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Summary

Thetraditional high-low-medium scenario approach to quantifying uncertainty in population forecasts
has been criticized as lacking probabilistic meaning and consistency. This paper shows, under certain
assumptions, how appropriately calibrated scenarios can beused to approximatetheuncertainty intervals
on future population size and age structure obtained with fully stochastic forecasts. As many forecasting
organizationsalready produce scenariosand because dealing with them isfamiliar territory, themethods
presented here offer an attractive intermediate position between probabilistically inconsistent scenario
analysis and fully stochastic forecasts.
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1 Introduction

Traditionally, population forecasts have included high, medium, and low variants, with the medium
being the most likely outcome. The high and low scenarios are said to be “plausible” but lack any
probabilistic interpretation. High and low scenarios tend to produce extremes in either population
size or in population age structure, but not in both at once. Scenarios typically have smooth time
trajectories, assigning zero probability to fluctuations in fertility and mortality that occur in real
populations. A recent evaluation concludes that “no consistent probabilistic interpretatide
given to the high-low scenarios in population forecasts”. (National Research Council, 2000).

Stochastic population forecasts have been developed that try to address these difficulties. A number
of approaches have been tried. Approaches based on stochastic renewal (Lee & Tuljapurkar, 1994;
Keilman, Pham & Hetland, 2002; Alho & Spencer, 1991) have used time series analysis to forecast
future mortality and fertility rates which are allowed to fluctuate randomly over time. (Typically,
migration remains deterministic.) Monte Carlo methods are then used to produce a large number
of future population trajectories. The quantiles of these simulated trajectories give the prediction
intervals for measurements of population size, and age-structure. An analytic theory of stochastic
renewal has also been developed (Cohen, 1986; Lee & Tuljapurkar, 1994; Alho & Spencer, 1991),
but modern computing power makes the Monte Carlo approach simpler in most cases. The world
forecasts by Lutz, Sanderson & Scherbov (2001) have used a hybrid of methods including expert
opinion, scenarios, and auto-correlated time series to produce probabilistic projections.

Fully stochastic forecasts quantify the uncertainty in population size, age groups, and age structure
in a probabilistically consistent way. This internal consistency allows the incorporation of mortality
and fertility uncertainty, simultaneous prediction intervals for several age groups and functions of
age groups, and population outcomes to be integrated over time. This last feature is of particular
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advantage when assessing the viability of national pension systems for which the age structure of a
population over many decades is of interest (Lee & Tuljapurkar, 1998).

Despite these advantages, population projectors have been slow to switch over to fully stochastic
forecasts. Their reluctance is not surprising. Stochastic forecasts are data-intensive, requiring detailed
historical information to estimate the variability of vital rates. They also assume that variability in the
future will be similar to that of the past. Finally, from a technical point of view, stochastic forecasts
are difficult to produce—whereas scenario projections require relatively little training and can be
produced with existing software, stochastic forecasts have required research scientists knowledge-
able about time series estimation and customized programming.

Moreover, scenarios are easy to explain to users and easy for users to interpret. The middle sce-
nario is interpreted as the most likely outcome (Keyfitz, 1972). “High” and “low” may lack assigned
probabilities but do have simple conditional interpretatidhdertility and mortality follow the
hypothesized paththenthe impact for future population will be as shown. This if-then approach
translates vital rate trajectories into population outcomes, a rough sensitivity analysis of how popu-
lation size and age-structure depend on levels of fertility, mortality, and migration

This paper addresses the reluctance of forecasters to make the leap from using scenarios to fully
stochastic forecasts. We do this by describing the conditions under which the results of scenario-
based forecasts closely approximate those that could have been obtained using a fully stochastic
approach.

The procedure presented here is a compromise. It does not produce exactly correct results, but it
yields surprisingly accurate figures with little additional effort on the part of the forecasters. Those
who use this approach have the benefits of both using a methodology with which they are familiar
and obtaining the desirable features of probabilistically consistent uncertainty intervals. To do this,
we first give scenarios a specific probabilistic interpretation; then we combine the results for different
age-segments in a probabilistically sensitive manner.

