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I

POPULATION MOMENTUM FOR GRADUAL

DEMOGRAPHIC TRANSITIONS: AN ALTERNATIVE

APPROACH*

JOSHUA R. GOLDSTEIN

In this article, I derive a simple formula for approximating the ultimate size of a population
that undergoes a gradual transition to replacement fertility. I model the fertility transition by speci-
fying a linear frontier on the Lexis surface across which a change in fertility is instantaneous.
Gradual transitions result from variations in the slope of this frontier. This framework can be used
to reproduce and understand previous studies of population momentum and gradual transitions.

n an influential article, Keyfitz (1971) presented a simple, yet powerful scenario for
illustrating the inevitability of population growth even after the fertility rate falls to its
replacement level. Even if the decline in fertility is immediate, the population continues
to grow because of its relatively young age structure. Keyfitz presented a simple formula
for estimating the population momentum implied by the age structure of growing popula-
tions. Today his scenario and the results of his formula are included in the most influen-
tial world population forecasts as a benchmark against which to compare the projected
future evolution of population sizes (Bos et al. 1992; Bos et al. 1994; United Nations
1998).

In practice, as Keyfitz observed, the inevitability of continued population growth
comes not only from the current age structure but also from the time it takes for fertility
rates to fall to replacement level. Replacement fertility is typically reached only after
decades of decline, not overnight. Thus, population researchers have long sought a for-
mula for calculating the effect of more realistic gradual demographic transitions. As re-
cently as 1998, Schoen and Kim wrote, “There is no analytical way to determine what
additional growth will result from a gradual transition to replacement level rates” (p. 295).
They instead showed that such a transition in rates could be modeled by assuming a
gradual leveling of the stream of births. Subsequently, however, Li and Tuljapurkar (1999,
2000) presented general results for changing demographic rates. Using mathematical re-
sults from renewal theory, they derived the momentum implied by a range of speeds and
forms of fertility decline. In particular, they found a simple formula for determining the
effects of a gradual linear decline in net fertility.

Here, I present an alternative derivation of some of Li and Tuljapurkar’s important
results in a less general but simpler form. Instead of their period approach to fertility
decline, I use a framework closely related to the cohort-based scenario introduced by
Frauenthal (1975). Whereas the period approach produces a simple, exact formula only
for rapid transitions (shorter than about 15 years), the cohort approach used here is exact
for transitions that last about twice as long (some 30 to 35 years). The approach given
here has the additional advantage of including not just Keyfitz’s (1971) formula as a
special case but also that of Frauenthal. It helps provide intuition for Li and
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Tuljapurkar’s results. Finally, it also is consistent with Schoen and Kim’s (1998) esti-
mates for population momentum resulting from a gradual leveling of the stream of
births.

The consistency of the various alternative formulations points to the means by which
a simple lesson can be learned from the complicated dynamics of population momentum
for gradual transitions. What is important for the eventual population size is how far fer-
tility rates fall and how long the transition lasts. If forecasters can get these two factors
correct, then the details of the time and age patterns of the fertility transition will make
relatively little difference.

A LEXIS FRONTIER APPROACH TO MODELING DEMOGRAPHIC
TRANSITIONS

I take as my starting point a population that has a long history of constant age-specific
fertility and mortality rates. I then specify a frontier on the age-time plane of the Lexis
diagram. As a cohort crosses this frontier, it undergoes an immediate transition to
replacement-level age-specific fertility rates. Tilting the frontier translates the instant tran-
sition into a gradual transition with a range of speeds.

In theory, this frontier could take a wide variety of forms, but here I consider only
frontiers that are straight lines. This simple approach is flexible enough to duplicate or
approximate a wide range of scenarios in the literature. Examples of linear transition fron-
tiers are illustrated in panels a, b, and c of Figure 1. To the left of the frontiers the popula-
tions are subject to the net fertility rates φ1 of a stable population. To the right, they are
subject to the rates φ2 of a stationary population.

Keyfitz’s classic scenario is shown in panel a1. In panel a2, a vertical frontier de-
scribes an instantaneous drop in fertility from one period to the next. Frauenthal (1975)
proposed that fertility might drop to replacement from one cohort to the next (see panel
b1): all individuals who were born before time zero would be subject to the old net mater-
nity function for their entire lives, and all individuals who were born after time zero would
be subject to the new net maternity function for their entire lives. This scenario corre-
sponds to a frontier angled at 45 degrees, running along the line a = t. Frauenthal’s sce-
nario, even though it involves a transition that takes place instantly from one cohort to the
next, corresponds to a gradual S-shaped change in net period fertility (see panel b2).
Both Keyfitz’s and Frauenthal’s scenarios are specific cases of the general variable-slope
fertility transition frontier shown in panel c1.

