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Estimating Infant Mortality Trends from Child
Survivorship Data T

GRIFFITH FEENEY*

In this paper a new procedure is developed for estimating infant mortality rates from figures
derived from answers to population census questions on the total number of children a woman
has borne during her lifetime and on the number of these children who are living at the time of
the census. The statistics required are the number of women in a series of quinary age groups,
beginning with ages 15—19, the total numbers of children born to women in these age groups,
and the numbers of these children born who have survived to the time of the census. Application
of the procedure yields estimates of the infant mortality rate for a series of points preceding the
census. Both the value of the rate and the number of years preceding the census are derived from
the statistics. Figures for ages 15—74 yield a series of twelve estimates ranging from slightly less
than 30 years to about one year before the census. Each age group provides one estimate. Older
age groups yield estimates further removed from the census, with an average of approximately
2} years between estimates.

The ideas underlying the new procedure are a natural extension of concepts introduced by
W. Brass and subsequently developed by Brass, Coale, Sullivan, Trussell, and others. Relevant
details and references are given in the following section. The new procedure differs from those
previously proposed in two respects. It results in a dated estimate of the infant mortality rate
from each age group of women, and it does not assume knowledge of the rate of change of infant
mortality during the years before the census. It thus opens the possibility of estimating from the
figures both the level of infant mortality at the time of the census and the rate of change during
the years preceding the census.

BACKGROUND

In the estimation procedure developed in the following section some relatively complex tech-
nical methods developed over the past 20 years by Brass are used. The exposition in the litera-
ture! is exceedingly concise, however, and the broad outlines of the approach are obscured by
the emphasis on the Brass ‘multipliers,” which represent an ingenious procedure for obtaining
approximate results with relatively little computation. In this section we describe and explain
Brass’s technique which most readers will find essential for reading the following section.

Mortality Estimation from Child Survivorship Data

The proportion of deceased children amorig all children born to women in a given age group at
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a given census may be expresses as Zt)q(t)ci(t), where 7 is an index identifying the age group,
¢;(¢) denotes the proportion of all children born to women in this age group who were born during
the #-th year preceding the census, and ¢(¢) denotes the proportion of these children who die prior
to the census. Assume for the moment that the values c¢;(f) are known, that mortality was constant
during the years prior to the census for the whole period during which the births in question
occurred, that there is no differential mortality by age of mother at birth or between children of
women living at the time of the census and children of women deceased at the time of the census,
and that the age pattern of mortality conforms to a known one-parameter model life table family.
By the second and third assumptions, the proportion g(f) is equal to one minus the number of
person years lived between exact age ¢ — 1 and exact age ¢ in the life table with radix one describing
the mortality experienced by the population. Using the standard life table notation L, for person-
years lived between exact ages x and x + 1, the proportion of deceased children may thus be
written . go (1 —Ly)c;(@).

We may now ask what model life table in the given family will yield, in combination with
the known values of c;(¢), the observed proportion of deceased children. If the model family is
given in tabular form, as in the Coale-Demeny models,> hypothetical proportions of deceased
children may be calculated by combining the c;(¢) values with model life table L, values for various
tables. To estimate mortality one simply looks for the model table which yields the observed
proportion of deceased children, interpolating between model tables if necessary to obtain values
of L, which yield the desired proportion to a sufficient level of precision. Estimates of any desired
life table statistics may then be obtained by a corresponding interpolation between the two model
tables.

If the model family is defined by a mathematical formula, as in Brass’s models,® the model
L, values may be expressed as functions of the model parameter, and we write L,(w) for the
L, value in the model life table family defined by the parameter . The estimation of mortality
may then be regarded as the solution of the equation

0i =) (1—Lgw)ei(t) (2.1)
t>0
where Q; denotes the proportion of deceased children for women in the i-th age group calculated
from the census. This conception of the process subsumes the approach using tabular models, for
these correspond to defining the functions L,(w) by interpolation between tabulated values. A
numerical solution of equation (2.1) may be obtained by standard iterative procedures.

The Brass Relational Model Life Table Families

The relational model life table families developed by Brass will usually be preferable to other
available models, both because they are computationally simpler and because they allow the
possibility of tailoring the family to particular statistics. There is a substantial theoretical basis
to the Brass models, but in the present context we may simply note the necessary formulae.*

9626 A. J. Coale and P. Demeny, Regional Model Life Tables and Stable Populations (Princeton, New Jersey,
1966).

* W. Brass, ‘On the Scale of Mortality,” in W. Brass, Ed., Biological Aspects of Demography (London, 1971),
pp. 72—74. See also N. H. Carrier and J. Hobcraft, Demographic Estimation for Developing Societies (London,
1975), Appendix I; and W. Brass, op. cit. in footnote 1, pp. 85-96.

* W. Brass, op. cit., footnote 3. See also K. Hill and T. J. Trussell, ‘Recent Developments in Indirect Mor-
tality Estimation,” Population Studies, 31, 2 (July 1977), pp. 313—334. Also known as the ‘logit system;’ the
term ‘relational’ is used here to call attention to the parallel with the relational Gompertz model of fertility.
See W. Brass, ‘Perspectives in Population Prediction: Illustrated by the Statistics of England and Wales,’ Journal
of the Royal Statistical Society A (1974), 137, Part 4, pp. 551-553.
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Let ¢ and ¢~' denote the functions defined by

#(x) = 1 log, a ;x)’ 0<x<1

¢7 () = [1+e™]7, —oeo<y+too

The parentheses will be omitted where confusion over the argument is unlikely to arise; in particu-
lar we write ¢/, in place of ¢(l,).

Given any schedule of life table I, values, referred to in this context as the ‘standard’ sched-
ule and denoted /7, a two-parameter model life table family is defined by I,.(4, B) = ¢~'(4 + B¢l%),
A and B denoting the two parameters. Observe that this is equivalent to ¢/,.(4, B)=A + BolS,
which states that the transformed I, values of tables in the family are linearly related. Table 1
shows standard /,. values for Brass’s ‘general’ standard.

Table 1. Brass’s General Standard 1, Values for Single Years of Age to Age 80

1 Values for Indicated Ages

Age (x) x x+1 x+2 x+3 x+4
0 10,000 8,499 8,070 7,876 7,762
S 7,691 7,634 7,590 7,554 7,526

10 7,502 7,475 7,448 7,422 7,394

15 7,363 7,323 7,280 7,233 7,183

20 7,130 7,073 7,013 6,951 6,889

25 6,826 6,766 6,705 6,645 6,585

30 6,525 6,465 6,406 6,345 6,285

35 6,223 6,160 6,097 6,032 5,966

40 5,898 5,829 5,759 5,687 5,612

45 5,535 5,455 5,373 5,287 5,198

50 5,106 5,009 4,909 4,805 4,697

55 4,585 4,470 4,351 4,227 4,099

60 3,965 3,823 3,676 3,524 3,369

65 3,210 3,049 2,886 2,719 2,551

70 2,380 2,202 2,023 1,846 1,671

75 1,500 1,335 1,177 1,027 888

80 760

Sources: W. Brass, ‘On the Scale of Mortality’ by W Brass, loc. cit. in footnote, p. 77, Table 4.
Note: Single-year values over age ten by cubic interpolation on given five-year values. Single-year values between
five and 10 by cubic interpolation on given values for ages four, five, ten, and 15.