Past comparisons between scenarios and stochastic forecasts have compared forecasts that differin
many dimensions including both the expected level of fertility and mortality and the range of fertility
and mortality (Lee & Tuljapurkar, 1994; Keilmaat al., 2002). The approach here is to calibrate the
two approaches so that a comparison can reveal the differences and similarities intrinsic to the two
methods. Lutz & Scherbov (1998) used a similar approach but a different method of calibration.

The paper begins with a discussion of how to give of scenarios, particularly fertility scenarios, a
specific probabilistic interpretation. Next we consider how to combine the results of forecasts for
different age-segments in a probabilistically sensitive manner. Throughout, we compare the results
of this modified scenario approach with published fully stochastic forecasts by Lee & Tuljapurkar
(1994).

2 TheMadified Scenario Approach

Our first task is to assign a probabilistic interpretation to the vital rates scenarios. Figures 1 and
2 show some sample paths from stochastic forecasts of fertility and life expectancy. The distance
between the bold solid lines gives the 95 percent uncertainty intervals for fertility and life expectancy
in any given year. The vertical span between the heavy dashed lines in the fertility figure gives the 95
percent interval of the long-term average of fertility, which will be described below. The intervals for
for the average are narrower than the intervals for a given year because because the ups and downs
in fertility cancels out to some extent.

A key difference between scenario-based forecasts and stochastic forecasts is that the scenarios
incorporate nearly perfect temporal autocorrelation. If, for example, fertility is high in the first
5 years of the scenario forecast, it is assumed to remain high for the entire forecast. Stochastic
forecasts, on the other hand, use time series models to incorporate an empirically estimated amount
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Figurel. Sample paths and forecast intervals of stochastic forecast of total fertility rate.
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Stochastic fertility model is a mean-constrained ARMA(1,1) model with coefficients given in Lee & Tuljapurkar (1994).
The figure shows 4 sample paths generated with Monte Carlo simulation; these can be identified by their large ups and downs.
The heavy solid U-shaped outer bounds give the 95 percent prediction interval for the TFR in any year, with the heavy
middle line giving the median TFR. The heavy dashed U-shaped inner bounds give the 95 percent prediction interval for the
cumulative average of the TFR up to that date. Both prediction intervals were estimated from the quantiles of 1000 simulated
runs. Note that the bounds on the cumulative average cover roughly the same interval from years 20 through 80.

of autocorrelation over time. In the illustration, the fertility model is a constrained mean ARMA(1,1)
model (Lee, 1993) and the mortality model is a random walk with drift (Lee & Carter, 1992a).

In an earlier paper, Lutz & Scherbov (1998) used the prediction interval on fertility in a given year
to construct scenarios. They found that this produced larger estimates of uncertainty than the fully
stochastic approach because—as Lee (1999) points out the stochastic forecasts incorporate some
“cancellation of errors”, whereby a path that has high fertility in one year is likely not to be the same
path that has high fertility in the next year.

An alternative approach, adopted here, is to calibrate scenarios to a smoothed version of the
stochastic realizations, averaging out the highs and lows. Specifically, we construct scenarios based
on the uncertainty in the cumulative average of fertility from the beginning of the forecast to the date
of interest. The cumulative averaggt) is defined aig X(@i)/t.

An interesting feature of the cumulative average is that its variance is nearly constant after about
year 20 of the forecast. In the absence of serial correlation, the variance of the cumulative average
would shrink over time. However, the observed temporal autocorrelation is sufficient to keep the
uncertainty interval nearly stable from year 20 through year 80 of the forecast, and shrink significantly
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Figure2. Sample paths and forecast interval of stochastic forecast of life expectancy.
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Stochastic mortality model is a random walk with drift (Lee & Carter, 1992a) with specification and coefficients given
by Lee & Tuljapurkar (1994); life expectancy is not forecasted directly but rather is a function of the mortality index. The
figure shows 3 sample paths generated with Monte Carlo simulation; these can be identified by their large ups and downs.
The heavy solid U-shaped outer bounds give the 95 percent prediction interval for life expectancy in any year, with the heavy
middle line giving the median life expectancy, as estimated from the quantiles of 1000 simulated runs.

