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The mixed effects of precipitation on traffic crashes
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Abstract

Purpose: This paper investigates the relationship between precipitation and traffic crashes in the US during the period 1975–2000. Traffic
crashes represent the leading cause of death and injury for young adults in the US, and the ninth leading cause of death for the overall
population. Prior studies have found that precipitation raises the risk of traffic crashes significantly.

Methods: A negative binomial regression approach is employed. Two different units of analysis are examined: state–months and
state–days. The sample includes all 48 contiguous states.

Results: A surprisingnegative and significant relationship between monthly precipitation and monthly fatal crashes is found. However,
in the daily level analysis, a strongpositive relationship is estimated, as in prior studies. The source of the contrasting results appears to be
a substantial negative lagged effect of precipitation across days within a state–month. In other words, if it rained a lot yesterday, then on
average, today there are fewer crashes. Additional analysis shows that the risk imposed by precipitation increases dramatically as the time
since last precipitation increases. For example, 1 cm of precipitation increases the fatal crash rate for a state–day by about 3% if exactly
2 days have passed since the last precipitation and by about 9% if more than 20 days have passed. This basic pattern holds for non-fatal
crashes as well.

Conclusions: The lagged effects of precipitation across days may be explained by the clearing of oil that accumulates on roads during
dry periods or by the conditioning of people to drive more safely in wet conditions. Either way, policy interventions that prepare drivers
more adequately for the risks of precipitation following dry periods are likely to be beneficial.
© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The point of departure for this study is a surprising em-
pirical result: in a typical state–month pair in the US from
1975 to 2000, increased precipitation is associated withre-
duced fatal traffic crashes. More precisely, an additional
10 cm of rain in a state–month is associated with a 3.7% de-
crease in the fatal crash rate. The estimate is derived from a
negative binomial regression using a panel of state–month
observations and including year and (state× month) fixed
effects, and is statistically significant at a high confidence
level (Z = 8.1).

This result appears to contradict a substantial body of re-
search, which consistently finds that precipitationincreases
traffic crashes. Several studies, in fact, conclude that crashes
increase during rainfall by 100% or more (Brodsky and
Hakkert, 1988; Bertness, 1980; NTSB, 1980; Sherretz and
Farhar, 1978), while others find more moderate (but still sta-
tistically significant) increases (Andreescu and Frost, 1998;
Fridstrom et al., 1995; Andrey and Yagar, 1993; Andrey and
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Olley, 1990). Of two studies that focus specifically onfatal
traffic crashes, one finds an increase in the crash rate of over
100% during rainy conditions (Brodsky and Hakkert, 1988),
and the other finds an increase in one country (Denmark)
and no significant change in two other countries (Norway
and Sweden) (Fridstrom et al., 1995).

A closer inspection of the data in the present study shows
how the estimated negative association between precipita-
tion and fatal crashes can be reconciled with the literature
described earlier. First, when the regression analysis is con-
ducted with the state–day, rather than the state–month, as
the unit of observation, the association between precipita-
tion and fatal crashes is estimated to bepositive and signif-
icant, as in the literature. Second, for a given day in a given
state, lagged precipitation, i.e. precipitation that fell in the
state in recent days, is shown to reduce fatal crash rates on
the current day substantially. This result explains why more
precipitation in a typical state–month leads tofewer fatal
crashes, while at the same time more precipitation in a typ-
ical state–day leads tomore fatal crashes.

The vast number of state–day observations in the sam-
ple (over 455,000) allow for a detailed examination of these
lagged effects. It is found that the more days that have passed
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since precipitation has fallen in a state, the more dangerous
precipitation is in terms of accidents. For example, if only 2
days have passed since the last precipitation, 1 cm of precip-
itation is estimated to increase the incidence of fatal crashes
by 3%, whereas if 21 or more days have passed, 1 cm of
precipitation is estimated to increase the incidence by 9%.

Non-fatal crash data are also analyzed for a subset of the
sample period for which data are available, 17 states during
1990–1999. Compared to fatal crash rates, non-fatal crash
rates are increased more by a given amount of precipitation.
This difference can presumably be explained by the fact that
people drive more slowly in wet conditions and therefore
crashes on average tend to be less serious. Like fatal crashes,
non-fatal crashes exhibit lagged precipitation effects.

The policy implications for the results of this study are
not as evident as they might be in, say, an analysis of traffic
safety laws. However, there are some clear reasons why it
is important to understand the relationship between precip-
itation and crashes. One reason is to improve our ability to
design appropriate laws and recommendations for driving in
wet conditions. Examples of possible interventions include
lower speed limits during wet conditions, as in France, for
example, or electronic roadside warning signs during these
conditions. Electronic warning signs in particular could pro-
vide a flexible means to emphasize the increased danger of
precipitation that follows drought periods.

2. Relevant literature

Prior studies of the relationship between precipitation and
traffic crashes have employed a variety of methods and data
sources, but the results have been nearly universal.Table 1
provides an overview of several such studies. In each case,
precipitation has been estimated to increase overall traffic
crashes (Andreescu and Frost, 1998; Andrey and Yagar,
1993; Andrey and Olley, 1990; Bertness, 1980; Brodsky and
Hakkert, 1988; Fridstrom et al., 1995; NTSB, 1980;
Sherretz and Farhar, 1978). As for fatal crashes in particular,
one study finds a strong increasing effect of precipitation
(Brodsky and Hakkert, 1988) and another finds an increas-
ing effect in one country (Denmark) but no effect in two
others (Norway and Sweden) (Fridstrom et al., 1995).

