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Relationships between period and cohort life 

expectancy: Gaps and lags 

Joshua R. Goldstein' and Kenneth W. Wachter2 
1Princeton University, 2University of California, Berkeley 

This paper offers an empirical and analytic foundation for regarding period life expectancy as a lagged 
indicator of the experience of real cohorts in populations experiencing steady improvement in mortality. We 

find that current period life expectancy in the industrialized world applies to cohorts born some 40-50 

years ago. Lags track an average age at which future years of life are being gained, in a sense that we make 

precise. Our findings augment Ryder's classic results on period-cohort translation. 
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Development of translation procedures has proven 
more difficult for mortality functions than for fertility 
functions ... (Ryder 1964, p. 81) 

Introduction 

In 2003, Sweden's official statistics agency reported 
that the period life expectancy for both sexes was 80.2 

years. To whom would this expectancy apply? No one, 
because period life expectancy is an entirely synthetic 
measure, referring to the hypothetical cohort living its 
entire life according to the rates of a single period. 
Real people do not live out their lives in this way. 
They age and die as members of cohorts through 
successive periods subject to ever-changing rates. 

In modern industrialized nations, however, these 

ever-changing rates tend to be changing quite 
steadily. Thanks to the steadiness of change, period 
life expectancy for each period usually is the life 

expectancy for a real cohort whose birth date is 

separated from the period by a systematic lag. 
Period life expectancy is not as purely hypothetical 
as the language in demography textbooks might lead 
us to believe. In this paper we focus attention on the 

systematic correspondence between periods and 
cohorts in terms of life expectancy. Empirically, we 

explore the correspondence in historical and pro- 
jected life tables from the USA and Sweden for the 

nineteenth, twentieth, and twenty-first centuries. 

Analytically, we derive approximations which yield 
a simple interpretation and representation of period- 
to-cohort lags. Historical comparisons and simula- 
tion show that the lag approximations capture the 

magnitude and the pattern of change over time. 
Under contemporary conditions, period life ex- 

pectancy is about equal to cohort life expectancy for 
the cohort born about 40-50 years ago. This lag has 

lengthened over time and it is expected to lengthen 
further as mortality improves. As we shall see, the 

longer lags reflect the later ages at which gains in 

years of life from improvements in mortality have 
come to be concentrated. The lag between periods 
and cohorts is not equal to the mean age of death, as 
one might initially suspect, but rather to the mean 

age of mortality improvement. 
Interpreting period life expectancy in terms of 

cohort experience has obvious appeal. Almost any- 
one would prefer cohort measures, were it not that 
cohort measures lack timeliness, remaining incom- 

plete for more than a century pending the last cohort 
member's death. The one main virtue of period 
mortality rates is their quick availability. Unlike 

period fertility rates, which drive population renewal 

by determining the size of each period's new crop of 

births, period mortality rates do not enter into the 

demographic Renewal Equation. It is cohort survi- 

vorship that shapes the populations at risk. 
Our proposal to regard period life expectancy as a 

systematically lagged cohort indicator follows in the 
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spirit of Norman Ryder's tradition of demographic 
translation. Ryder (1964) recognized that the ap- 
proach to the translation of fertility measures he 

pioneered did not carry over readily to mortality. His 
well-known comment is the epigraph to this paper. 
The translation of life expectancy between periods 
and cohorts has remained an open problem over the 

intervening 40 years. 
If, following Ryder, one wants to view period 

measures as moving averages of underlying cohort 

processes, then it is a natural step to think in terms of 

lags. Consider, by analogy, the mean-value theorem 
of the calculus which requires the average value of a 
continuous function over an interval to equal some 

particular value of the function within the interval. If 
each period is in effect averaging the present 
experience of many cohorts born in the past, and if 
cohorts are changing steadily, then we expect there to 
be a particular past cohort with the same summary 
measure of mortality as the period measure. Hence 
we expect to be able to represent period life 

expectancy as a lagged cohort measure. Like Ryder's 
fertility translation, our translation of periods to 
cohorts applies to the average lifetime experi- 
ence-in this case, life expectancy-but not to a 
full correspondence with the life table at every age. 

Renewed interest in demographic translation for 

mortality measures has been stimulated by Bon- 

gaarts and Feeney (2002). Their controversial claims 
about tempo distortions have been assessed by each 
of us elsewhere (Wachter 2005; Goldstein 2006). 
What matters for present purposes are measures and 
models that have come to the fore during the 

ensuing discussion. Instead of starting with period 
life expectancy and seeking cohort equivalents, 
Schoen and Canudas-Romo (2005) define a period 
measure based directly on cohort information. Their 

'Average Cohort Life Expectancy' (ACLE) is a 

weighted average of the cohort life expectancies of 
the cohorts alive in a given period, weighted by the 
proportional representation these cohorts would 
have in the period population if initial cohort size 
had been constant in the past. Current values of 
ACLE are calculated from forecasts of future 

mortality along with records of past mortality. As a 
measure of the current state of overall longevity, the 
ACLE has a straightforward rationale. 