only later on. This property is convenient because it means that the bounds on the calibrated fertility
scenarios can be approximated by a moving moving average with a window of several decades, and
that the choice of window width will have a small effect on the interval coverage. The stability of
the uncertainty interval of the cumulative average is a robust finding. It also is produced by other
autoregressive specifications (e.g., AR(1)) and in other populations in the industrialized world (e.qg.
France). However, it is possible to construct models that have less stable uncertainty intervals for the
cumulative average of forecast fertility (Congressional Budget Office, 2001).

For fertility the use of the variation in long-term averages seems justifiable on several counts.
First, forecasters are generally not interested in the number of births in a particular year, but rather
in the number of births over broad time intervals that determine the size of future broad age groups.
Second, the wide span of reproductive years for any cohort means that over the course of generations,
the number of potential parents in a broad age interval rather than the numbers of potential parents in
a single year of age are what—in combination with period fertility—determine the number of births
in a given year.

Analytically, it is difficult to show that the cumulative average is the right kind of average to use
in age-structured populations experiencing stochastic renewal. However, a simple non-overlapping
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generation model in which one generation reproduces the next can be used to show that calibrating
scenarios to the cumulative average will give approximately the same variance as the fully stochastic
approach. This is demonstrated in appendix B.

Stochastic forecasters have used the cumulative average to compare the variability of their fertility
forecasts with scenarios (Lee, 1993; Congressional Budget Office, 2001). The modified scenario
approach set out here simply takes this comparison one step further, interpreting the prediction
interval bounds of the cumulative average as high and low scenarios.

The second step inimproving scenario-based forecasts is to combine the uncertainty of different age
groups in a probabilistically sensible manner. The temporal correlation of the scenarios for fertility
assure that a large number of births in the first years of a forecast will always be accompanied by a
larger than expected number of births later on. Similarly, high fertility and low mortality will create
larger than expected population sizes across all ages, while low fertility and high mortality will do
the opposite. The resulting estimates of variability in age structure will be distorted because of the
perfect correlations that are produced using the scenarios. A way to correct this distortion is to take
account of the magnitude of correlation that exists between broad age-segments.

Table1

Age segment correlations and coefficients of variation from
stochastic forecasts.

Forecast Correlation Coef. of Variation
Year oW YW oY Y W (0]

10 1.00 0.10 0.09 0.06 0.00 0.01
20 1.00 0.06 0.05 0.15 0.00 0.02
30 0.23 0.63 0.02 022 0.03 0.04
40 0.12 0.78 0.01 0.30 0.07 0.06
50 0.08 0.82 -0.01 0.39 0.12 0.08
60 0.04 0.83 -0.04 046 020 0.09
70 0.12 0.86 0.00 0.52 0.28 0.10
80 0.47 0.88 031 057 036 0.16

Estimated from simulation of stochastic forecasts as given in
Lee & Tuljapurkar (1994) with 400 independent runs.is
youth population aged 0-19V is working-age population
aged 20-64, and® is old-age population aged 65+. Coefi-
cient of variation is ratio of the observed standard deviation to
the observed mean.

Table 1 shows the correlations estimated between broad age groups over time for the fully stochastic
forecast developed by Lee & Tuljapurkar (1994). The correlations between the working age and old
age segments are close to zero for years 30 through 70, due to the independence of fertility and
mortality assumed in the stochastic forecasts. The high correlations between the working and old age
segments in the first two decades is due to the mortality model being used which assumes correlated
effects across all ages in a given period (Lee & Carter, 1992a). This high degree of correlation can
be neglected since there is virtually no variation in the size of the working age population. The
working age and elderly age segments become positively correlated at the very end of the forecast
when fertility uncertainty reaches the oldest age segment. Generational reproduction then introduces
a positive correlation between the size of the elderly generation and those born afterwards. With
these two caveats, there is little correlation between the size of the working and old-age population
segments.