A one-parameter family may be defined by setting B = 1. We shall re-parameterize this
family by the infant mortality rate g, by observing that the value of 4 for which 1 — g4 = ,(4)
is 9(1 —qo) — 917, whence the re-parameterized family may be written.

l(q0) = ¢ [¢(1 —qo) + ¢ — ¢Ii] (2.2)

Estimating the Time Distribution of Children Born

The values ¢;(¥), =0, 1, ... in (2.1) may be termed the ‘time distribution of children born’ to
women in the i-th age group. The answers to the census questions on children born and children
surviving do not provide information on the children’s date of birth, nor, indeed, would any
answers short of a complete birth history do so. The distribution in time of children born could be
tabulated directly if birth histories were available. In this case, however, it is likely that infor-
mation on age at death for deceased children would also be available, so that mortality rates
could be calculated directly and the value of the indirect estimation procedure becomes
questionable. Indirect procedures may prove useful even where direct calculations are possible,
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because of differences in infant mortality among children of mothers of different ages, or response
errors on date of birth and date of or age at death, but insufficient experience has been gained as
yet to make any general conclusion on this point possible.

Brass has developed a procedure for estimating the time distribution of children born from
mean number of children born to women in successive age groups based on the fertility poly-
nomial.®

fl@) =

{k(a —s)(s+33—a)® fors<a<33

otherwise
where & and s denote parameters related to the total fertility rate (F;) and the mean age at child-
bearing (M) by k = F; +98826.75 and M = s + 13.2. Brass first derives an expression for the mean
number of children born to women in the age group x to x + 5, by assuming that the women are
uniformly distributed by age within the group,® which may be written

k|{—(B3—d)®  11(33—dy)*
—{[ (33 —dy) + 1(334 1) +98826.75d1}+

n 20
—(33—d,)° | 11(33 —dy)*
_ { (3320 d)”  UG3=da) | 98826.75d2] + 98826.75d3} (2.3.1)
where
dy = max {0, min (33,2 + n —s)} (23.2)
d, = max {0, min (33,2 —s)} (2.3.3)
d; = max {0, (@ +n—s)—max (33,2 —s)} (23.9)

Denoting the. quantity (2.3.1) by’ P(a, n), the number of children born ¢ to ¢ — 1 years before
the census to women ageda toa + 7 —1 at the time of the census equals P(a—¢,n)—Pa — ¢t — 1, n).
Division by P(a, n) gives these births as a proportion of all children born to the women by census
date, so that

Pl@a—t,n)—Pl@a—t—1,n)
P(a,n) ’

The constant k in (2.3.1) cancels out in (2.4). The value of s in (2.3.2 -4) may be estimated by
equating

c®) = t=0,1,... (2.4)

P@@—5,n;s)

P(a,n;s) (2.5)

to the corresponding observed ratio and ‘solving the resulting equation for s, where we write
P(a, n; s) in place of P(a, n) to indicate explicity the dependence of (2.3.1) on the value of the
parameter s.

$ See W. Brass and A. J. Coale, op. cit., footnote 1; and W. Brass, 1975, op. cit. in footnote 1.

S For a derivation see L. J. Cho and G. Feeney, ‘Fertility Estimation by the Own-Children Method, A
Methodological Elaboration,” (Chapel Hill, North Carolina, 1978), pp. 10—12, esp. formulae (35a-b).

7 It has become more or less standard to index the age groups 15-19, 20-24 ... by 1, 2,...and to use
¥, P,,...to denote the mean number of children born to women in these age groups. The more explicit
notation used here is necessary for the formulae giving the form of the time distribution of children. The term
‘mean parity’ is often used to mean ‘mean number of children born,” and ratios of this form are referred to as
‘mean parity ratios’.
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In practice, solutions may be read directly from Table 2. Formulae (2.3.2—4) show that the
mean parity ratio (2.5) depends only on the quantity s —a, which we term the ‘displacement’ of
the age identifying the ratio from s. In Table 2 the mean parity ratio for various values of this
displacement is tabulated. To obtain the value of s corresponding to any given mean parity ratio
(say 0.393) proceed down columns from left to right in the table to the first value greater than the
given value (0.396 in this case; note that the values in the table are multiplied by 1000 to eliminate
the decimal place) and read off the corresponding value of the displacement a — s (8.6 years in this
case). Note that no interpolation is required. The table is constructed so that the value of the dis-
placement g — s corresponding to any interval in the body of the table corresponds to the upper
limit of the interval. (The value tabulated is in fact the value of the ratio for the indicated value of
the displacement plus 0.05). To estimate the value of s one simply subtracts the displacement
a —s from the age g identifying the observed mean parity ratio. Thus, if 0.393 is the mean parity
ratio for the age groups 20—24/25-29,a = 25 and s = 25--8.6 = 16.4 years.

Table 2. Mean Parity Ratios for Brass’s Fertility Polynomial (x 1000)

T;mths Displacement (g — s) in years

ofa

Year 3 4 5 6 7 8 9 10 11 12 13 14 15 16
9 64 113 170 233 296 356 412 463 511 554 595 632 667 699
0 68 118 176 239 302 362 417 468 515 559 599 636 670 702
1 73 124 182 246 308 368 423 473 520 563 602 639 673 1705
2 77 129 189 252 315 373 428 478 524 567 606 643 677 708
3 82 135 195 259 321 379 433 483 529 571 610 646 680 712
4 87 140 201 265 327 385 438 488 533 575 614 650 683 715
5 92 146 208 271 333 390 443 492 537 579 618 653 687 718
6 97 152 214 278 339 396 448 497 542 583 621 657 690 721
7 102 158 220 284 344 401 453 502 546 587 625 660 693 724
8 107 164 227 290 350 407 458 506 550 591 629 663 696 727
9 113 170 233 296 356 412 463 511 554 595 632 667 699 729

Note: See text for explanation of calculation.

Preston and Palloni have suggested an alternative approach to estimation from child sur-
vivorship data in which they use the age distribution of surviving children instead of the time
distribution of children born.® The approach involves reverse-surviving the surviving children
instead of forward-surviving the children born. The age distribution of surviving children may
be estimated by matching children to mothers on census household records as is done in the
‘own-children’ method of fertility estimation. If all surviving children could be properly matched,
this approach would eliminate errors resulting from the estimation of the time distribution of
children born, and this is its evident advantage. One disadvantage is that it requires special data
processing and tabulation operations in the census. Since the greater part of the work consists
in matching children to mothers on household records, and since this is being done increasingly
in connection with ‘own-children’ fertility estimation, this disadvantage may be expected to
lessen as time goes on and may, in some instances, disappear altogether. A second disadvantage
is that the calculated age distribution of surviving children is subject to errors resulting from
age misreporting of children and non-matching and mis-matching of children to mothers. Whether
these errors are less serious than those introduced in estimating the time distribution of children
born is not known, but errors due to faulty estimation of the time distribution of children born
are reasonably small despite the frequently unrealistic assumption of constant fertility and con-
formity to Brass’s model fertility schedules.