Building on Brouard (1986), Guillot (2003) ana- 
lyses the 'Cross-sectional Average Length of Life' 
(CAL), equal to the total period population which 
would be produced from a constant unit stream of 
past births subject to a set of age and time-specific 
past survival rates. Since CAL averages over the 
past survival of the many cohorts composing the 

standardized period population, it is relatively im- 
mune to temporary period shocks that may affect 

period life expectancy, and, in the face of steady 
change, it lags behind period life expectancy. 

Relationships between the full CAL measure and 
cohort life expectancy at birth are complex. How- 
ever, CAL and life expectancy can also be calculated 

solely over adult ages, conditioning on survival to 
some age like 30. For these adult measures, under a 
set of stringent but illuminating special conditions, 
the period value of CAL comes out to equal the 
cohort life expectancy of the cohort born CAL years 
in the past, as shown by Goldstein (2006). In other 
words, under these special conditions (which con- 
strain the future as well as the past), when a cohort 
reaches an age equal to its life expectancy, its life 

expectancy equals the period value of CAL. This 

correspondence leads to a simplified formula for the 

lag between period and cohort adult life expectancy 
for this special case, with consequences discussed in 
the section on Linear Shift Models. 

Sketch of the relationship 

Steady improvement in mortality has been a feature 
of twentieth-century demography throughout the 
industrialized world. Despite the shocks of wars, 
the influenza epidemic, economic depressions, and 
new diseases, and despite breakthroughs such as the 
invention of antibiotics, chemotherapy, and open- 
heart surgery, age-specific survival has been improv- 
ing at a remarkably constant pace (Lee and Carter 

1992; Tuljapurkar et al. 2000). Mortality rates at all 

ages in many developed countries have been falling 
by between 1 and 2 per cent per year. 

With the decline in age-specific mortality rates, life 

expectancies at birth have been rising steadily. The 

pattern is shown in stylized form in Figure 1. The 
horizontal axis represents time, the vertical axis years 
of life. The lower curve stands for period life 

expectancy e((t) at time t. The upper curve stands 
for cohort life expectancy 

e0C(t) 
for the cohort born at 

time t. Cohort life expectancy is greater than period 
life expectancy because the cohorts experience im- 

proving mortality rates as they age. The curves are 
concave downward to reflect the diminishing rate of 
increase in life expectancy over time often described 
in terms of the measure called life table entropy. 

The straight lines on Figure 1 illustrate the three 

concepts we use to analyse the relationship between 

period and cohort life expectancy. We define the 
vertical distance between the period and cohort 
curves in a given current year as the 'gap' 7. 
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ec(t) 

eg(t) Gap (y) 

Lag (k) 

Figure 1 Sketch of gap (y) and lag (2) between cohort 
and period life expectancy when mortality and entropy are 
decreasing with time 

Formally, 

y(t) = ec(t) - ep(t). (1) 
The magnitude of the gap tells how much period life 

expectancy differs from the life expectancy of the 
cohort born in the current period. It is the 'bonus' 
that a real cohort receives from taking advantage of 
future improvement in mortality. The units of y are 

years of life. 
We define the horizontal distance between cohort 

and period curves as the 'lag' 2. The lag tells us how 
far back in time from the current period we have to 

go to find a cohort with equivalent life expectancy. 
(If no such cohort exists, the lag is undefined.) 

(t) = min{2: ec(t- ) = e(t)}. (2) 

The units of 2 are years of time. 
The lag defined in (2) is a 'backward' lag in the sense 

that it looks backward for a cohort that matches the 
current period. One can also define a 'forward' lag by 
the number of years it will take for period life 

expectancy to reach the current level of cohort life 

expectancy. Typically, when mortality is improving, 
the forward lag will be larger than the backward lag. 

We use the term 'slope' to describe the derivative 
of life expectancy with respect to time on either 
curve. Figure 1 contains an approximate triangle 
with a mildly curving hypotenuse. The ratio y over 2 
is the average cohort slope along the upper hypote- 
nuse, not far from the period slope at the vertex. 

In populations experiencing a steady worsening of 

mortality, the gap will be negative, but the lag will 
still be positive, because current period mortality is 

always experienced by cohorts born in the past. 
In this paper we ask, first, what is the relationship 

between current period and cohort life expectancy? 
This question can be answered empirically by 
looking at the magnitudes of the current gaps and 

lags. We ask, second, how has this relationship been 

changing? This question can also be answered 

empirically, using historical data and forecasts. We 

ask, third, what determines the magnitudes of the 

gaps and lags? For answers, we turn to mathematical 
models, obtaining approximate formulas and spel- 
ling out the intuitions to which they lead. The appeal 
of the formulas is not that they allow highly accurate 
estimates of gaps and lags-which can be obtained 

directly from observed and forecast life expectancy 
trajectories-but rather that they provide a qualita- 
tive understanding of the magnitude, determinants, 
and dynamics of gaps and lags. 

Empirical gaps and lags 

We begin with empirical relationships between 
cohort and period life expectancy seen in documen- 
ted human experience. For illustration, we use 
official estimates and projections for females from 
Sweden and the USA, prepared by Statistics Sweden 
and by the US Social Security Administration. 
Historical data for Sweden were obtained from the 
Human Mortality Database (www.mortality.org). 
Projections of life expectancy for Sweden are given 
at www.scb.se, with age-specific mortality rates 

provided to us by Hans Lundstrom. We extended 
these projections by extrapolating the forecast 

exponential age-specific improvements above age 
100 from 2050 to 2070 in order to estimate life 

expectancy at birth for cohorts born as recently as 
1959. For the USA, we used period and cohort data 
available at the Human Mortality Database, 
www.mortality.org and the Berkeley Mortality Da- 
tabase at www.demog.berkeley.edu/ bmd. 