Generational reproduction also assures a high degree of correlation between generations for
working and young age segments for forecast years 30 through 80. Before about year 30, the slight
uncertainty in the number of working age is determined by mortality. After about year 30, the size
of the first wave of births determines in large part the size of the second wave, producing the high
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correlations we see in Table 1. Although uncertainty in fertility rates also has an effect, it is of second
order, particularly when there is positive autocorrelation of fertility rates over time.

The set of correlations and seen in Table 1 are based on my replication of the Lee and Tuljapurkar
stochastic forecasts of the U.S. population. In general, a forecaster will not have a fully stochastic
forecastin hand—thatis why he or she is interested in using scenarios. Accordingly, rather than using
the correlations produced by the U.S. forecasts, the approach we use to approximate the uncertainty in
dependency ratios assumes independemee () between the elderly and the rest of the population
and perfect correlatiorp(= 1) between the size of the young and working population.

Assuming zero correlation between the elderly and the rest of the population also allows one to
treat fertility and mortality as independent factors for the time period we are considering, since the
number of elderly is unaffected by future fertility for the first 60 or 70 years of the forecast.

3 Results

We now investigate how close the modified scenario approach comes to reproducing the uncertainty
estimates from fully stochastic forecasts, assumed to give the true uncertainty of future population
estimates. It should be kept in mind, however, that even fully stochastic forecasts omit many sources
of uncertainty including estimation of the baseline population, specification error in time series
models, and the probability of significant events that did not occur in the past, such as nuclear war
(Lee & Carter, 1992b).

The stochastic forecasts of the United States population by Lee & Tuljapurkar (1994) constitute
our benchmark case. (For details see appendix A.) For simplicity, we use the estimated Lee and
Tuljapurkar time series models for fertility and mortality but omit migration and project only the
female population.

Fertility scenarios are calibrated to the same 95 percent prediction bouoaihaofative aveage
fertility produced by the stochastic forecasts—the heavy dashed lines in Figure 1. The life expectancy
scenarios are calibrated to the 95 percent prediction interval of the forecast shown in Figure 2. Using
this broader interval for life expectancy, rather than some kind of cumulative average, turns out to
produce reasonable uncertainty ranges.

The observed 1990 U.S. female population is then projected according to three variants, which we
label “large”, “small”, and “medium”. The large variant is for high fertility and low mortality. The
medium variant is for medium fertility and mortality. The small variant is for low fertility and high
mortality.

This choice of variants assures the greatest variation in age-segment sizes. As will be seen, a
further round of calculation is needed to take into account the proper level of uncertainty on age
structure.

3.1 Uncertainty in Total Population Size and the Size of Broad Age Segments

Figure 3 presents the total population size and the number of young, working and elderly estimated
over time by the three variants. Fertility is the overwhelming source of uncertainty in population
size (Alho, 1992), and we can see that the calibration of fertility scenarios to the prediction interval
on the cumulative average of stochastic fertility has indeed created a very close match between the
uncertainty intervals from the two approaches. This is a new finding. Past comparisons have shown
that stochastic forecasts and scenarios have different ranges of uncertainty around age-segment sizes
and total population (Lee & Tuljapurkar, 1994; Lutz & Scherbov, 1998). But no earlier comparisons
have calibrated fertility so that its effective variation is similar in the two approaches.

The extremely close match for total population size between the two approaches results from
two offsetting differences between the stochastic and scenario forecasts. The scenarios couple high
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Figure 3. Population size according to stochastic and scenario forecasts of U.S. females from 1990.
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In the scenario approach uncertainty for component age groups sums to the uncertainty in the population. In the stochastic
approach, the uncertainty in the total population is less than the sum of the uncertainty of the components because of offsetting
variability. Scenarios are calibrated to the uncertainty ranges in mortality and cumulative fertility.

fertility with low mortality and vice-versa, inflating slightly the bounds on total population size
compared to the independence between factors assumed in the stochastic forecast. On the other
hand, we can see that the scenarios underestimate slightly the width of the interval covering each of
the age segments, presumably because they do not allow the same degree of short-term variation in
fertility rates that produces extremes in age-group sizes. The net result is that the scenarios produce
almost exactly the same uncertainty ranges on total population size as the fully stochastic forecasts.
An important qualitative feature is that the scenarios pick up the asymetry in the prediction interval
seen in the stochastic forecasts that is due to the log-normality of population size predicted by
stochastic renewal theory (Tuljapurkar, 1992).