8 S. A. Preston and A. Palloni, ‘Fine Tuning Brass-Type Mortality Estimates with Data on Ages of Surviving
Children,’ Population Bulletin No. 10-1977. New York: United Nations Department of Economic and Social
Affairs 1978. See pages 73—74 for a detailed discussion of the advantages and disadvantages of the Preston-
Palloni approach. This discussion includes all the disadvantages noted above, except the restriction to younger
age groups of women and notes one advantage not noted above, the possibility of application to more general
groups of women, as for example groups defined by marital status or parity.
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A third disadvantage, which seems to me the most serious of all, is that the procedure
applies only to women who are sufficiently young for most of their surviving children to be living
with them and thus to be matchable. In practice this would appear to restrict the procedure to
women aged under 30. Matching for older women can, of course, be attempted but as the age of the
women increases the rate of matching will drop and the calculated age distribution of surviving
children will become less trustworthy. Evidence given below indicates (1) that statistics relating to
women under age 20 are rendered completely useless by differential infant mortality by age of
mother and (2) that numbers of children born and children surviving reported by women aged
30—49 can be as reliable as those reported by women aged 20—29. The restriction to women
under age 30 may, therefore, amount to throwing away two-thirds of the available information.

Brass’s Multipliers

Brass devised a method for obtaining approximate solutions to (2.1) which radically reduces the
volume of computation required to produce estimates.® Consider the ratio

, q(x; w)
=Ly (@]a®

where g(x; w) denotes the value of g(x)=1—1/, in the model life table specified by the par-
ameter value w. From the assumptions concerning mortality it follows that, for the value of w
representing the mortality experienced by the population, the numerator of this ratio gives the
value of q(x) for the population and the denominator gives the proportion of deceased children
among all children born to women in the i-th age group. Multiplication of the proportion of
deceased children by this ratio will, therefore, give the value of g(x). These observations do not
yet obviously advance the cause of mortality estimation, for the ratio depends on w, which will
not at this stage be known. Brass found, however, that when x is suitably chosen in relation to the
age group, the ratio is nearly constant with respect to w, so that w may be fixed at an arbitrary
value and still yield a value approximately valid for all levels of mortality. The approximate
values of x for the age groups 1519, 20-24, 25-29, 30-34,35-39,...are 1,2,3,5,10,....

Since the values of ¢;(¢) estimated by the procedure of the last section depend only on the
age group and the value of s, the multipliers may be tabulated for each age group and for a series
of values of s. The simplified estimation procedure in which this table of ‘multiplicrs’ is used con-
sists of three logical steps: (1) estimate the value of s for the population; (2) interpolate among the
tabulated multipliers to obtain a value corresponding to this value of s; (3) multiply the proportion
of deceased children for this age group by the interpolated ratio value. The second two steps are
repeated for each age group. In practice, the first two steps may be combined, for there is a one-
one correspondence between the mean parity ratio and s. Instead of first estimating s from the
mean parity ratio and then using this s to determine the value of the multiplier, the mean parity
ratio values may be incorporated into the multiplier table and one can go directly from the mean
parity ratio value to the multiplier value.'

(2.3)

Recent Work

Brass’s multiplier depends on the values ¢;(¢), t=1, 2,..., and according to the estimation
procedure detailed above, these values are determined by the parameter s. Since this parameter is
estimated from the mean parity ratio for women in two successive age groups, the multiplier is a

® W. Brass and A. J. Coale, op. cit., footnote 1, pp. 105-114.
10 Tables of multipliers are given in W. Brass and A. J. Coale, op. cit., in footnote 1 p. 108 and W. Brass, loc.
cit. in footnote 3, p. 55. The latter source has the advantage of tabulating P, /P, as well as P, /P, values.
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function of the mean parity ratio. Sullivan investigated this functional relationship by calculating
exact values of both the multiplier and the mean parity ratio for all possible combinations of
numerous observed fertility schedules and model life tables, generating a total of several thousand
values for both quantities. He then regressed the multiplier values on the mean parity ratios for
various sub-sets of these observations.'!

He also developed similar regression results for use with proportions of deceased children
among all children born to women classified by duration of marriage. The resulting regression
constants provide an alternative means for obtaining multipliers which convert proportions of
deceased children to women in a given age group to life table g(x) values.

Trussell subsequently refined this procedure by including further independent variables in
the regression and substituting model fertility schedules derived from the Coale-Trussell model
for Sullivan’s observed fertility schedules.'> The inclusion of additional variables reduces the
standard error of the regressions and the use of the Coale-Trussell model tables introduces a wider
range of variation into the fertility patterns on which the regression equations are based.

There have been several attempts to weaken the assumption that mortality has been constant
during the years before the census, and this work indicated several ways in which child survivor-
ship estimates may be validly interpreted when mortality is changing.'® In each case, however,
the approximate rate of mortality decline must be specified; hence the trend of mortality is
assumed rather than estimated from the data.

The recent work of Preston and Palloni has already been noted above (see footnote 8).

ESTIMATION PROCEDURE

If mortality is constant, its level may be specified by giving the value of some statistic, such as the
infant mortality rate or the expectation of life at birth, without reference to time. If mortality is
changing, both a statistic representing the level of mortality and the time at which this level was
obtained are required to specify an estimate. This is obvious to the point of triteness, but indirect
estimation procedures so often assume constant mortality that the point requires emphasis: a
mortality estimate requires both a mortality statistic and a time reference.

Estimation Equations for Linear Mortality Decline

Let L,(r) denote person-years lived between exact age x and exact age x + 1 in the life table
with radix one representing mortality risks during the z-th year before the census. The proportion
of persons born during the first uear preceding the census who survive to the census is simply
Lo(1). The proportion of persons born during the second year before the census who survive to
the end of this year is Lo(2), and the proportion of these survivors who survive one further year
and so are alive at the time of the censusis L, (1)/Lo(1), so the proportion of persons born during
the second year preceding the census who survive to the census is the product Lo(2)L,(1)/Lo(1).
In general, the proportion of persons borh during the z-th year prior to the census who survive to

1 J, M. Sullivan, ‘Models for the Estimation of the Probability of Dying Between Birth and Exact Ages of
Childhood,’ Population Studies, 26, (1)(March 1972), pp. 82-83.

12T, J. Trussell, ‘A Re-Estimation of the Multiplying Factors for Determining Childhood Survival,” Popu-
lation Studies, 29, (1)(March 1975), pp. 97—107. The Coale-Trussell model is discussed in A. J. Coale and T. J.
Trussell, ‘Model Fertility Schedules: Variations in the Age Structure of Childbearing in Human Populations,’
Population Index, 40, (2) (April 1974), pp. 195-258.

13 J. Sullivan, ‘Mortality Estimates Derived from Retrospective Mortality Data During Periods of Fluctuating
Mortality, Demografi Indonesia, 2, (1) (December 1974) pp. 116—113; W. Brass, op. cit., in footnote 1,
pp. 56—59; E. P. Kraly and D. A. Norris, 1976, ‘An Evaluation of Brass Mortality Fstimates under Conditions of
Declining Mortality,” Demography, 15, (4) (November 1978), pp. 549-557.
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the census is obtained by surviving this cohort forward one year at a time using the L, survivorship
ratios from the appropriate life table. This gives

oy i1 L,(t—l)
9() = 1=Lo(9 11 iG=) (3.1

where g () denotes the proportion of persons born during the ¢-th year before the census who do
not survive to the time of the census.