Empirical curves for Swedish and US women are 
shown in Figure 2. Cohort life expectancies plotted 
by cohort date of birth for 1900-59 for Sweden and 
for 1900-2000 for the USA at the top of each plot 
depend significantly after about 1915 on the projec- 
tions. Below them, period life expectancies for 
Sweden and the USA from 1900 to 2000 reflect 
observed data. Lags are shown in the middle of the 

plots. Gaps appear at the bottom. 
We see steady improvement in period life expec- 

tancy in both countries, with the exception of the 
1918 influenza pandemic. Future improvements are 
expected to be at a slower rate owing in part to 
increases in life table entropy (Keyfitz and Caswell 
2005, p. 78). In the USA, there is also a slowdown in 
the pace of age-specific mortality decline built into 
the Social Security forecasts (Technical Panel on 
Assumptions and Methods 2003). 

With improving survival, cohort life expectancy is 
consistently higher than period life expectancy, 
making the observed gaps positive in both countries. 
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Figure 2 Observed and forecast cohort and period life expectancy of females at birth in Sweden and the USA and 
accompanying gaps and lags 
Sources: US Social Security Administration available at Berkeley Mortality Database (www.demog.berkeley.edu/-bmd); 
Human Mortality Database (www.mortality.org); Statistics Sweden. Early Swedish lags are based on nineteenth-century e0C 
(not shown). 

In Sweden, gaps increase from about 5 years in the 
middle of the nineteenth century to about 12 years 
in the middle of the twentieth. In the USA, the 
observed gaps begin at about 10 years in 1900 and 
fall to about 6 years in 1960. In both countries, the 

gap spikes during the influenza epidemic. 
Lags in both countries rise over time. In Sweden, 

the observed lags rise from about 20 years in 1900 to 
about 50 years in 2000. In the USA, there is a similar 

rise, but at a slower pace. 
There is no simple relationship between gaps and 

lags and the level of period life expectancy. The lags 
grow from less than half of life expectancy to more 
than three-quarters. The lack of relationship be- 
tween the gap and the level of life expectancy is even 
more striking, with the gap rising in the early part of 
the nineteenth century and falling slowly since. 

Modelling gaps and lags 

Having seen how period and cohort life expectancy 
are empirically related to one another, we turn to a 
theoretical explanation for the magnitude of the gaps 
and lags. We adopt a popular model of steady age- 
specific mortality change widely used for modern 
industrialized countries. Our strategy is to approx- 

imate cohort life expectancy in terms of current period 
life table values along with parameters specifying an 
overall rate and age pattern of mortality decline. 
Within this model we derive closed-form expressions 
for gaps and lags. Our purpose is not to predict gaps 
and lags, which after all can be computed directly from 
the life tables themselves. Rather, our expressions are 
intended to promote an analytical understanding of 
the magnitudes of the indices and their determinants. 

An age-specific model of mortality change 

Our model is a log-linear specification for age- 
specific hazard rates , (x, t) at age x and year t in 
terms of a baseline schedule 1 (x): 

u(x, t) = (x) e-kb(x)rt. (3) 
For each age group, it is a model of constant 

proportional change. The age-schedules of mortality 
p (x) and mortality improvement kb (x) can take any 
desired form. For identifiability, we constrain the 
b (x) schedule to have unit mean, making k the mean 
annual exponential rate of mortality improvement 
over the age range under consideration. 

This model of mortality change is a natural choice. 
It is essentially the Lee-Carter forecasting model 

(Lee and Carter 1992) currently in use by the United 
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Nations (United Nations 2004). The linear trend 
factor kt in (3) is the usual Lee-Carter form for 
forecasts of central tendency. Full Lee-Carter fore- 
casts also have stochastic terms and are fitted to 
historical data with varying factors k(t) in place of 
kt. The model we are using can also be expressed 
using the notation of Vaupel and Canudas-Romo 

(2003, p. 202), replacing their p (x) with kb (x) and 

imposing constancy on p (x) over time. This con- 

stancy is the main assumption. The assumption is not 

perfect over the timescales of lags and cohort 
lifetimes, but it is a valuable starting point. 

For notational convenience, let t =0 represent the 

period of current interest. We write 1(x) for survivor- 

ship in the current period life table and include k as 
an argument in life expectancies, so that e'(t; k) is 
the period life expectancy at birth at time t given the 
overall rate of mortality improvement k. Period life 

expectancy at t = 0 is 

eg(0; k) = f I(x) dx 
S(4) 

= 

fexp(-fx0p(a) 
da dx. 

