very problematic for this pur-
pose. The births that occurred between t and t+5 can
also be projected to time #+5 to calculate the popula-
tion under age 5 at time t+5 using the following
equation:
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Ny (t+5) =B, t+ 5] =2
51

Naturally, an important component of population
projections involves making assumptions about the
future course of mortality and the construction of
corresponding life tables. The above equations de-
scribe the mechanical use of life tables for projection
purposes, once life tables for future time periods
have been estimated.

Mortality Models

Comparison of life tables in various populations has
led demographers to observe regularities of age-
patterns of mortality. In particular, across popula-
tions and time periods, age-specific mortality risks
tend to follow a U-shape curve, with higher mortali-
ty risks at younger and older ages, with the lowest
risks in the neighborhood of age 10 (see Figure 1).
Another observation is that mortality rates are high-
ly intercorrelated within a population. When mor-
tality rates are higher at particular ages, they also
tend to be higher at other ages. Although with a
given level of mortality—as indexed, for example, by
the value of the expectation of life at birth—
somewhat different age-specific mortality rates may
be associated in different populations, this variability
is within relatively narrow bounds.

These observations have led demographers to
search for parsimonious representations of mortality
patterns, or mortality “models.” The purpose of
mortality models is the representation of complex
age/level variations in life table columns with a small
number of parameters. Mortality models can permit
the estimation of mortality indicators in settings
where the data ideally required for life table con-
struction (an accurate census count of the popula-
tion and accurate death registration for years fairly
close to the time of the census, or corresponding sta-
tistics derived from an accurate population register)
are absent. In such situations it may be still possible
to estimate a limited number of population parame-
ters, which, along with a model, can be usetul for es-
timating a full life table.

Mathematical mortality models are the oldest
parsimonious representations of mortality patterns.
The purpose of such models is to present a tunction-
al form relating mortality risks to age, with a small
number of parameters adjusting for varying levels
and patterns across populations. Mathematical mor-
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tality models have not been very successtul because
the shape of the mortality curve is too complex to
be easily summarized in a functional form. An im-
portant contribution of mathematical representa-
tions of mortality, however, is the Gompertz “law”
of mortality, according to which the logarithm of the
death rate is a linear function of age. The Gompertz
equation is tfrequently used to represent or estimate
mortality rates past middle adult ages, although it
tends to overestimate mortality rates at older ages.

The most widely-used mortality models are
model life tables. In their classical form, model life
tables are a set of life tables indexed along two di-
mensions, family and level. A family is a group of
model life tables with similar age patterns of mortali-
ty, often based on the experience of populations that
are geographically close. Within a family, tables are
indexed by level, from low to high life expectancy at
birth. These model life tables are estimated by
grouping high-quality empirical life tables with simi-
lar age patterns of mortality, and by observing how
age-specific mortality rates typically vary as the over-
all mortality level changes. Regression equations are
then used to construct model life tables for various
families and mortality levels.

The most commonly used sets of model life ta-
bles were developed by A. J. Coale and P. Demeny
and by the United Nations. Coale and Demeny
model life tables are mostly based on the experience
of European populations during the first half of the
twentieth century, whereas United Nations tables are
based on the experience of developing countries
during the second half the twentieth century.

Model life tables are convenient to use, because
within a family, a unique life table can be selected on
the basis of only one life table indicator. The use of
model life tables thus can flexibly accommodate var-
ious data configurations of the populations under
study. However, the choice of the family of life tables
appropriate for application to actual populations is
not always straightforward, and the tull range of age
variations in actual mortality experience may not be
fully represented in the currently available model life
tables.

Another category of mortality models is the re-
lational model, to which the logit model developed
by William Brass belongs. Brass (1971) observed that
any two life tables can be related to each other in a
linear way after performing a “logit” transformation
of g(x), the probability of dying before age x. The

logit system is thus a system in which a “standard”
life table can be adjusted for varying levels and age-
patterns of mortality across populations after solving
for the two linear parameters relating empirical life
table values to the standard. The Brass logit system
is often used to smooth an empirical life table or to
complete a life table with missing values.

Multiple-Decrements

Although life tables were originally developed to
study mortality, the same logic can be used to study
many other processes. The only requirement is that
the process must be a single-decrement process,
which means that there is only one mode of exiting
a defined state of interest with no possible return to
that state. When studying mortality, the state of in-
terest is being alive, and the only way to leave that
state, with no return permitted, is through death.
The same logic can be applied, for example, to first
marriages, in which case the state of interest is being
never married and the event of interest is first mar-
riage. Other single-decrement processes include first
migration from place of birth, marital survival, or
entry to the labor force.