Assume now that the life table representing mortality during each year preceding the census
conforms to a one-parameter model life table family and that the infant mortality rate has been
declining linearly at the rate of r infant deaths per thousand births per year during the years
preceding the census. Let «w denote the infant mortality rate at the time of the census. Suppose
further that the life table for each year is defined by the infant mortality rate at the mid-point
of this year. Arbitrarily given values for r and w define a linear trend of mortality before the
census and hence, in particular, an infant mortality rate at the mid-point of each year pre-
ceding the census. By the model life table family assumption, these infant mortality rates define
a complete life table and, in particular, values of L, for single years of age for this year. Finally,
these L, values may be substituted in formula (3.1) to yield values for the proportions
q(®), t=1, 2,.... We have thus shown how to calculate the values of ¢(¢) which would result
from any linear trend in the infant mortality rate. The dependence of g(¢) on r and w may be
symbolized by writing q(¢; r, w) in place of g (¢). Substitution in (2.1) gives the system

n(i)
0i = Y qt;r,w)e(®), i =1,...,N, (3.2)
t=1
of N equations in the unknowns r and w. The upper limit of summation #(7) is to be defined so
that ¢;(#) = 0 for t > n (i) and may be taken as the least integer greater than the upper limit of
the age group less the lower limit of the reproductive span. In the case of five-year age groups
beginning with ages 15—19 for i =1 and the lower limit of the reproductive span equal to ten,
n(@)=5@G+1).

The equations (3.2) are in several respects analogous to those based on the assumption of
constant mortality. In both cases a single equation for each age group of women is formed by
equating the observed proportion of deceased children among children born to women in this
age group to the expression of this proportion in terms of the values q(¢) and ¢;(¢), an equation
justified by formal identity. In both cases, the values of c;(¢) must be estimated before attempting
any solution, and in both cases the values of g(¢) are replaced by a parametric expression derived
from a one-parameter model life table family. Demographically, the sole difference between the
two cases is the assumption of linearly declining as opposed to constant mortality. Mathematically,
the sole difference is in the number of unknown parameters in the equations, one in the case of
constant mortality, two in the case of linearly declining mortality.

Since data will normally be available for substantially more than two age groups, the esti-
mation equations will usually be overdetermined. There will not, therefore, generally exist values
of w and r which satisfy every equation. The mathematical structure of the situation suggests
three options at this point. The first is to select some, perhaps all, sub-systems of two equations
and attempt to solve each sub-system simultaneously for values of w and r. Since there are
N(N — 1)/2 ways of selecting two from N equations, this approach can yield a total of N(V — 1)/2
pairs of solutions for w and r — 66 pairs, for example, for the case of age groups from 15—19 to
70-74.

It is undoubtedly a nuisance to have 66 potentially different answers for a single problem,
but this redundancy may provide valuable information. If the data were perfectly free from error
and if the assumptions underlying the estimation equations were strictly valid, each pair of
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equations would upon solution yield precisely the same values for w and r. As a matter of pure
logic, then, if different pairs of equations yield different values for w and , either or both of these
propositions must be false, and if this is the case it is in the interest of the analyst to be so warned.
It may, in addition, be possible to interpret the dispersion of estimates obtained and make in-
ferences concerning the nature of data errors or the invalidity of the assumptions.

The second approach to a solution would be to choose values of « and r which minimize some
measure of discrepancy between the ‘expected’ proportions of deceased children, the expressions
on the right in (3.2), and the observed proportions Q;. This approach obviates the need to choose
among many different estimates, while at the same time providing some warning of data errors
or invalid assumptions in the magnitude of the measure of discrepancy attached to the minimizing
values for w and r. It does introduce the problem of choosing a measure of discrepancy, however.
The proper choice may depend on the particular problem at hand, and it will generally be necessary
to use iterative numerical methods to find the minimizing values. The one situation where this
approach may clearly be preferable is where the numbers of deceased children are very small and
hence significantly affected by random variation. In this situation one might expect estimates of
w and r obtained by minimization of some discrepancy measure to have lower variance than
alternative procedures, a conjecture which might be tested by resorting to simulation.

The third approach to the solution of the estimation equations is to calculate a ‘solution
set’ for the equation for each age group. Restricting attention for the moment to a single age group,
we give r some assigned value, yielding an equation which may be solved for the single remaining
unknown w. We then repeat this process for a series of values of r covering the plausible range of
empirical possibilities. This process yields a series of combinations of values for  and w, each
satisfying the equation. The totality of such combinations is infinite, for there is one for every
possible value for r, but this totality may be represented by interpolation between the calculated
values. It is heuristically useful in this connection to imagine plotting the calculated combination
of values for 7 and w on coordinate axes. The solution set as a whole may then be visualized as a
line in the plane passing through the plotted points. The entire process may then be repeated with
the equation for each age group.

There is a potential technical difficulty in this approach. The solution set might conceivably
be very ‘bumpy,” so that intermediate points would not be well approximated by interpolation.
As it happens, however, this difficulty does not arise, for a simple demographic argument shows
that w must decrease as r increases. Recall that each point in the solution set represents a linear
mortality trend consistent with the observed proportion of deceased children. Increasing » means
a more rapid decline in mortality, and if a more rapid decline in mortality is to yield the same
proportion of deceased children, then the mortality level at the time of the census must be lower.
If this were not the case, the solution set would include two mortality trends one of which rep-
resented a higher level of mortality at every moment of time prior to the census than the other,
and this isimpossible since two such trends would necessarily give different porportions of deceased
children. This shows that the solution set is ‘smooth’ and that approximation by interpolation
between a series of calculated points in valid. ,

Mortality Estimates as Intersections of Consistent Linear Trends

In a technical sense the solution set of the estimation equation for any age group exhausts the
information on mortality trends contained in the proportion of deceased children for this age
group. It may seem peculiar, even paradoxical, to say that the solution set contains information
on mortality trends when it specifies an infinite number of possible trends and provides no guide
as to which of these trends will actually have operated. The calculated solution set does rule out
some (in fact, an infinite number of) mortality trends as inconsistent with the observed data, how-
ever, and it does, therefore, provide information on mortality. Indeed, as just stated, it provides
all possible information derivable from the data of a single age group.
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Conceding this point, we may very well remain sceptical of the practical value of information
which comes in so unwieldly a form. What use can it be to be supplied with an infinite number of
answers to the question: What has been the trend of mortality? It turns out that the consistent
linear trends of mortality specified by the solution set have, to a very close approximation, a
common point of intersection a certain number of years prior to the census. Consider, for example,
the 1970 Census of Malaysia. Women aged 25—29 reported 745,983 children born and 703,487
children surviving, yielding a proportion deceased of 0.0570. On calculating the solution set of the
equation for this age group we find, that, if the infant mortality rate had been constant prior to
the census, it must have been w = 38.8 infant deaths per thousand births; if it had been declining
by r=0.001 per year, then the level at the time of the census must have been w = 34.5 and so

forth, calculated values of w for7 =2, . . ., being as indicated below
roow

2 303
3 262
4 221

Each of these combinations of values for 7 an w specifies a linear trend of infant mortality rates
for which the level of mortality at the time of the census is w and for which the rate of decline
during the years before the census is r, where r =0, 1,...,5. When plotted, these trends have a
common point of intersection a certain number of years before the census. They, therefore,
collectively determine the value of the infant mortality rate at that point in time. The estimated
rate is 38.8, the value corresponding to r = 0. The value of the years-prior-to-the-census figure
may be read off approximately from the graph and is 4.1 years. The census was taken at 1970.7,
where time is expressed in decimal form to tenths of a year, hence this estimate corresponds to
1966.6, or circa August 8, 1966.