The variable frontier approach has both a literal and a more useful, but indirect, inter-
pretation. If interpreted strictly, the frontier marks the point in time when the fertility of a
given age group suddenly falls. A line angled between 45 and 90 degrees would corre-
spond to a fertility decline that begins at the youngest age groups and smoothly spreads to
adjacent ages as the population moves through time. A line angled at more than 90 de-
grees (not shown) would describe a population in which replacement fertility begins at
the oldest ages and spreads to the youngest. The variable-slope frontier thus provides a
model for the age-based diffusion of fertility control.

An alternative way to think of the Lexis frontier model is as a simple way to model
changes in period fertility. The length of the period fertility transition can range from 0
years (when the slope is infinite) to the span of a cohort’s reproductive interval, some 30
to 35 years. This formulation allowed me to model long-term population size using a
single parameter, the slope of the frontier.

The linear variable-slope frontier on the Lexis diagram produces a logistic-like de-
cline in the period net reproduction rate (NRR; see panel c2) because human net mater-
nity functions tend to be bell shaped. The smooth decline in period fertility resulting from
the variable-slope frontier can be compared with the sharp corners of the linear period
fertility transition modeled by Li and Tuljapurkar (1999). The Lexis diagram of the linear
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Figure 1. Lexis Diagrams of Transition Frontiers of Instantaneous and Gradual Fertility Transi-
tions and Typical Implied Trajectories of the Net Reproduction Rate (NRR)

Notes: Before crossing the linear frontiers on the Lexis diagrams, populations are stable, growing at the intrinsic rate
determined by the net maternity function φ1. After the transition, fertility is governed by the replacement level net maternity
function φ2. The Keyfitz (1971) scenario is depicted in panels a1 and a2. Frauenthal’s (1975) cohort scenario is depicted in
panels b1 and b2. The variable-slope frontier scenario used in this article is shown in panels c1 and c2. Li and Tuljapurkar’s
(1999, 2000) linear period decline is shown in panels d1 and d2.

period fertility transition is in panel d1, where the two vertical lines at time 0 and time γ
mark the interval over which the period net maternity function changes linearly from the
old to the new regime.
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FORMULAS FOR FERTILITY TRANSITIONS

With this background, we now turn to the mathematical results describing the effect of
the fertility transition frontier on the ultimate size of the stationary birth stream and popu-
lation size.

I begin with the vertical case (panel a1), where the equation for the vertical line is
simply t = 0. Using different techniques from those that are used here, Keyfitz (1971)
found the birth stream B(t) converges to a constant B(∞) such that

    

B

B r

R

R

( )

( )

∞ ≈ −



0

1 10

0µ , (1)

where r is the growth rate of the stable population prior to the transition, µ is the mean
age of childbearing (the same in both the initial and ultimate populations), and R0 is the
NRR in the initial population. The amount of population momentum, that is, the ratio of
the size of the ultimate stationary population to that of the initial stable population, can
be found by multiplying either side by the product of the expectation of life at birth e0 and
the birth rate b0 of the initial population.

Frauenthal (1975) extended Keyfitz’s result to cover a particular kind of gradual de-
mographic transition. Letting cohort-fertility drop to replacement instantaneously from
one cohort to another produces a gradual decline over a period equal to the span of the
reproductive years β – α (see panels b1 and b2 of Figure 1). Frauenthal’s scenario corre-
sponds to a transition path along the line a = t. Frauenthal found that in this case

    

B

B r
R

( )

( )

∞ ≈ −( )
0

1
10µ . (2)

Frauenthal’s result is exactly a factor of R0 greater than Keyfitz’s. Shifting the fron-
tier to the cohort line delays the transition by a different amount for each age group. On
average across all age groups, however, the high-fertility regime persists about the mean
age of childbearing µ years longer. The Frauenthal scenario produces birth cohorts that,
upon transition, are about erµ ≈ R0 times larger than they would have been.