The cohort born 2 years earlier experiences cohort 
hazards 

,(x, x - 2) = e-kb(x)(x- %) (x). (5) 
Its cohort life expectancy is 

eC(-1; k) = fexp (- f (a, a - 2) da)dx. (6) 

Approximating cohort life expectancy, 
lags, and gaps 

We obtain cohort life expectancy at t= -2 as a 
function of the parameter k by substituting the 
cohort hazards given by (5) into (6): 

e (-2; k) = exp (- ekb(a)(a-)p(a) da dx. 

(7) 
Cohort life expectancy can now be approximated for 
small k by expanding eC(-2; k) in a Taylor series 
around k =0: 

ec(-2; k) = eC(-2; O)+kdeoc +... 
dk k=O 

= fl(a)da 

+ kf (a- 2)b(a)e(a)l(a)u(a)da+... 

(8) 

All of the life table functions in this approximation 
refer to the period life table of the reference period, 
a pleasing feature, because the period life table is 

usually what we have in hand. 
We now use the expansion in (8) to approximate 

the lag between cohort and period life expectancy. 
Setting lagged cohort life expectancy equal to period 
life expectancy at t = 0, which equals the first term 
on the right of (8), we solve for 2: 

k 
Jab(a)e(a)l(a)ei(a)(a) 

da 

1 
= 

o (9) 
k ' b(a)e(a)l(a) u(a) da 

0o 

We call 21 the first-order estimate of the lag. 
Our Taylor expansion, with 2 set to zero, also 

leads to a first-order estimate of the gap: 

= 
- 

k fab(a)e(a)l(a),u(a) da. (10) 

Interpreting the approximations 

Equation (10) for the gap gives the years of life a 
cohort gains by being able to live into the future 
when mortality rates have fallen. Inspection of ,1 
shows that it is in fact a sum of age-specific gains. 
A useful way of thinking about mortality improve- 
ment is as additional years of life to those who would 
have otherwise died (Vaupel and Yashin 1987). 
Following this logic, the term 1(a)p (a) is the age 
distribution of deaths in the absence of mortality 
decline, and thus the distribution of ages at which 
deaths are averted. The term ab(a)k gives the 

magnitude of mortality improvement at each age, 
with the a term accounting for the longer time it 
takes for cohort survivors to reach older ages. Finally, 
e (a) gives the years of life gained for each improve- 
ment in mortality. The product of these three terms 

gives the life expectancy gain at each age; summing 
over all ages gives the total gain in life expectancy. 

Our approximate formula for the lag matches the 

geometric interpretation of the triangle of Figure 1. 
The numerator is an approximation for the gap y 
and the denominator is an exact formula for the 

'slope', the time derivative of the period life 

expectancy: 

SOe'(t; k) 0 
p 

~ 
- k 

b(a)e(a)l(a)iu(a) 
da. (11) 

(The same result is equation (15) of Vaupel and 
Canudas-Romo (2003).) In words, the first-order 
estimate of the lag is the number of years it takes for 

period life expectancy to catch up to cohort life 
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expectancy, assuming constant improvement in life 

expectancy at the rate observed in the reference 

period. 
A deeper interpretation of equation (9) shows the 

lag as the mean age of mortality improvement of a 

cohort, the average age at which future years of life 
are gained. This interpretation helps explain why the 

lag is not, as one might at first suspect, simply equal 
to the mean age at death. Translated cohort and 

period fertility are offset by a quantity equal to the 
mean age of childbearing, but for mortality, it is the 
mean age of mortality improvement, not the mean 

age of mortality, that is relevant. We can write the 

lag as a mean, such that 1, = fag(a)da/lg(a)da. Here, 
g(a) =e(a)l(a)p(a)kb(a) is the years of life gained 
at age a by mortality improvement. A simple case 

helps illustrate this relationship. If all mortality 
improvements occurred only at one age a', with no 

change at any other ages, then the life expectancy of 
a cohort would be equal to the life expectancy of the 

period a' years after the cohort was born. When 

improvements take place over many ages, the effects 
of these improvements need to be averaged over 
these many ages. 

The average age of improvement depends on the 

age-schedule of mortality change, the age distribu- 
tion of deaths, and on life expectancy by age. For a 

given age-schedule of mortality change b (x), lower 

mortality will increase the lag, because deaths 

1(x)j (x) will be concentrated at higher ages. For a 

given level of mortality, the older the schedule of 

mortality improvement b (x), the larger the lag 2. 

The unimportance of k 

Intuitively, it makes sense that the increased life 

expectancy that cohorts receive from future declines 
in mortality should depend on the pace of mortality 
change. Indeed, we see that our analytical expres- 
sion for y is directly proportional to k. 

On the other hand, it is somewhat surprising that 
the first-order approximation of the lag does not 
depend on the rate of mortality improvement k, 
which cancels out of the numerator and denomi- 
nator. (The approximation is only defined for k #0. 
When k = 0 the lag and gap are both zero since 
period and cohort life expectancy coincide, but the 
limit of the lag as k goes to zero does have a non- 
zero limit.) 