To calculate the coordinates of the intersection of any two trends we put w +rt = ' +r't
and solve for ¢. The time at which the intersection occurs is thus found to be ¢ = (w — w' )+ (r' —r)
years before the census. The infant mortality rate at this time may be calculated either as
w +rt or w' +r't (both as a computational check if working by hand). The six calculated trends
in the above example would yield a total of 6(6 —1)/2 = 15 intersections, each specifying the
infant mortality rate a certain number of years prior to the census. Final values for the infant
mortality rate and the number of years prior to the census may be obtained by averaging these
two sets.

I have calculated a series of infant mortality estimates for 14 data sets with the highest age
group varying between 45—49 and 70—74. Six consistent linear trends were calculated for each age
group and the estimated infant mortality rate was calculated as the average of the ordinates of the
set of all intersections of these six consistent trends. The number of years prior to the census to
which this estimate applies is calculated as the average of the abscissae of these intersections. The
intersections, though tightly clustered, do not coincide exactly, and both statistics are to some
extent imprecise on this account. The level ‘of imprecision of the estimated infant mortality rate
may be measured by one hundred times half the range of the values divided by the average value,
and similarly for the estimated number of years prior to the census. These figures may be regarded
as approximate relative errors, expressed as percentages of the estimated infant mortality rates and
years-prior-to-census values. The value of this relative error statistic varies between 0.00 and 4.27
per cent over all age groups in the fourteen data sets from which estimates have been made. The
values typically increase with age within each set, however, and for all age groups below 50 years
the error is one per cent or less.*

14 For previous discussions of this estimation procedure see G. Feeney, ‘Estimating Infant Mortality Rates
from Child Survivorship Data by Age of Mother,” Asian and Pacific Census Newsletter, 3 (2)(November 1976),
pp. 15—16 and ‘Estimation of Demographic Parameters from Census and Vital Registration Data,” in Inter-

national Union for the Scientific Study of Population, International Population Conference: Mexico 1977
(Liége, 1977) Volume III, pp. 349-370.
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Tabular Solutions to the Estimation Equations

In the equation Q; = Zq(t;r, w)c;(¢) the values of c;(¢), when estimated as described above,
depend only on the age group (represented by the index 7) and the value of the parameter s in
Brass’s polynomial fertility model. Values for Q; and s therefore determine the solution set of
(r, w) values and, consequently, an estimated infant mortality rate a certain number of years
prior to the census. We may, therefore, produce a tabulation of both variables corresponding to
specified ranges of Q; and s values for each age group.

In Table 3 values of the infant mortality rate and the years prior to the census corresponding
to selected values of Q and s for each age group are shown, based on Brass’s general standard model
life table family. This table may be used to obtain solutions of the estimation equations (3.2) by
first estimating the value of s and then performing double interpolations to obtain the infant
mortality rate and years-prior-to-the-census value.

ERRORS IN THE ESTIMATES

Mortality estimates produced by the procedure described in the preceding section are subject to
two kinds of errors, those due to errors in the child survivorship data, and those due to the in-
validity of the various assumptions made. Both types of errors have been discussed in detail
elsewhere,!® hence we need only consider matters peculiar to the new procedure or those which
experience suggests require further emphasis.

Under the latter heading it should be pointed out that although the estimation procedure
assumes constant fertility, the estimates are so robust against departures from this assumption
that this will be a negligible factor, unless errors due to other causes are extremely small. The
tendency to avoid child survivorship estimates because of the ‘constant fertility’ assumption (and
because fertility is known or felt to have been changing, perhaps substantially) is naive. The
insensitivity to erroneous values of the parameter s is evident in Table 3.'®

Another source of error which has been noted but requires more emphasis is differential
infant mortality by age of mother (it is immaterial here whether or not this differential reflects
any causal relation between infant mortality and age of mother at birth). Infant mortality rates
by age of mother at birth are generally available only from special surveys or matching studies,
for the age of mothers of the decedent is not normally recorded on a death certificate. Some infor-
mation is available for a considerable diversity of populations, however, and consistently suggests
that infant mortality rates are higher for children of mothers at the extremes of the reproductive
age span.

The effect of differential infant mortality by age of mother on child survivorship estimates
may be gauged by calculating infant fertility rates for children born to mothers below specified
ages, as in Table 4, and observing how the rate changes as the age limit of the women approaches
the end of the reproductive span. The data restrict Table 4 to giving rates for children of women
aged 40 or younger, rather than an age higher than the end of the reproductive span. However,
relatively few children are born to women over 40 and the column on the extreme right of the
table may be considered in this context as giving the infant mortality rate for children of mothers
of all ages. Infant mortality rates for children born to women aged 20 or younger at birth sub-
stantially exceed the overall rates in nine out of ten cases and the differences are strikingly high.
It seems clear that information from the 15—19 age group should be considered useless for mor-
tality estimation.

15 W, Brass and A.J. Coale, op. cit. footnote 1, pp. 111-119.

16 And also from the table of multipliers on p. 108 of W. Brass and A.J. Coale, op. cit., footnote 1. The
tendency may derive from an exaggerated notion of the level of precision which may be expected from indirect
estimation procedures. One should not expect a smaller relative error than five to ten per cent, though, of course,
greater precision may be obtained in particular cases. Note, incidentally, that there is always a ‘correct’ value of s
even though the actual age pattern of mortality may not conform to Brass’s fertility polynomial.