3.2 Uncertainty in Age Structure Measures

To produce uncertainty estimates on age-structural measures from scenarios, we combine the
uncertainty of different age groups in a probabilistically sensitive manner, taking into account the
general magnitude of the correlations between age segments observed in Table 1.

Demographers define dependency ratios as the ratio of dependent population age groups to the
working age population. Following convention, the working age populdiaronsists of those aged
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Figure4. Stochastic forecast of total fertility rate 95% forecast interval for each year and 95% forecast interval for cumulative
average.
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The traditional scenario approach uses within-scenario age group sizes. The adjusted approach takes account of the
possibility that all age group sizes may not be “large”, or “small”, at the same time.

20 through 64, the young populatidhof those aged 0 through 19, and the elderly populafoof
those aged 65 and above. Then, the old-age dependency ratio (ODOR)sthe youth dependency
ratio (YDR) isY/W; and the total dependency ratio (TDRY¥+ O)/W, the sum of the youth and
old-age dependency ratios.

Our strategy is to estimate the uncertainty in dependency ratios using the standard approximation
for the variance of correlated random variables (e.g. Rice (1995)),

2
"
0)2</Y ~ <u—j) (Ci + C% — prnyCy) , (1)

whereux anduy are the means of andY, cx andcy are the coefficients of variation (the ratio of
the standard deviation to the mean), angd is the correlation betweex andY.

Using the exact values of the correlation observed between age groups would produce the best
estimate of uncertainty. In general, however, these will not be known, and so we assume correlations
of 1 between the young and working age populations and 0 between the elderly and non-elderly
populations. We estimate the coefficients of variation, assuming normality, as one-fourth the ratio of
the width of the prediction interval to the central forecast.

Figure 4 shows the dependency ratios of the stochastic approach and those produced by the
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modified scenarios. The figure also shows the dependency ratio ranges produced by taking the range
of dependency ratios directly from the scenario output.

Inthe case of the old-age dependency ratio, the modified scenario approach produces an uncertainty
interval that tracks the stochastic intervals nearly exactly for the first 40 to 50 years of the forecast,
and does so much better than the direct use of scenarios. After this, the width of the modified scenario
intervals are comparable to the stochastic intervals but the use of the normal approximation does not
capture the asymmetry of the stochastic forecast intervals. Still, allowing fertility and mortality to
vary independently produces much more accurate uncertainty intervals than does the traditional use
of scenarios.

In the case of the youth dependency ratio, our assumption of perfect correlation between the
young and working age populations is equivalent to the traditional use of scenarios. Both scenario
approaches produce somewhat narrower uncertainty bounds than they should. For example, using
the observed correlation between the young and the working age segments given in Table 1 would
increase the uncertainty by a factor of almost a third in the 70th year of the forecast. Still, our general
finding is that the bounds on the youth dependency ratio, even assuming perfect correlation, are of
the same general magnitude as those produced by the stochastic forecast.

Finally, we turn to the total dependency ratio, which requires an additional assumption to be
made about the covariance between the youth and elderly dependency ratios, SiKce Yar=
var(X) +var(’Y) 4+ 2cou X, Y). The fully stochastic results (not shown) reveal that in these forecasts
the old-age and youth dependency ratiosragativelycorrelated, although it is not clear that this
is a general property across populations. Our estimates of uncertainty in the old-age and youth
dependency ratios are both on the low side, so assuming no covariance between the two ratios offsets
this bias. The result is a remarkably close match in the uncertainty intervals from the stochastic
and the modified scenario forecasts. The improvement relative to the traditional use of scenarios is
dramatic.