In reality, single-decrement processes are rare.
For a real cohort, mortality is in fact the only true
single-decrement process. Other states such as
“being never married” can be left not only by mar-
riage, but also by death. Mortality always operates in
addition to other processes, and thus multiple-
decrement processes are far more common than sin-
gle-decrement  processes.  Nonetheless,  single-
decrement life table logic can be applied to multiple
decrements if the ditferent sources of exits can be
merged into one combined source of decrement, or
if sources of decrements other than the one of inter-
est can be ignored because they are very infrequent
during the age-range under study. Also, if informa-
tion is available only for individuals who did not ex-
perience other sources of decrement, the process of
interest can be studied as a single-decrement pro-
cess. For example, data on first marriages reported
by individuals aged 85 can be used to reconstruct a
life table in the single state where first marriage is the
only source of decrement. Such strategy will provide
an unbiased single-decrement life table if survivors
had the same risks of experiencing a first marriage
as those who did not survive (independence of prob-
abilities).

In a multiple-decrement environment, it is
sometimes useful to present information on the var-




ious modes of exits. Such analysis is commonly per-
formed in a multiple-decrement life table, which is
a life table where several sources of decrement affect
the number of people still alive, and where each
source of decrement is specified in various columns.
For example, in a cause-specific life table, there are
as many ,d/ columns as there are causes of death 1.
The sum of ,d/ in an age group is equal to ,d,, the
number of deaths from all causes in the correspond-
ing single-decrement life table.

There are also methods that permit construc-
tion of a single-decrement life table in the absence
of, or net of, other sources of decrement. Such life
tables are sometimes called “associated single-
decrement life tables” or “‘cause-deleted life tables.”
This approach involves information on a population
subject to various sources of decrement, but it mod-
els the process of interest by reconstructing a hypo-
thetical cohort where that process would be the only
possible source of attrition. For example, if various
causes of death are taken to be different modes of ex-
iting the cohort, an associated single-decrement life
table would permit estimation of the survival of a co-
hort in the absence of a particular cause (or group
of causes).

Lite table analysis is a powerful tool that has re-
gained interest in the social sciences with recent de-
velopments in statistical techniques. If data on co-
hort survival is available at the individual level and
includes covariates, it is possible to use a set of tech-
niques termed “survival analysis” or “event-history
analysis.” The main purpose of these techniques is
to estimate the influence of individual-level charac-
teristics on the age-specific risk of attrition, the so-
called “‘hazard rate.” Because of their roots in classi-
cal life-table analysis, some of these procedures have
been termed “life tables with covariates.”

As noted earlier, the underlying assumption of
single- and multiple-decrement life tables is that
once the event of interest is experienced, individuals
can never return to their original state. In reality,
there are many processes where individuals can ex-
perience reverse flows. For example, if the state of in-
terest is being “currently married,” there are return
flows as individuals who experience divorce or wid-
owhood remarry and become “currently married”
again.

Such processes can be analyzed through incre-
ment-decrement life tables, sometimes called multi-
state life tables. In an increment-decrement life
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table, there are as many [, columns as there are states
(excluding “‘being dead”), and these [, columns can
increase or decrease depending on the observed rates
of transition from one state to the other. Among
other uses, increment-decrement life tables allow cs-
timation of the expected number of years in a partic-
ular state. For example, they can permit the estima-
tion of the number of years that a newborn can
expect to live in the “currently married” state, which
could not be done using classical, single-decrement
life tables.

Historical Note

The concept of life tables was first created in 1662
by John Graunt (1620-1674) in his Natural and po-
litical observations made upon the bills of mortality
(1662). Further developments were made by the
Huygens brothers and Gottfried Leibniz (1646-
1716}. The first systematic construction of a life table
is credited to the astronomer Edmund Halley (1656—
1742) in 1693. During the seventeenth century, life
table construction was significantly improved due to
the work of Willem Kersseboom (1691-1771), Ni-
colaas Struyck (1686-1769), and Antoine Depar-
cieux (1703-1768). However, these scientists lacked
the two necessary data sources for the construction
of a period life table—deaths and population by age.
Therefore, early life tables were accurate only if the
population under study was a closed cohort or a
stationary population, and thus they had limited
applicability. Taking advantage of the exhaustive
Swedish data, Pehr Wargentin (1717-1783) con-
structed the first scientifically correct period life
table in 1766.