eL’L LT'8 788 6£°6 L6'6 86°01 Y4 9091 1'8ST 9°6ST st 90ST '8yl ST
vL'L LT'8 188 8¢€°6 96°6 SS°0T 0T set Teet [AYAl 61t TLIT 'Stt 0T
€L’L 97’8 188 LE6 6°6 €501 ST S'16 0°06 988 0°L8 G'e8 0'¥8 ST
eL’L 97’8 08'8 SE6 766 €501 o1 S6S $'8¢ S°LS $'9S §'ss S'vS 0t
8T LT 91 ST 14! ¢l S/o 81 LT 91 ST 14! €T S/0
6¢—5¢ dnorp a3y
(4% LL’S vCT9 76’9 wL eL’L 0¢ 6°SET Seel eIeT (YA LTI [AYA! 0¢
€e’s 8L'S ¥T'9 L9 L €LL ST 966 8°L6 796 9°v6 0°¢6 S'16 ST
ye's 6L°S §T9 €L’9 wL eL’L 0t 6'v9 L€9 979 919 $09 65 01
se's 08°S 979 SL9 yoL SLL S L'1g T'1e 9°0¢ 1°0¢ 9°6¢ 1°6C S
8T L1 91 ST 14! €l S/0 81 LT 91 ST 14! ! S/0
y€—0¢ dnoio a3y
0c'e 89°¢ LO'Y LYy 68'% s 0T ISt VLYl [ 44! "Il '8¢l 6°SET 0T
(423 69°¢ 80 8¥'v 06'¥ €es ST TTIT €80T 8°G0T S€0T 101 966 ST
>~ €€°¢ oL’e 60V 6ty 16v vL'S 0T 9'CL L oL 069 L9 199 6'v9 0T
M ve'e 1L¢ or'y (11984 (434 ses S 9°¢e 9ve 8°¢e 0°ee v'ce L'ie S
2 81 LT 91 9 1 €1 S/0 81 LY 91 ST 14! €l /0
M 67— S¢ dnoio o3y
= 691 L6'1 8T'C 09°C ¥6'C 0g'e 0c 9781 6°ELT L7991 L°091 9SSt ISt 0¢
o OL°1 68°1 67T 9T 96'C et ST 6'veEl ¥'8CI 6cCl €811 1441 TTII ST
B CLT 00°C 0sC €9°C L6'C €ee ot 9'88 T8 $08 VvLL 8 VL 9CL 01
x ELT 10°C [4%4 ¥9°C 86'C yee S L'ey vy 9'6¢€ 0'8¢ L'9¢ 9'se S
© 81 LT 91 ST ¥l €1 S/0 81 LT 91 ST 14! €1 S/o
$¢—0¢7 dnoio a3y
09°0 8L'0 860 0Tt (A 69'1 0¢ 7°59T 0°6€C 61¢ v'v0T 8°C61 9781 0¢
190 8L'0 660 171 vl oL'T ST 861 €8LT 0°¢9t 9ISt 44! 6'vET ST
190 6L°0 00T [4A! Il LT 01 0'CeT 7811 LLOT 0°00T 6°€6 9'88 0T
790 080 10°1 €1 Lyt €Lt S 8'69 L'8S 1433 6y €9 L'ey S
81 LT 91 ST 14! €1 S/0 81 LT 91 ST 14! €l S/o
61—S1 dnoio ady
snsuad 03 10ud S8 § 9)eI AJe}IOW Juejuf
o AQuuny] 21qu.[ 17T 12POJ PADPUDIS [DIDUIL) S, SSDAG UO PasDg :Sunaqpiiy) 1v a8 uvapy pupv sdnods
N a5y puuUInbUINg U UGWO 40f U24pjIYy?) Sulaang Jo SUo1L0do4g WIOLf PIDULISST SINID SNSU))-01-LOLIJ-SMD3 § pup SaIvy] A1vi4op Junfu] *¢ 91qe],



121

MORTALITY TRENDS FROM CHILD SURVIVORSHIP

444 (1] A S8°€T LT¥C L9YC S0°ST 0€ 81T 6911 T'viT [N $'80T L'SoT 0€
S0°C¢ 91°¢T 09°¢T 10°¥C 1872 74 8L'¥CT Y4 v'v6 ¥'€6 0’16 888 S'98 P8 ST
0S°1¢C €6°TC 9¢°¢€T LL €T LT'¥C ¥SvC (114 L TIL 6'69 189 €99 99 0t
61°CC 1v'1C 13 44 6S°€C L6°ST 12044 ST 0°¢es 8°0S 6'6Y T'6v 8Ly SS9 ST
81 LY 91 ST 14! el S/0 8T LY 91 ST 14! ¢l S/0
$9—09 dnoro a3y
8C°0C €8°0C SEIC 98°1¢C SE€'TT €V'TT o€ L'veT 9' 1€l S°8TI YA y4A! 81T 0€
€0°0T §9°0¢ 91°1¢C S9'1¢ €1°TC S0°T¢ S¢ L'LOT ¥'S0T 8°C0T 001 6°L6 v'v6 Y4
L8'61 8%°0C 86°0C 9P'1C €6°'1C 15°1¢C 0T 0°¢8 1°L8 T'6L TLL €SL L 0T
L6l €€°0T 78°0C 6C'1C SL'TT 61°CC ST 0°09 9°8¢S LS 8'SS V'S 0'¢s ST
8T LT 91 ST 14! ¢l S/0 8T LT 91 ST 14! ¢l S/0
6S—S¢ dnoin o8y
0T'LT CLLT €€'81 7681 8Y'61 €0°0C Y4 6°0C1 T8Il 9°STI 6'CIT €01t L'LOT Y4
S6°91 SS°LY 07’81 LL'8T €e61 98°61 0¢ €£'€6 7’16 768 T'L8 0°S8 0°€8 0T
0691 0S°LT 80°81 $9'81 61°61 L6l ST 8°L9 99 9'v9 0'¢9 S'19 009 ST
1891 ov'LT 86°LT €581 LO61 6961 ot 8ty L'ty L'y 90y 9'6€ L'8¢ ot
8T LY 91 ST 14! ! S/0 8T LY 91 ST 14! ¢l s/0
$$—0¢ dnoin a3y
6L €T Ciadt (AN 08°ST SY It (WA Y4 Lyel 6'1¢T T°6CT ' 9Cl 9 €Cl 6°0CT Y4
el LEYT €0°ST 89°ST 91 $6'91 0¢ 01 1201 6°66 L'L6 $°S6 €'€6 0T
S9'¢l (424! L6'V1 19°S1 ¥T 91 0691 ST 6'SL €vL 9°CTL 6'0L €69 8°L9 ST
yoel [An4! S6'v1 86°ST 0791 18°91 ot (34 8Ly 0Ly 6'SY 144 8t o1
81 LT 91 ST 14! ¢l s/ 81 LT 91 ST 14! €l s/0
6v—s¥ dnorp o8y
8501 61°T1 8’11 LY'TT et 6L€T S¢ 1°8%1 S'Syl 6'Th1 ovt v'LET L'yeET Y4
§sot IT'TT 8L'IT wet 90°¢T el (114 TSIt T'elt 6011 8°801 9901 ' $0T 0T
€5°01 (AN SL'TT LETT 10°€T S9°¢el ST 0'¥8 v'C8 8°08 6L S'LL 6'SL ST
€5°01 (AN eL'TT 8¢€'Cl 10°¢T v9°€l (1]} 8 49 SES [SY4Y VIS €0S a4 o1
8T LY 91 ST 14! el S/0 81 LT 91 ST 14! €T S/0

snsuad 0} Iouxd sres X

yp—0# dnoin a3y

9jer Ajjeliow juejujf

panunuoo € A[qeL



GRIFFITH FEENEY

122

88°9C e1°LT veLT 68°LT LO'8C 17°8C 0¢ 9°C6 6:68 €L8 0°s8 ¥'C8 8'6L (113
65°9C ¥8°9¢ SO°LT €TLT 8¢°LT 6V'LT Y4 9'¢L S'IL €69 L9 0°s9 6’79 Y4
S€9C 09°9¢ €8°9C oLt 8T1°LT 0€’LT 0T €°9S 9'¥S 0°€s v'is L'6%y 18y 0¢
L8°ST 11°9¢ 1€9¢ 8V'9C 19°9¢ TL°9C ST oy T6¢ 0'8¢ 8°9¢ 9°S¢ v've ST

81 LT 91 ST 14! el s/ 81 LT 91 ST 14! el S/0

yL—0L dnoio) a8y

S0°ST 79°'S¢T 86'ST 1€°9C 19°9¢ 88°9C 0€ L'S0T €°€0T 9°00T 0'86 €56 9'C6 o€
8LVT (A4 69°ST 20'9¢ °€9C 65°9C Y4 P8 08 1°08 6'LL 8°GL 9€L ST
¥S' T 68°tC st €6°S¢ 18°ST S€°9C 0T 9'v9 6°C9 19 §'6S 8°LS €9S 0¢
12044 69°tC €0°'ST €€°6C 79°ST L8°ST ST S 9y 1% 4 (\R 44 8Py 91y oy ST