4 Adjusting Dependency Ratios from Traditional Scenarios. A Worked Example

In applications of the method proposed here, one would not generally have estimated versions of
the fertility and mortality time series—if one did, one could just continue with the fully stochastic
forecast. The more likely real-world situation is that one has the output from scenarios and wants to
present these in a probabilistically sensible manner. To do this, one would take the output for each
age group from the scenarios, use the bounds generated for each age group and total population
directly from the scenarios, but recomputing the uncertainty in the total dependency ratios using the
methods proposed here.

As an example, Table 2 presents the projected populations in year 50 of the forecast (year 2040)
based on the scenarios used in this paper. The coefficients of variation estimated as (Large—Small)/(4
x Medium), based on assuming normality with the Medium scenario as mean. We then apply
equation 1 assuming = 0 for the ODR ang = 1 forthe YDR. The TDR is calculated by assuming
independence between the ODR and YDR, making the variances additive.

The table shows the original and adjusted dependency ratios along with the ranges calculated
using equation 1. We see that the YDR is unaffected by the adjustment, since the scenarios implicitly
assume correlations of 1 between the young and working age groups. The uncertainty range in
the old-age dependency ratio, on the other hand, increases substantially, some 5-fold, due to our
adjustment. This is because the original scenarios always combine large working populations with
large elderly populations and small working populations with small working populations, whereas
in fact independence—or something very close to it—is warranted. The adjusted uncertainty in the
total dependency ratio is also larger than the uncertainty implied by the original scenarios. Here the
adjustment increases the estimate of uncertainty by about a factor of 1/4. The adjusted TDR differs
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Table 2
lllustrative example of calculation of adjusted dependency ratios.

(a) Age-group results of year 50 of scenario forecasts

Millions of females
Age group Small Medium Large Coef. of Var.

0-19 36.7 18.4 62.5 0.30
20-64 78.9 64.2 94.8 0.10
65+ 32.2 27.9 36.5 0.07

(b) Original and adjusted dependency ratios

ODR YDR TDR
original adjusted  original adjusted original  adjusted
Low 0.39 0.31 0.29 0.29 0.72 0.66
Medium 0.41 0.41 0.47 0.47 0.87 0.87
High 0.43 0.51 0.66 0.66 1.04 1.08

Coefficients of variation estimated using normal approximation as one-fourth the differ-
ence between Large and Small divided by Medium. “Original” dependency ratio uncer-
tainty is directly from scenario outputs. “Adjusted” uncertainty range between “Low”
and “High” is the 95% forecast interval based on equation 1 and normal approximation.
Adjusted TDR assumes independence of YDR and ODR.

from the original TDR by larger amounts later in the forecast (See Figure 4).

This example illustrates how to use the scenario results, conditional on having scenarios that
themselves have some probabilistic interpretation. In real applications, one would need to specify
the scenarios. Alternatives to stochastic time series could involve the use of judgement and expert
opinion (Lutzet al, 2001) and/oex posevaluation of past scenarios. These approaches are discussed
further below.

5 Discussion

In this section, we first discuss the need for accurate estimates of uncertainty and then consider
ways to implement the modified scenario approach using stochastic time series methods, expert
opinion, and existing scenario-based forecasts.

5.1 How Accurate do Uncertainty Measures Need to Be?

The modified scenario approach produces uncertainty intervals that are broadly similar to those
produced by the fully stochastic forecasts. But differences emerge, particularly for forecast horizons
beyond about 60 years when fertility uncertainty begins to influence the number of elderly.

How accurate do estimates of uncertainty need to be? It is sometimes argued that estimates of
uncertainty from the fully stochastic forecasts are misleadingly precise. Exact intervals are produced
but these are conditional on the correct specification of the time series model and more importantly
on the assumption that past variability is a good estimate of future uncertainty. In such a situation,
approximations of stochastic forecasts such as those produced here may arguably give a somewhat
more appropriate, even if less precise, depiction of the uncertainty in uncertainty estimates.