I now generalize to a frontier that can take a range of slopes across the Lexis surface.
This case is illustrated in panels c1 and c2 of Figure 1. The linear frontier produces a
gradual, logistic-shaped period transition. Let 1 / m be the slope of the linear frontier a =
t/m; m = 0 corresponds to the vertical frontier, and m = 1 corresponds to the cohort fron-
tier. Then, for m ≥ 0, I find
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B r

R

R
R

m( )

( )
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0

1 10

0
0µ . (3)

This equation is exact when m = 0 and m = 1.
This result can be understood intuitively by noting that as in the Frauenthal case, the

variable-slope linear frontier involves delaying the transition by different amounts of
time for different ages. Averaging this delay over all ages is like having an instantaneous
transition for all ages some mµ years after time 0. By this time, the number of women
giving birth is a factor ermµ ≈ (R0)

m times larger than it would have been in the Keyfitz
scenario.

Both Keyfitz’s and Frauenthal’s scenarios emerge as special cases of this formula (by
letting m equal 0 and 1, respectively). In addition, this formula is approximately the same
as Li and Tuljapurkar’s result for gradual demographic transitions that involve a linear
pattern of period fertility decline (see panels d1 and d2 of  Figure 1).
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Although the following derivation is given only for forward-sloping frontiers, it also
applies to backward-sloping frontiers that involve rapid transitions. The transition must
be short enough so that the children who are born after the transition do not themselves
cross the frontier a second time. For values of m > 1, a similar issue arises. The daughter
or, for a very large m, even the granddaughter generations can end up recrossing the fron-
tier. Li and Tuljapurkar (1999) incorporated multiple generations into the more complex
versions of their model. They found, however, that the single-generation formula is gen-
erally a reliable approximation for longer transitions.

DERIVATION OF MOMENTUM FORMULA

I derive Eq. (3) by taking advantage of a basic result in renewal theory. For 0 ≤ m ≤ 1, all
cohorts born after time t = 0 are subject to the stationary net maternity function φ2(a).
Accordingly, the renewal equation following the transition will take the form

    B t a B t a da g t
t

( ) ( ) ( ) ( ),= ∫ − +φ20 0 t > 0 (4)

where B(t) is the stream of births at time t, φ2(a) is the net maternity function at age a, and
g0(t) is the number of births produced by survivors of the initial population present at
time t = 0.

The basic renewal theorem indicates that in the long run, the stream of births subject
to a constant net maternity function will converge to a limit (e.g., Feller 1971). Specifi-
cally, if     φ20 1( )a da =∫∞ , which it does by definition because eventual fertility after the
transition is at replacement levels,

    
lim ( ) ( ) ,
t

B t g t dt
→∞

∞= ∫
1

00µ (5)

where µ is the mean age at birth in the stationary population.
Determining the size of the eventual birth stream thus involves calculating the sum

of g0(t), the births produced by survivors of the initial population. Births occurring after
time 0 to women born before time 0 can consist of children born under the old regime of
fertility φ1 and of children born under the new regime of fertility φ2. Specifically,

    g t B t a a da B t a a da
t

t m

t m0 2 1( ) ( ) ( ) ( ) ( ) .
/

/= −∫ + −∫∞φ φ

When m = 1, no such children are born under the new regime; when m = 0, no such
children are born under the old regime.

Integrating g0(t) involves reversing the order of integration and then substituting the
stable historical birth stream B(0)e–r(t – a) for B(t – a). For simplicity, let B(0) = 1 to obtain
the general expression

    
g t dt

r
e a da e a dar m a r m a

00
1

0 1
1

20

1
( ) ( ) ( ) .( ) ( )∞ −∞ −∞∫ = ∫ − ∫[ ]φ φ (6)

This expression is exact and applies to any replacement level net-maternity function φ2.
One can obtain a simpler expression by assuming that fertility declines by the same pro-
portion at all ages (i.e., φ2(a) = φ1(a) / ∫ φ1(a)da). This is the assumption used by Keyfitz
(1971) and Frauenthal (1975).1  Under proportional fertility declines at all ages, Eq. (6)
simplifies to

    

g t dt
r R
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1
10

1
1

1
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 ∫ φ (7)

1. See Mitra (1976) for an exploration of what happens when this assumption is violated.
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The right-hand integral corresponds to the integral of Lotka’s equation, except that the
net maternity function is discounted by e–ra × erma instead of simply by simply by e–ra.