Figure 3 illustrates, using simulation, how little 
observed lags vary across a wide range of k, 
including negative values. Instead, the rate para- 

95 - 

90- 

e0 
85 - 

80- 

75 

x = period eo in 2000 
0 = cohort e0 in 2000 

by k 

k =0.02 

k = 0.01 

k =0.005 

k = 0.001 

k=0 

k = -0.005 

1900 1950 2000 2050 2100 
Year (simulated) 

Figure 3 Simulated cohort eo trajectories by rate of 
mortality decline k 
Notes: Dashed line gives period eo in 2000. Lag can be 
seen as the horizontal distance between 'x' and the 
intersection of the cohort curve with the horizontal dashed 
line. The gap is the vertical distance between 'x' and 'o'. 
The figure shows that the lag is roughly constant over a 
wide range of rates of mortality decline but that the gap is 
highly dependent on k. 

meter k primarily drives the difference between 
cohort and period life expectancy at a moment in 
time (the gap), and the slope. The fact that the gap 
and slope both depend to first order linearly on k 
allows k to cancel out. 

Accounting for curvature 

From the geometric interpretation, we can see in 

Figure 1 that the use of the current slope in  will 
not be exact if there is curvature in the trajectory of 

period life expectancy over time. Instead, what is 
needed is the average slope over the period t - 2 to 

t, call it -. A second-order approximation is thus 

e2 = 
(12) 

e 

We estimate the average slope, using the first- 
order estimate of the lag as a guide, letting 

- 
be the 

slope /, /2 years before the time of interest. 
In simulations, we use the observed value of the 

slope at this point. In empirical applications, we 
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approximate the slope at this point linearly as 

eF 

_ 

e 1 
" 

(13) 
2 

where the time derivative of the slope given in 

equation (11) is 

= k2 1(x) {[JIX) up(a)b(a) da] 

S 
b(ida d. (14) 

f 
x 

(a)b(a)2 da dx.(1) 

Validation 

The interpretations of the magnitudes of gaps and 

lags offered in the previous section make intuitive 
sense. But they are based on approximations, not 
exact formulas. We now ask how well the formulas 

capture the actual magnitudes. The story we have 
offered is a simplification. How much of a simplifi- 
cation does it turn out to be? 

We investigate the validity of our approximations 
first with simulations and then with empirical series. 
It is important to bear in mind that the goal of our 
formulas is not to predict exact values of gaps and 

lags. The values can be computed directly from the 
observed or projected life tables from which the 

quantities in our formulas are estimated. The goal is 
to understand the structure of gaps and lags and to 
see how much of that structure is uncovered by our 
model and our approximations. 

The simulations allow assessment of our formulas 
when the assumptions of the model hold, that is, 
under conditions of proportional mortality improve- 
ment at a rate and with an age pattern that is 
constant over time. The empirical comparisons test 
how well the logic of our analytic results continues 
to apply in the face of observable variations in the 
course of mortality improvement. 

Simulations 

We present simulated trajectories of period and 
cohort life expectancy, and the associated gaps and 

lags, for two patterns of age-specific mortality 
improvement. The 'classical' simulation provides a 

stylized version of historical mortality change to 

date, with faster improvements at younger ages. The 

Gompertz simulation offers a simple view of what 

mortality change could look like in the future. 
Childhood mortality is taken to be negligible and 

proportional changes in old-age mortality are taken 
to be uniform over time and age. 

For the 'classical' simulation we follow Canudas- 
Romo and Schoen (2005), employing a Siler model 
as the baseline schedule of mortality. The Siler 
model p(x) = aLexp(-flx) + L2exp(fl2x) + 3 adds 
an exponentially declining hazard, dominating child- 

hood, and an exponentially rising hazard, dominat- 

ing adulthood, along with a constant background 
component. We calibrate the baseline schedule to 

approximate the period mortality rates of Swedish 
females in 2000, letting al =0.003, 62 = 0.00001428, 
c3 =0.002, and f1 =1 and f2 =0.100. Mortality 
improvement is modelled with a level k and age- 
specific coefficients b (x), constant over time, which 

drop linearly with age between ages 0 and 20 and 
remain steady above age 20. We let k =0.0092, with 

b(0) =3.09 and b(20) =0.84, so that simulated 

period life expectancy matches the observed values 
in 1850 and 2000 for Swedish females (47.3 and 82.2 

years) and the forecast value for 2300 (106.5 years) 
according to United Nations forecasts. 

For the Gompertz simulation, we use the adult 

component of mortality from the Siler model on 
its own. 

The simulated life expectancies, gaps, and lags are 
shown in Figure 4. In the classical simulation, 
between 1850 and 2150 period life expectancy rises 
from about 47 to 95 years. Cohort life expectancy 
rises from about 51 to 102 years. Simulated gaps rise 
from 4.0 to 7.1 years, and lags lengthen from 7.6 to 
90.3 years. 

We see that 9, is an accurate estimate of the actual 

gap, with the maximum error being around half a 

year. The first-order estimate of the lag 'j tracks the 
overall magnitude of the increase in the actual lag 
but is off by as much as 8.9 years for intermediate 
values of life expectancy, when the curvature in eg(t) 
is considerable. The second-order estimate of the lag 
'2 accounts for this curvature nearly completely. 

In the Gompertz simulation, cohort and period 
life expectancy become very nearly linear with time, 
as do gaps and lags. The first-order estimates for the 
gap are quite accurate. They are systematically 
slightly low by about 0.6 years. The first-order 
estimates of the lag are also accurate, but they are 
systematically slightly high by about 1 year. These 
outcomes can be understood in more detail by an 
approach to be described in the section on Linear 
Shift Models below. 