8T LT 91 ST 14! €T S/O 81 LT 91 ST 14! €1 S/0

snsuad 0} 1o1id s1es §

69—59 dnoip a3y

91BI A}I[e}IOW JUBJUL

penunuod ¢ o[qe],



MORTALITY TRENDS FROM CHILD SURVIVORSHIP 123

As regards mortality fluctuations, it should be pointed out that child survivorship data
involve a natural filtering effect which filters out high-frequency mortality fluctuations. To illus-
trate, consider a population which experienced infant mortality rates of 50 and 100 in alternate
years preceding the census. Since the children born to women in each age group are born over a
period of many years, these children would have experienced both the high and the low mortality
risks and the proportion who die before the census will be approximately the same as if the level

Table 4. Infant Mortality Rates for Births to Women Below Ages 20, 25, 30, 35, and 40: Selected

Populations

Population 20 25 30 35 40

Argentina® 1,335 979 845 817 801
Brazil® 1,041 752 657 648 651
Canada® 212 190 179 180 182
Chile® 793 601 546 545 552
El Salvador® 1,166 961 889 876 884
Mexico? 863 665 582 579 607
California® 262 190 177 175 175
Total US.A.P 331 268 252 249 250
U.S.A. White® 282 233 221 219 220
U.S.A. Non-white? 500 440 420 414 413
Israel® 232 217 224 235 243
Bangladesh® 1,384 1,213 1,189 1,186 1,198

Notes

2Ruth R. Puffer, and C. V. Serrano, Patterns of Mortality in Childhood, Table 147, p.245 (Washington,
D.C.: 1973) Pan American Health Organization, Scientific Publication No. 262.

b 1.S. National Center for Health Statistics, ‘4 Study of Infant Mortality from Linked Records by Age of
Mother, Total-Birth Order, and Other Variables: United States, 1960 Live Birth Cohort,” Vital and Health
Statistics, Data from the National Vital Statistics System, Series 20, No. 14. (Washington, D.C.: 1973) Table C,
p.11. .

¢ H. Pertiz, and U. O. Schmelz, Eds. Late Fetal Deaths and Infant Mortality: 1948—1972, Special Series
No. 453 (Jerusalem: Central Bureau of Statistics 1974), Table 18, p. 164.

d H. Stoeckel and A. K. M. Alauddin Chowdhury, ‘Neo-natal and Post-Neo-Natal Mortality in a Rural Area of
Bangladesh,’ Population Studies, 26,1972, Table 3, p. 117.

of mortality had been constant at 75 infant deaths per thousand births. The estimated infant
mortality rates at specific points in time will therefore be either 25 points too high or 25 points
too low. In many applications one will be more concerned with the long-term trend of mortality
than with short-term fluctuations, and in such cases this ‘estimation error’ may actually represent
a convenient and automatic smoothing of the time series.

The model life table family assumption is complicated by the consideration of mortality
change, for the age pattern of mortality may change over time in such a way that the appropriate
model family changes also.!” This observation suggests the need for mortality models which com-
bine age and time variations.

APPLICATION TO COSTA RICA AND PENINSULAR MALAYSIA

In Figures 1 and 2 we show child survivorship estimates for Costa Rica and Peninsular Malaysia
compared with vital registration figures. The latter have been taken from the United Nations
Demographic Yearbooks. Both the Costa Rican and the Malaysian statistics show an upturn just
prior to the census, reflecting estimates from the 15—19 and 20—24 age groups higher than the
estimate for the 2529 age group. It is quite clear that this apparent rise in mortality is spurious

17 See J. M. Sullivan, ‘The Influence of Cause-Specific Mortality Conditions on the Age Pattern of Mortality
with Special Reference to Taiwan,’ Population Studies, 27, (1) (March 1973), p. 141.
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Figure 1. Infant Mortality Rates Estimated from Child Survivorship Data Compared with Rates Calculated from
Vital Registration Data: Costa Rica 1945-1972
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Figure 2. Infant Mortality Rates Estimated from Child Survivorship Data Compared with Rates Calculated from
Vital Registration Data: Peninsular Malaysia 1947—-1969
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and that the estimates based on the 15—19 age groups are biased upward by the relatively high
mortality of children of young mothers. The difference between the estimates from the 20—24
and 2529 age groups might be explained in two ways, as caused by response error depressing the
value of the 2529 age group estimate or by differential infant mortality by age of mother biasing
the value of the 20—24 age group estimate upwards. The comparison with vital statistics rates for
Costa Rica suggests that the level of the child survivorship estimates is correct for the age groups
over 25, and this suggests that the latter explanation holds true. The Malaysian estimate for the
25-29 age group is substantially lower than the vital statistics rate. Examination of the figures for
sub-populations shows that the low value for the age groups over 25 is largely due to the Chinese
population for which response error is evidently very high.

Perhaps the most surprising observation to be made in Figure 1 is the absence of any indi-
cation of significant differences in response error between ages 20 and 50. The estimates for Costa
Rica look, with the exception of the turns in the tails, very much like a series obtained from the
vital statistics rates by smoothing. The Malaysian estimates derived from the 25—50 age groups
are low, but the estimate from the 45—49 age group is not noticeably inferior to that from the
2529 age group. Indeed, the relative error is higher for the former group.

This observation suggests that the widespread practice of disregarding information for
women over age 30 or 35 may be a mistake. It is plausible that women’s memories begin to fade
as they pass into extreme old age, but it is not particularly plausible that women forget how many
children they have had while they are still of reproductive age, particularly in social situations
where the bearing and raising of children is the primary role of women and the principal basis for
their social status. It would be foolish to suppose that women necessarily report correctly, but a
stance of blind distrust of information given by older women is as inappropriate as a stance of
blind trust. It is by no means clear, that response errors are caused by memory lapse, which seems
to have given rise to the notion that they should increase with age.

CONCLUSION

Questions on child survivorship have been included in dozens of national population censuses over
the past 20 years and much of this information (though by no means all) has been analyzed by
indirect methods. Despite this extensive experience with the problems both of data collection and
analysis the notion is still occasionally met that such questions are not practicable in large-scale
data collection. The experience of the last two decades refutes this notion decisively and the
applications to Costa Rica and Malaysia given here confirm the general conclusion. The Costa
Rican example shows that indirect methods can give results quite as good as direct methods, and
the example of Malaysia shows that indirect methods may give useful results even when they are
substantially less than perfect.

Both the discussion of differential infant mortality by age of mother and the applications to
Costa Rica and Malaysia indicate that child survivorship for 15—19 year old women is likely to be
very seriously biased, a point which is generally appreciated in the field, but which seems not to
have received much emphasis in print. More surprisingly, the Costa Rican application shows no
evidence of deterioration in the data until well past age 50 and the Malaysian application suggests
that data at ages 45—49 are quite as good as at ages 20—24. This refutes the widely held notion
that response error rises substantially with age below age 50 and suggests that the common prac-
tice of ignoring information from women over age 30 or 35 may amount to throwing away half
the available data. There is remarkably little published evidence to support the view that responses
by women in the second half of the reproductive span are so afflicted with response error that
they should be ignored for mortality estimation purposes as a matter of routine. The obvious
conclusion is that one should make estimation calculations for all available data (within reasonable
limits) and evaluate the results before deciding which age groups to reject. This has the advantage
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of accumulating evidence of response errors in the data as well as not failing to make the most of
the available data.