One can approximate the integral by its cumulant expansion (Kendall 1952: chap. 5)
about r = 0. Let

    Y r e a dar m a( ) log ( ) .( )= ∫ −∞ 1
10 φ (8)

The first three terms are

    
Y r R m r m r( ) log( ) ( ) ( ) ,≈ + − + −0

2 2 21
1

2
1µ σ (9)

where µ is the mean age of childbearing in the stable population with growth rate r; σ2 is
the variance of the net-maternity function in the stable population. In human populations,
σ2r2 is small compared with µr, making the contribution of the third term negligible. When
the first two terms are employed and the standard approximation, R0 ≈ eµr, is used, eY(r) ≈
R0 × (R0)

m – 1 = (R0)
m. Incorporating this approximation into Eq. (7) produces the general

result given in Eq. (3).
Frauenthal (1975) noted that the factor (R0 – 1) / (rµR0) is well approximated by

(R0)
–1/2. This factor appears in Keyfitz’s (1971) scenario and in my Eq. (3). Using this

additional approximation produces an even simpler expression for the eventual birth
stream under gradual transitions:

    

B

B
R m( )
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1 2
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Let b be the crude birth rate at the time the transition begins and e0 be life expectancy.
The factor by which total population size will eventually increase as a result of the transi-
tion then will be

    M be R m≈ −
0 0

1 2( ) .( / ) (11)

CORRESPONDENCE BETWEEN THE FORMULAS

As I noted earlier, the Keyfitz (1971) and Frauenthal (1975) scenarios appear as immedi-
ate cases of my general formula. I now show that my approach is consistent with earlier
results given by Li and Tuljapurkar (1999) and Schoen and Kim (1998).

I found that a variable-slope frontier will increase the momentum of fertility transi-
tions by a factor of (R0)

m when compared with Keyfitz’s instant transition. Li and
Tuljapurkar showed the extra momentum of a transition in which fertility at all ages
declines linearly over a period of γ years is equal to (erγ – 1) / (rγ). Because (ex – 1) / x ≈
ex / 2, Li and Tuljapurkar’s result can be rewritten as approximately equal to exp(rγ / 2).
This last approximation is the same as the result for extra momentum that Schoen and
Kim (1998) found in their study of the special case in which the NRR changes in such a
manner as to cause the growth rate of the birth stream itself to decline linearly.

This approximation corresponds to my result in the case where m = 1. The Frauenthal
scenario of instant cohort fertility transition generates a gradual change in the period NRR
(e.g., panels b1 and b2 in Figure 1). The original NRR level continues for duration α,
then declines gradually to replacement level over duration (β – α), where α and β are the
beginning and end, respectively, of childbearing ages. The transition ends after β years,
when the last members of the original cohort finish childbearing. The extra population
growth during this transition is composed of two parts: e(rα) during the first a years, and—
following either Li and Tuljapurkar or Schoen and Kim—e(r(β – α)/2) during the subsequent
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(β – α) years, where r is the growth rates of the initial stable population. If the human

fertility pattern is such that α ≈ (β – α) / 2 ≈ µ/2, where µ is the mean age of childbearing,

the two growth factors become e(rα) ≈ e(rµ/2) ≈ 
    R0

, and e(r(β – α)/2) ≈ e(rµ/2) ≈ 
    R0

, respec-

tively. Their product is then R0, the NRR of the initial population.
For m ≠ 1, the above correspondence extends naturally (see panels c1 and c2 of Fig-

ure 1); that is, the growth during the first mα years is e(rmα), and growth during the subse-
quent (mβ – mα) years is e(rm(β – α)/2). Again, if the human fertility pattern is such that α ≈
(β – α)/2 ≈ µ/2, then the product of these two factors yields e(rmµ) ≈ (R0)

m. The equivalence
between the various formulations is not exact. It also is subject to the condition that mean
age of childbearing is centered within the reproductive span. However, because typical
values in human populations are α ≈ 15, β ≈ 45, and µ ≈ 30, the equivalence of the two
formulations is fairly general.