Overall, the 'classical' simulation shows a setting 
in which the first-order estimate for the gap is highly 
accurate, the first-order estimate for the lag is only 
approximate, and the second-order estimate for the 



264 Joshua R. Goldstein and Kenneth W. Wachter 

'Classical' simulation 'Gompertz' simulation 
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Figure 4 Simulated trajectories for period and cohort life expectancy with accompanying observed and approximated gaps 
and lags 
Notes: Classical scenario uses Siler baseline mortality for year 2000, with mortality changes calibrated to period eo(1850) = 
47.3 years, eo(2000) = 82.2 years, and eo(2300) = 106.5 years. Mortality rate decline is faster at younger ages. Gompertz 
simulation based on Gompertz baseline p (x) and uniform pattern of mortality decline. See text for details. 

lag based on time derivatives is highly accurate. The 

Gompertz simulation, which is relevant for the gaps 
and lags of life expectancy at higher ages and 

perhaps for future mortality decline, shows a setting 
in which the first order for both gaps and lags 
captures the trends with high precision. 

Observations 

We now turn to the trajectories of life expectancy 
observed and forecast in Sweden and the USA. Our 
estimated gaps and lags are shown in Figure 5 

superimposed on the observed trajectories taken 
from Figure 2. The estimates are computed from 

equations (9), (10), and (13), with the gap and lag for 
each period estimated from the life table values for 
that period. Consistent with our model, we estimate 

patterns of mortality improvement with k and b (x) 
constant over time, matched to the overall change 
across the period of observation. Specifically, we 
estimated p(x) = 

--[log1 Mx(t2) - log1 Mx(tl)]/(t2 
- 

t1) 
and calculated k as the mean over all observed ages 

of p (x) and b (x) as p (x)/k. The periods covered were 
1900-2050 for Sweden and 1900-2080 for the USA. 

We see from the graphs that the estimates of gaps 
based on unchanging values of k and b succeed in 

capturing the overall level of the gaps but miss the 

temporal variation. The estimated gaps represent a 

highly smoothed version of the observed gaps for 
both countries. The estimated current value of y, in 
2000 of about 4 years is a plausible one and it is 

roughly consistent with the simulations. 
The estimated lags in both Sweden and the USA 

track observed lags well until about the Second 
World War, but afterwards overshoot the observed 
values. Using 

"2 

to account for the convexity of the 
life expectancy trajectories makes the estimated lags 
accurate until about 2000 in Sweden. In the USA, 

"2 is an improvement over 
" 

but still does not capture 
the slowdown in mortality improvement built into the 
Social Security forecasts that we have already men- 
tioned. This hypothesized slowdown is controversial. 
The slowdown projected for Sweden is less dramatic. 

Comparison between the fits to the simulations and 
the fits to the empirical series suggest that variations 
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Figure 5 Comparison of observed gaps and lags for females in Sweden and the USA with analytical estimates 
Note: Analytical estimates made assuming constant age pattern and level of mortality decline. See text for details. 
Source: As for Figure 2. 

over time in the rate and age pattern of mortality 
improvement in the empirical series are responsible 
for the deviations between estimates and observa- 
tions. Although the assumption of constant k and 

b(x) is widely adopted and underlies most applica- 
tions of Lee-Carter forecasting, it is not fully tenable 
for these long-term series (Lee and Miller 2001). 

We could compute a time-varying series of esti- 
mates for k and b (x) for use with our formulas, but 

complications arise. For the gap, future values of 
kb (x) are relevant, for they determine the life 

experience of the cohort just born. For the slope, 
past values of kb (x) are relevant, as we work back in 
time to the lagged value of cohort life expectancy. 
For earlier epochs, changes in b (x) are more 

pronounced, and at later epochs changes in k stand 
out. If accurate prediction were our goal, more 
elaborate formulas might be justified. But for the 

purpose of structural understanding, little is to be 

gained from complicated expressions. 

Linear Shift Models 

Curvature in graphs of life expectancies at birth is 

largely induced by reductions in infant and child 

mortality. Our Gompertz simulations, in which 
infant mortality is set to negligible levels, produce 
graphs that are quite straight. More generally, when 
we restrict attention to adult mortality, trajectories 
of further life expectancy beyond some age like 30 
are typically quite nearly linear. Such linearity can 
be represented by fitting variants of our propor- 
tional change model in equation (3) into the frame- 
work of the Linear Shift Model. This special case 
from a family of models developed by Bongaarts and 
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Feeney (2003) has been studied by Rodriguez (2006) 
and Goldstein (2006). 

Linear Shifts 

Under the Linear Shift Model, the hazard rate at 

every age x is given by the hazard rate at a younger 
age x - rt, t years before: 

ju(x, t) = u(x - rt, 0). (15) 

This model applies to some stretch of years before 
and after some reference time t =0 and it only applies 
to adult ages. The convention is to let age x =0 in the 
formula correspond to some human age like 30, and 
to condition on survival to that starting age, implicitly 
setting younger hazard rates (for negative x values) 
to zero. So far, no assumptions about the shape of the 
baseline hazard are being made. 