At a practical level, the degree of uncertainty at longer time horizons is often of less interest to
contemporary planners because advance warning will come if unexpected changes take place. For
example, a baby boom in the decade of the 2020s would surprise most contemporary observers. But
because it will take some years for these newborns to enter school, even more years for them to enter
the workforce, and many decades for them to enter the retirement system, there will be advance
notice, which new forecasts can then take into account. Even when a long planning horizon is legally
mandated, as is the 75 years for actuarial reports of the U.S. social security system, policy debates
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usually revolve around changes expected in the next several decades. A final factor giving short
horizons greater importance is that policy makers recognize that the distant future is more uncertain
than the near future and are thus less likely to lock in inflexible policies with extremely long time
horizons. For all of these reasons it is important to emphasize the success of the modified scenarios
during the first five decades of the forecast.

5.2 Calibrating Scenarios

Here, | have calibrated scenarios to the prediction intervals generated by stochastic time-series
models. When time-series models for vital rates are available, it will usually be worth continuing
with fully stochastic forecasts of the population, with calibrated scenarios best used as a tool for
checking stochastic forecasts.

The modified scenario approach is most useful when time series estimates are either unavailable
or, for whatever reason, unbelievable. In these instances, one would want to calibrate the scenarios to
some other standard. Two approaches seem reasonable. The first is a minor modification of existing
scenario methods whereby experts either within or outside of forecasting agencies specify high and
low scenarios. In this case, the results presented here suggest that there be an explicit statement
by those designing fertility scenarios that the scenarios apply to long-term averages, not to the
uncertainty in any given year. The stability of the uncertainty interval of the averages over a broad
range of cumulative averages from 20 to 80 years reduces the need for experts to worry about the
precise form of the average they are considering, as long as it is made clear that it is at least several
decades.

A second approach would use the effective uncertainty range covered by past scenarios and apply
it to the current production of scenarios. Stoto has found that forecasts in the industrial world tend
to cover about a two-thirds prediction interval in population size in any given year (Stoto, 1983).
The present analysis suggests doingaipostanalysis exercize but with a focus on the cumulative
average of fertility. The quantile range covered by past scenarios could then be used to give a
probabilistic interpretation to the results from new scenario-based projections, extrapolating these
ex posterrors into the future.

Scenario forecasts could also be made without specifying the probability interval covered by “high”
and “low” but by using the methods of combining age segments and calculating the uncertainty in
dependency ratios. This would assure greater consistency in the uncertainty range of population age
group sizes, total population, and dependency ratios, so that all would cover approximately the same
uncertainty interval, even if it remained undefined.

6 Conclusion

We have found that scenarios, when used with some care, can come close to reproducing the
uncertainty estimates produced by fully stochastic population forecasts. The key elements are the
specification of a probability interval covered by the scenarios, the calibration of fertility scenarios
to variability in long-term average fertility, and the probabilistic combination of uncertainty from
distinct age segments.

Several caveats are in order. The first is that the uncertainty estimates from our use of scenarios
came closest to the estimates from stochastic scenarios for the first 60 years or so. For long term
forecasting, full incorporation of stochastic renewal becomes more important. Second, our results
apply to populations in which future fertility and mortality can be assumed to be independent
and where there is little mortality at younger ages. The probabilistically sensitive use of scenarios in
populations in which mortality effects the size of the young and working age populations needs further
research. Third, the methods used here apply only to broad age segments. They are inappropriate for
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assessing the relationships between the joint uncertainty of functions of narrower age groups. For
uncertainty estimates for detailed age-distributions, the fully stochastic approach is needed. Finally,
further research is needed to assess uncertainty in time-integrated functions of population structure,
such as the viability of pay-as-you-go pension systems. Unlike the scenarios presented here, the fully
stochastic approach can be integrated over time without concerns about probabilistic consistency.