As a final check on the accuracy of the approximations used both to derive the simple
gradual momentum formula for linear transition frontiers and to show the correspondence
between them, estimates of momentum were made numerically according to the various
approaches, for 0 ≤ m ≤ 1. Differences should be the highest for fast-growing popula-
tions, so I used 1983 period rates for Mexico: NRR = 2.141, r = 0.027 (Keyfitz and Flieger
1990). Using Eq. (3), I found that population momentum would increase population size
by factors ranging from 1.70 when m = 0 to 3.64 when m = 1. The exact numerical inte-
gration of  Eq. (7) produced estimates of population momentum that differ from the ap-
proximate result in Eq. (3) by a maximum of about half a percentage point over the inter-
val 0 < m < 1 and were exact for m = 0 and m = 1. Comparing Eq. (3) with Li and
Tuljapurkar’s results using the Mexican data produced a maximum discrepancy of less
than 5%. Compared with the approximation of Li and Tuljapurkar’s results (or, equiva-
lently, Schoen and Kim’s), Eq. (3) estimates differ by, at most, 2%.

One would not expect perfect equality among the various formulations because the
linear frontier transition does not, in general, produce a linear period transition.2  In hu-
man populations, the net maternity function is roughly bell shaped, so a sudden transition
across a linear frontier produces a backward S-shaped, approximately logistic, pattern of
decline. Li and Tuljapurkar found in their simulations that the logistic and linear declines
produce essentially the same long-run consequences for population size.

The correspondence between all three approaches shown here is additional evidence
that what really matters in determining population momentum in gradual demographic
transitions is simply the magnitude and speed of the transitions. Other details, like the age
pattern of fertility and the precise trajectory of vital rates—dimensions across which the
various approaches do, indeed, differ—do not seem to matter much.

DISCUSSION

This article has presented an alternative approach for estimating the long-run size of popu-
lations that undergo transitions to replacement fertility. I introduced a method for varying
the speed of fertility transitions by changing the slope of a linear frontier on the Lexis
surface. On the basis of this variable frontier model, I derived a formula for population
momentum that agrees with the result found by Li and Tuljapurkar (1999, 2000) for linear
period fertility transitions. The agreement between the two approaches reinforces the find-
ing that the overall level of fertility and the speed of its decline play leading roles in
determining the long-run size of populations approaching stationarity. Changes in the
shape of the fertility age schedule play a minor role, as long as the mean age of childbear-
ing remains constant.3

2. A linear period transition would occur only if the net maternity function were rectangular.
3. Changes in the mean age of childbearing, however, can have large effects on population size. See Mitra

(1976) and Goldstein and Schlag (1999).
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The speed at which fertility declines can make an enormous difference in eventual
population size. Take, for example, Pakistan, which in 1990 had a population of 112 mil-
lion people, an NRR of 2.17, a crude birth rate of about 40 per thousand, and a life ex-
pectancy at birth of about 56 years. Table 1 shows the results obtained by applying Eq.
(11) to the case of Pakistan. As can be seen, a gradual transition lasting about 50 years
produces an ultimate population that is roughly twice as large as that implied by an in-
stant transition (a population size of 370 million instead of 170 million).

It is possible to extend the applicability of results for gradual momentum by incorpo-
rating increases in longevity. Mortality declines at ages beyond the maximum age of child-
bearing will enter into ultimate population size via the expectation-of-life term (e0) used
in the momentum formula (Goldstein and Stecklov 2001; Ryder 1975). Accounting for an
increase in longevity forecast by the World Bank (e0 = 85 years by 2150), the population
size implied by a “fast” transition rises to 381 million and that implied by a “slow” transi-
tion, to 561 million.

These figures are in line with the World Bank’s actual long-term forecast of 397 mil-
lion for Pakistan in 2150. The World Bank used a full cohort-component computer pro-
jection to obtain its forecasts. Agencies may want to consider using analytic formulas to
replace or supplement computer projections. The formulas are quicker and easier to use
than the computer projection, and have the added advantage that the forecaster can see
immediately the impact of various assumptions about the speed of demographic transi-
tions. The gradual momentum results can be extended to transitions to nonstationary stable
states and can produce results that are close to the high, low, and medium long-term fore-
casts made by the United Nations (Goldstein and Stecklov 2001).

The examples and discussion in this article, as well as in the articles by Keyfitz
(1971), Frauenthal (1975), Mitra (1976), Schoen and Kim (1998), and Li and Tuljapurkar
(1999, 2000) have focused on populations with histories of positive growth that undergo
fertility declines. The mathematics, however, applies to all growth rates. In particular, it
applies to shrinking populations, for which population momentum implies further declines
in population size, even after fertility rises to replacement.
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