Before the seventeenth century, death was be-
lieved to be either a magical or sacred phenomenon
that could not and should not be quantified. The in-
vention of life tables was thus an important scientific
breakthrough, not only because of the technical as-
pects of life table construction, but also because of
the concept of mortality as a measurable phenome-
non following observable regularities.

See also: Actuarial Analysis; Brass, Willian; Demogra-
phy, History of; Event-History Analysis; Farr, Williani;
Gompertz, Benjamin; Graunt, Joln; Mortality, Age Pat-
terns of; Multistate Demography; Renewal Theory and
Stable Population Model; Stochastic Population Theory.



602 LIMITS TO GROWTH

BIBLIOGRAPHY

Brass, William. 1971. “On the Scale of Mortality.”
In Biological Aspects of Demography, ed. W.
Brass. London: Taylor and Francis Ltd.

Coale, Ansley J., and Paul Demeny. 1983. Regional
Model Life Tables and Stable Populations. New
York: Academic Press. (First edition 1965,
Princeton: Princeton University Press.)

Dupaquier, Jacques. 1996. L'invention de la table de
mortalité: de Graunt a Wargentin: 1662-1766.
Paris: P.U.F.

Keyfitz, Nathan. 1985. Applied Mathematical De-
mography, 2nd edition. New York: Wiley.

Keyfitz, Nathan, and Wilhelm Flieger. 1990. World
Population Growth and Aging: Demographic
Trends in the Late Twentieth Century. Chicago
and London: University of Chicago Press.

Pressat, Roland. 1972. Demographic Analysis: Meth-

ods, Results, Applications. Chicago: Aldine-
Atherton.

Preston, Samuel H., Patrick Heuveline, and Michel
Guillot. 2001. Demography: Measuring and
Modeling Population Processes. London: Black-
well Publishers.

Schoen, Robert. 1988. Modeling Multigroup Popula-
tions. New York: Plenum Press.

United Nations. 1982. Model Life Tables for Develop-
ing Countries. New York: United Nations Popu-
lation Studies, no. 77.

MicHEL GUILLOT

LIMITS TO GROWTH

For demographers, limits to growth is an old subject,
at least as it relates to population growth, harking
back to political economist T. R. Malthus (1766—
1834) or even earlier writers. Since the 1972 publica-
tion of the Club of Rome study Limits to Growth the
term has come to refer to both population and eco-
nomic growth—that is, growth in population and
growth in per capita resource use, the product of
which gives the growth rate of total resource use.
This total resource use is a flow from nature’s

sources (mines, wells, forests, fisheries, grasslands),
through the transformations of production and con-
sumption within the economy, and back as wastes
to nature’s sinks (atmosphere, oceans, a neighbor’s
back yard). Just as an animal lives from its metabolic
flow, beginning with food from the environment,
and ending with the return of wastes to its environ-
ment, so the economy lives from its metabolic flow,
or “throughput.” The throughput, like the metabol-
ic flow, is entropic and irreversible. That is not to say
that most waste materials are not recycled by biogeo-
chemical processes powered by the sun. It is only to
point out that such recycling is external to the ani-
mal or economy—whose life therefore depends on
these natural services provided by its environment.

Two Kinds of Dissipative Structures

In physical terms human bodies are dissipative
structures, which is to say that thejr natural tendency
is to decay, die, and fall apart. The same is true for
artifacts that we accumulate as wealth. A car, a
house, or a shirt is a dissipative structure that re-
quires a throughput to be maintained and replaced.
A population of inanimate objects (e.g., shirts) inev-
itably wears out and depreciates over time, requiring
new production to make up for the loss, as well as
maintenance expenditures (replacing buttons) to
slow down the rate of depreciation to a minimum.
For demographers it is easy to think in terms of two
populations of dissipative structures, one consisting
of human bodies, the other of artifacts—basically
extensions of human bodies. Each population, if it
is to remain in a steady state, has both short-term
maintenance requirements and long term reproduc-
tion requirements, each supplied by the entropic
throughput from and back to nature. If these two
steady-state populations are so large that the
throughput necessary to maintain them requires in-
puts from nature’s sources and outputs to nature’s
sinks at rates beyond nature’s replenishing and ab-
sorptive capacities, then the throughput flow be-
comes ecologically unsustainable, and so do the two
populations.

Definition of Limits to Growth

The limits to growth, in twenty-first century usage,
refers to the limits of the ecosystem to absorb wastes
and replenish raw materials in order to sustain the
economy (the two populations of dissipative struc-
tures). The economy is a subsystem of the larger
ecosystem, and the latter is finite, non-growing, and,
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