Because the whole period mortality schedule is 

shifting to higher ages at a constant rate r, period life 

expectancy under the model increases exactly line- 

arly with slope r. The same is true of the measure 

CAL, the Cross-Sectional Average Length of Life, 
described in the Introduction. The value of CAL at 
time t depends on prior values of the hazards, often 
as a moving average of prior values of period life 

expectancy (Wachter 2005). Under the Linear Shift 

Model, it is the same as lagged period life expec- 
tancy, with a lag denoted by G (r): 

CAL(t) = eg(t - G(r)). (16) 

This G (r) is constant over time, since e'(t) and 

CAL(t) have the same slope with respect to time. 
The value of G (r) depends not only on r but on the 

underlying hazard schedule. 
It is a remarkable fact, proved by Goldstein 

(2006), that the Linear Shift Model implies 

ec(t - CAL(t)) = CAL(t). (17) 

The measure CAL lags behind cohort life expec- 
tancy by a number of years equal to CAL itself. 

Manipulation of equations (16) and (17), keeping 
in mind that both period life expectancy and CAL 
are increasing at a constant rate r, leads to a full set 
of formulas for gaps and lags under Linear Shifts: 

2(t) = e'(0) - G(r) + rt (18) 

y(t) = 
r 

2(t) = y(0) + - t. (19) 
1-r 1-r 

To show (18), note that CAL(t+ G) = eg(t) from 

(16), and CAL(t+G) = 2(t)+G from (17) and the 

fact that the lag between period life expectancy and 
CAL is equal to G. Since el(t) = ep(0) + rt, (18) 
follows. To show (19) it suffices to show that the 

slope of cohort life expectancy is 1/(1 -r), because 
the gap equals the slope times the lag. This can be 
seen by examining the right triangle formed by 

eC(t - CAL(t)), and the point (t - 2(t), CAL(t)). 
This triangle has a height rG and a base length 
G(1 - r)--the difference between 2(t) and 

2(t - G)-and so has slope 1/(1 -r). 
The Linear Shift Model thus has the following 

features: (1) The lag comes out to be linear with the 
same slope as period life expectancy. (2) The lag 
comes out exactly equal to the ratio of the gap to the 

slope of cohort life expectancy. In the absence of 

curvature, the cohort slope rather than the period 
slope picks up the relevant hypotenuse of Figure 1. 

(3) If we approximate the lag by a first-order Taylor 
expansion in r, repeating our approach from equa- 
tion (8), we obtain an estimate that differs from the 
exact lag by an amount which remains constant over 
time. (4) Under the model, cohort slope exceeds 

period slope when r is positive. 

Shifting Gompertz hazards 

Our results for the Linear Shift Model are exact, and 

they hold regardless of the form of the baseline 
hazard p (x, 0). For numerical calculations, however, 
we need to specify the baseline hazard in order to fix 

G(r) and eP(0). 
One alternative is to let the baseline hazard be an 

exponential Gompertz function. Combining this 

specification with the Linear Shift Model, however, 
leads to hazards for t > 0 that are not fully Gom- 

pertzian, since zero hazards for negative ages x get 
shifted into positive ages as time goes on. Formulas 
for G are feasible but unwieldy. This alternative 

preserves the Linear Shift Model but relaxes our 

proportional change assumptions. 
A second alternative, which we used in the 

simulations above, is to assume Gompertz hazards 
at all times at all ages over age x =0, that is to say, 
m(x, t)= ae-ktebx. Such hazards have the form as- 
sumed in equation (3) with the b (a) all set equal to 
1. With this specification, when o is small, the Linear 
Shift Model holds approximately, but only approxi- 
mately, with a shift parameter r = k//. We maintain 
our proportional change model, but relax the strict 
conditions on shifts. 
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With this alternative, our first-order estimates of 

gap and lag take the following forms: 

l 

= k ae(a)l(a),u(a) da 

0 

k S (t) [1 e(t)] (20) 

S e(t) 1 (21) 
1 - 1 eP(t) / 

Often in developed societies a is small enough to be 

neglected when x =0 corresponds to some young 
adult age like 30. Then equations (20) and (21) agree 
with the Linear Shift equations (18) with G(r) 1/fl. 
For present-day Sweden or the USA, fl is of order 
10-1 and k is of order 10-2, r of order 10-1, and 

G(r) of order 101. 
A third alternative yields exact expressions at the 

cost of some artificiality. We posit Gompertz hazards 
at all negative and positive values of x, evaluating 
the mean age at death of the extended Gompertz 
distribution on the age interval( - co, co). This 
device allows closed-form solutions, and the sacrifice 
in realism is not as great as it might seem. When 
x =0 stands for an adult age like 30 years, small 

negative x values stand for sensible human ages, 
and large negative values make only the tiniest 
of contributions. Formally speaking, we have a 

single model that simultaneously satisfies the 

assumptions of proportional change and linear 
shifts. 