Table 5. Child Survivorship Data and Estimated Infant Mortality Rates: Costa Rica Census of May

14,1973
Age Women Children Children Infant Time
Group Born Surviving Mortality
Rate

15-19 111,317 17,901 16,772 67.0 72.3
20-24 84,765 93,097 86,056 60.1 71.0
25-29 63,064 159,466 145,957 57.9 69.2
30-34 50,400 207,823 187,075 62.4 67.1
35-39 46,498 255,968 225,822 68.3 64.5
40-44 39,577 253,195 218,671 72.7 61.6
45-49 31,689 211,484 177,366 78.4 58.4
50-54 27,213 177,485 143,607 84.4 55.2
55-59 20,101 128,987 100,551 88.3 52.3
60—-64 18,887 114,249 85,767 90.5 49.7
65-69 11,899 74,150 53,761 89.7 47.6
70-74 9,687 58,832 41,502 84.9 46.1

Source: Direccién General de Estadistica y Censos. Republica de Costa Rica Censos Nacionales de 1973: Pob-
lacién, Volume 1, Women and Children born, Table 25, p. 150. Children Surviving, Table 26, p.155.

Table 6. Infant Mortality Rates from Vital Registration Data: Costa Rica 1930—1973

Year Rate for Indicated Year (per 10.000)

(62}

7 y y+1 y+2 y+3 y+4
1930 1547 1787 1491 1637 1356
1935 1570 1529 1417 1217 1401
1940 1344 1259 1613 1239 1275
1945 1123 1107 1081 933 997
1950 902 859 895 897 810
1955 828 739 817 723 704
1960 708 653 707 741 861
1965 718 628 603 597 671
1970 615 565 544 448

Sources: United Nations Demographic Yearbooks, as follows:
1930-1939, 1951 Yearbook, Table 19, Pages 228—235;
1940-1950, 1953 Yearbook, Table 11, Pp. 216-225;
1951-1964, 1966 Yearbook, Table 14, pp. 280—295;
1965-1974, 1974 Yearbook, Table 20, pp. 342-363.
Notes:
Costa Rica is coded ‘U,’ representing ‘said to be unreliable (incomplete),” for 1930—1950 and ‘C,’ representing
‘said to be relatively complete,” for 1951—-1973. The 1966 Yearbook indicates that the Costa Rican figures are
classified by year of registration, not by year of occurrence, before 1963.
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Table 7. Child Survivorship Data and Infant Mortality Rate Estimates: Peninsular Malaysia, Census

of 24/25 September 1970 -
Age Total Children Children Infant Time
Group Women Born Surviving Mortality
Rate

15-19 491,615 56,689 53,525 60.9 69.7
20-24 377,426 384,650 364,974 40.9 68.4
25-29 275,710 745,983 703,487 38.8 66.6
30-34 268,250 1,141,633 1,060,271 44.2 64.5
35-39 214,824 1,149,231 1,051,810 48.6 62.0
40-44 186,528 1,079,425 960,107 58.5 59.1
45-49 157,268 884,325 960,157 67.9 55.8
50-54 135,543 708,065 593,434 70.7 52.7
55-59 105,870 520,452 431,550 66.5 49.9
60—-64 93,116 422,035 336,601 71.3 47.4

Source: Unpublished tabulations, 1970 Census, courtesy of the Department of Statistics, Kuala Lumpur, Malaysia.

Table 8. Infant Mortality Rates from Vital Registration Data: Peninsular Malaysia 1930—1940 and

19461972
Year Rate for Indicated Year (per 10,000)
(67

y y+1 y+2 y+3 y+4
1930 1783 1583 1497 1575 1739
1935 1589 1598 1487 1494 1311
1940 1385
1945 917 1022 896 806
1950 1016 973 900 834 831
1955 784 752 755 796 660
1960 684 597 594 568 484
1965 500 479 451 422 432
1970 408 385 379

Sources: United Nations Demographic Yearbooks, as follows:
1930-1939, 1951 Yearbook, Table 19, pp. 328-335;
1940—-1950, 1953 Yearbook, Table 11, pp. 216—225;
1951-1964, 1966 Yearbook, Table 4, pp. 280—295;
1965—1972, 1974 Yearbook, Table 20, pp. 342—363.

Notes:

The 1951 Yearbook indicates ‘1930—1933: former British Malaya, excluding the unfederated Malay states.
1934-1940: former British Malaya.” The 1953 Yearbook indicates ‘Prior to 1940, territory of former British
Malaya, i.e., excluding Singapore.’ The 1966 Yearbook indicates that the 1962 figure is ‘provisional.” Peninsular
Malaysia is coded ‘C,” representing ‘data stated to be relatively complete,” throughout the period.



	Article Contents
	p. 109
	p. 110
	p. 111
	p. 112
	p. 113
	p. 114
	p. 115
	p. 116
	p. 117
	p. 118
	p. 119
	p. 120
	p. 121
	p. 122
	p. 123
	p. 124
	p. 125
	p. 126
	p. 127
	p. 128

	Issue Table of Contents
	Population Studies, Vol. 34, No. 1 (Mar., 1980), pp. 1-197
	Front Matter [pp. 1-4]
	Errata: Front Matter
	Errata: The Role of Inequality of Income in the Determination of Birth Rates
	Far Eastern Patterns of Mortality [pp. 5-19]
	Philadelphia Gentry: Fertility and Family Limitation Among an American Aristocracy [pp. 21-30]
	Recent Characteristics of Roman Catholic Fertility in Northern and Southern Ireland [pp. 31-44]
	The Theory of Change and Response: An Application to Puerto Rico, 1940 to 1970. [pp. 45-58]
	The Hospitals and Population Growth: Part 1 The Voluntary General Hospitals, Mortality and Local Populations in the English Provinces in the Eighteenth and Nineteenth Centuries [pp. 59-75]
	Rural-Urban Fertility Differences and the Fertility Transition [pp. 77-90]
	Polygyny and the Rate of Population Growth [pp. 91-107]
	Estimating Infant Mortality Trends from Child Survivorship Data [pp. 109-128]
	Estimating Infant and Childhood Mortality Under Conditions of Changing Mortality [pp. 129-142]
	The Post-Partum Non-Susceptible Period: Development and Application of Model Schedules [pp. 143-169]
	Rural-Urban Fertility Differentials in Southern Nigeria: An Assessment of Some Available Evidence [pp. 171-179]
	Book Reviews
	Review: untitled [p. 181]
	Review: untitled [pp. 181-182]
	Review: untitled [pp. 183-184]
	Review: untitled [pp. 184-185]
	Review: untitled [pp. 185-186]
	Review: untitled [pp. 186-187]
	Review: untitled [pp. 187-189]
	Review: untitled [p. 189]
	Review: untitled [pp. 189-190]
	Review: untitled [pp. 191-192]
	Review: untitled [pp. 192-193]
	Review: untitled [p. 193]
	Review: untitled [p. 193]

	Books and Publications Received [pp. 195-197]
	Back Matter