Overall, our results suggest some interesting future applications of probabilistically sensible
scenario forecasts. It may be possible to translate existing scenario forecasts into approximate
probabilistic forecasts fairly easily. It also suggests a method for translating expert-based forecasts
into probability intervals. Finally, the approach offers a useful first step for those agencies considering
the production of probabilistic forecasts using the fully stochastic time-series approach.
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Résumeée

L'approche traditionnella trois sénarios (su@rieur-moyen-irdrieur) pour quantifier I'incertitude dans les projections de
population &t critiquee pour son manque de signification et detoehce probabilistes. Cet article montre, sous certaines
hypotheses, comment on peut utilisgrbon escient des &garios calites pour estimer les intervalles d'incertitude sur la
taille et la structure page de la population totale, obtenues avec des projectioaeeemnt stochastiques. De nombreuses
organisations produisenégd des senarios de projections que I'on sait traiter. Aussi I&shmdes prsenges ici apportent
un point de vue interdiaire inéressant entre I'analyse d'urésario incoBrent au sens probabiliste et les projections
entérement stochastiques.

Appendices
A Stochastic Processes for Vital Rates

All of the estimates in this paper are based on the estimates in Lee & Tuljapurkar (1994) and Lee
(1993). The fertility model used is a constrained autoregressive moving average model, ARMA(1,1),
given by

Ft =ch_1 + F(1 —cu; + dui_i, 2

with ¢ = 0.9676 andd = 0.47978, the ultimate mean level equalfo= 2.1 and withu; ~ N(0, oy),
oy = 0.110663. This index of fertility is translated to age specific fertility rates according to the
schedules in Lee (1993).

The mortality model is a random walk with drift, given by

Ki =K — 2+ ¢, (3)

with z = 0.365 ande; ~ N(0, o.), o = 0.651. This mortality factor is translated to age-specific
mortality rates, namely
logmy+ = ay + BxKt.

The schedulesy andgy are given in Lee & Carter (1992a).
Both formulations assume perfect autocorrelation between age-groups from year to year. Estimates
of uncertainty omit uncertainty in the estimation of parameters, following Lee & Tuljapurkar (1994).

B A Generational Model of Stochastic Renewal

To represent the stochastic forecastXete the net reproductive rate of generaticGuch that
Gt = (Xi - Xi—g + - - - X1)Gop.
The X; are serially correlated random variables such that
Xy =M + ¢,

whereM is the expected net reproduction rate arid a random variable with zero mean, variance
o and coVe, 1) > 0.
As an alternative, generation size in the scenario based forecast can be defined as

G? = Y'G,,

where nowy is a single random variable that when multiplied by itselmes will give the change
in Gy that givesG;.

Letting Z§ = Y andZ; = Ht Xi, we wish to findE(Y) and varY) such thateE(Z;) = E(Z?)
and vafZ;) = var(Z?). Using the delta method to first order for the expectation (Rice, 1995),
E(Zy) ~ E(X1)...E(Xy) = M' andE(Z?) ~ E(Y)'. ThusE(Y) ~ M. The same method, after
some algebra, gives a first order approximation of the variance of the generational stochastic model
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of
var(Zy) ~ M* = Dvan(X; + ...+ Xo).

SubstitutingY = X for all i, the delta approximation of the generational scenario model gives
var(Zg) ~ M**Dvarty).
We can now find the variance ¥fby setting vafZ;) = varZ?). This gives

X1+...+Xt>
t 9

which shows that calibratiny to the variance of the cumulative averageXofwill equalize the
variances of generation size.

The generational model differs from that used in applications in several respects. First, in appli-
cations the projections are age-structured, with age groups of 1 or 5 years rather than generational.
Second, the scenario calibration ends up giving the scendréodifferent variance for each year of
the forecast, although as we saw this stabilizes after about year 20 because of autocorrelation in the
process for annual fertility fluctuations. Finally, the application considers both fertility and mortality
independently, rather than net fertility, although the distinction in low mortality populations is not
substantial.

The simulation results shown in the body of the paper show that these differences do not, in
practice, change the approximate equivalence of the two approaches.

varY) = var(
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