With this set-up, as Pollard and Valkovics (1992) 
pointed out, the mean age at death is given by 

eg(0) = log - . (22) 
j; [ \&, 

Here yE is Euler's constant 0.577215..., produced 
by integrating the exponential integral (Abramowitz 
and Stegun 1964). This approach also works for 
cohort life expectancy, as long as k <fl (otherwise 
the hazards blow-up at 'negative' ages), giving 

e(0) = [log( - yE] 0 
k- kI 

The function G (r) has an exact expression which is a 
little greater than 1/fl when r is positive: 

1 (1r 

S1( 
+- 
+-+2+ 

. ... 
(23) 

Pr 2 3 

Augmented by these formulas, the equations for 
the Linear Shift Model give easy numerical predic- 
tions. With fiP r 0.10, G(r) a 10.5, the lag stays 
about 10.5 years less than period life expectancy 
(that is, than further life expectancy conditional on 
survival to the adult age chosen to correspond to x = 

0). The gap is about 1/9 as big as the lag, growing at 
no more than about 0.01 per year. The CAL 
measure hovers about 1 year below period life 

expectancy, and both of them grow by about a 

year every decade, while cohort life expectancy 
grows by about a year every 9 years. If present 
trends in countries like Sweden or the USA con- 

tinue, the future story of lags and gaps for adult life 

expectancies could well resemble this scenario. 

Lags and gaps for e65 

The approach just described can also be deployed to 

study remaining life expectancy at an older age such 
as an age at retirement. For this purpose, the easiest 
formulas are the first-order Gompertz approxima- 
tions (20) and (21). For example, for age 65, we set cc = 
u (65), keeping in mind that Lceg is no longer vanish- 

ingly small. To illustrate using values that are close to 

contemporary conditions in low-mortality societies, 
let the annual exponential rate of mortality decline be 
k = 0.01 and the current period Gompertz schedule be 
determined by fl =0.10 and a =0.01. These estimates 

yield e65 =20.5. Simulating, we find that the exact 
value of y is 1.31, vs. 1.26 for 

91. 
The exact value of the 

lag 2 is 15.0 years, vs. 15.9 for 1,. This means that 

period life expectancy at age 65 in current life tables 

actually corresponds to the life expectancy of the 
cohort that reached age 65 about 15 years ago. Those 
now aged 65 can expect to live about 1 year longer 
than current period life tables indicate, adding around 
five percentage points to pension costs. 

Conclusion 

In populations undergoing steady mortality change, 
we have found that period life expectancy can be 
fruitfully interpreted as a lagged measure of under- 

lying cohort experience. Our approach has been to 
look at the relationship between period and cohort 
life expectancy in terms of two measures: (1) the lag 
of 2 years by which the equivalent period and cohort 
life expectancies are observed and (2) the gain in life 

expectancy y that a cohort benefits from by experi- 
encing improving rather than fixed mortality. 
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We use a simple model of mortality decline to 
show that the lag between periods and cohorts is not 

equal to the mean age of death, as might have been 

suspected, but rather to the mean age at which 

mortality improvement is occurring. 
We find that as mortality has fallen, the lag 

between periods and cohorts has increased. This is 

largely a function of the greater ages at which deaths 
are occurring, and thus the greater ages at which 

mortality improvement is effectively taking place. 
Period mortality is in this sense becoming an 

increasingly outdated measure of the experience of 
cohorts. 

We find, on the other hand, that the absolute 
difference between period and cohort life expec- 
tancy, the gap, has risen and then fallen over time. 
Thus, while period mortality has become more 'out 
of date', its divergence from cohort mortality has 
shrunk. The reason for this paradox is that the pace 
of change in period mortality has itself flattened. It 
takes more years to cover less ground. 

We find in our model that the pace of mortality 
decline plays an important role in determining the 

magnitude of the gap, but to a first approximation it 

plays no role in determining the size of the lag. This 
is because the change in the gap is, to a first 

approximation, exactly offset by a change in the 

slope. However, the analysis of historical and fore- 
cast mortality in the USA and Sweden showed that 

changes in the pace of mortality decline can cause 
actual lags to depart from our first-order, and even 
second-order, approximations. 

We have made some progress in translating period 
and cohort life expectancy. Ryder was correct that 
the translation of mortality measures would be more 
difficult than the translation of fertility measures. 
However, we have seen that interpretable analytical 
expressions can be derived from a model of steady 
mortality decline and that these approximations 
perform well even with data that are not perfectly 
in accord with the model. 

The main import of our results is that in popula- 
tions experiencing steady mortality decline, period 
life expectancy can be regarded as a lagged measure 
of cohort life expectancy. The lag lengthens gradu- 
ally with declines in mortality. For countries 
with mortality rates close to those of the present- 
day USA, today's period life expectancy at birth 
summarizes the expected longevity of people born 
about 40-50 years ago who are or would be now in 
the prime of middle age. Current period life 
expectancy at age 65 matches expected survival of 
people who celebrated their 65th birthday some 
15 years ago. Period life expectancies, defined 

abstractly through synthetic cohorts, can be asso- 
ciated with the experience of real cohorts. The 

correspondence makes them more tangible and 
easier to grasp. 

Note 

1 Joshua Goldstein is at the Office of Population Re- 
search, Princeton University, Wallace Hall, Princeton, 
NJ 08544, USA. E-mail: josh@opr.princeton.edu. Ken- 
neth W. Wachter is at the Departments of Demography 
and Statistics, University of California, Berkeley. 
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