The most common method used in the above studies is the
“matched-pair approach”. The basic idea of this method is to
compare the crash rate during time periods with precipitation
to the rate during comparable time periods (e.g. same day
of week and same time of day, but 1 week later) without
precipitation. In one study, the time unit of analysis is an
entire day (Bertness, 1980), and in other studies they are
smaller units (“rain events” within days) (Andrey and Olley,
1990; Andrey and Yagar, 1993; Sherretz and Farhar, 1978).
Another method used in the studies is a regression approach.
This is the approach used in the present study. Crash rates
are regressed on precipitation amounts during the specified
unit of time (Andreescu and Frost, 1998; Fridstrom et al.,

1995). Next, Brodsky and Hakkert (1988)and theNTSB
(1980)use what they call a “wet pavement index” method.
This method compares the proportion of crashes reported to
occur on wet pavement to the proportion of overall time that
the pavement is wet. The amount of time the pavement is wet
is estimated using hourly rainfall data and assumptions about
drying time. Brodsky and Hakkert also use what they call a
“difference in means” approach. They define days as rainy or
non-rainy, and compare the mean number of crashes on rainy
days to the mean on non-rainy days. Rainy days are defined
as those days in which at least one crash in the sample area is
reported by police to have happened during rainy conditions.
Finally, one other approach looks at crash severity ratios
(Edwards, 1998; Bertness, 1980; Sherretz and Farhar, 1978).
This approach compares the severity mix of crashes (e.g.
average number of injuries per crash) during rain to the
severity mix during dry weather. Note that the severity mix
approach is informative about only relative frequencies of
different types of crashes, not absolute frequencies.

Previous studies have also found some evidence that the
effect of precipitation that follows a prolonged dry period
is especially dangerous.Fridstrom et al. (1995)find that the
first snowfall of the winter causes more crashes than would
be expected simply by the amount of snowfall.Brodsky and
Hakkert (1988)find evidence suggesting that in Israel rain
increases crashes more during November and March, when
rain tends be more sporadic, than it does during the rainy
winter season. These issues are explored in detail in the
analysis of the present study.

3. Methods and data

The estimation method used throughout this study is a
negative binomial regression, which is a generalized version
of the Poisson regression. Robust standard errors allow for
clustering by state. The negative binomial regression can be
expressed in terms of the Poisson regression in the following
way:

Cst ∼ Poisson(µst),

whereµst = eXstβ+offsetstust and eust ∼ gamma

(
1

α
,

1

α

)

where Cst refers to the crash count for a given observa-
tion, subscripted by state and time.Xst includes the in-
dependent variables of interest, most notably the amount
of precipitation (in cm). While the focus of attention in
this study is on precipitation in general, snowfall and snow
depth are also included inXst . In addition,Xst includes a
vector of dummy variables representing fixed effects for
each year as well as each state–month combination. To be
clear, the latter would include, for example, dummies for
California–January, California–February, etc. The purpose
of including these fixed effects is to purge confounding (i.e.
non-causal) relationships between precipitation and crashes
from the estimated coefficients on the precipitation variables.
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Table 1
Summary of studies on effects of precipitation on traffic crashes

Author (year) Sample Method Key findings

Edwards (1998) England and Wales,
1980–1990

Compare severity mix of crashes during rain to
severity mix during dry weather (weather
conditions per police reports for crashes)

(A) For rainy weather, the
fatal:injury-only:non-injury crash ratio is
18:227:755
(B) For dry weather, the ratio is 21:235:744

Andreescu and
Frost (1998)

Montreal, 1990–1992 Estimate correlation between daily precipitation
amount and daily number of crashes

(A) Significant rainfall-crashes correlation
(r = 0.27)
(B) Significant snowfall-crashes correlation
(r = 0.48)

Fridstrom et al. (1995)Denmark, Finland,
Norway, Sweden,
1973–1987

Generalized Poisson regression to estimate
contributions of various factors, including weather,
to monthly crash rates by county or province

(A) Injury crash rate: in all four countries rainfall
increases it, snowfall decreases it

(B) Fatal crash rate: rainfall increases it in
Denmark, is insignificant in Norway and Sweden,
and not recorded for Finland; snowfall decreases it
in Denmark, Norway, and Sweden

Andrey and Yagar
(1993)

Calgary and
Edmonton, 1979–1983

Matched-pair approach: compare “rain events” to
comparable time periods without rain on different
week

(A) Relative risk of crash during rain is 1.7

(B) Relative risk returns to normal (1.0) within 1 h
after rain event

Andrey and Olley
(1990)

Edmonton, 1983 Matched-pair approach (as inAndrey and Yagar,
1993)

Relative risk of crash during rain is 1.6 (CI 1.3–1.9)

Brodsky and
Hakkert (1988)

Israel 1979–1981, and
eastern US (DE, DC,
MD, VA) 1983–1984

(1) Difference in means: rainy vs. dry days (A) Injury accidents (Israel): relative risk during
rain of 2.2 (method 1) or about 6 (method 2)

(2) “Wet pavement index”: compare percent of
crashes reported to occur on wet pavement to
percent of overall time pavement is wet (estimated
using hourly rainfall data)

(B) Fatal crashes (US): relative risk during rain of
2.18 (method 1) or 3.75 (method 2)

(C) In Israel, relative risk during rain highest
during months with sporadic rain

NTSB (1980) US 1975–1978 “Wet pavement index” (see earlier) Relative risk for fatal crashes on wet pavement is
about 4

Bertness (1980) Chicago and NW
Indiana, 1976–1978

Matched-pair approach: compare rainy days vs.
non-rainy days 1 week later or earlier

(A) Rainy days had about twice as many crashes
as non-rainy
(B) Crash severity (average number of injuries per
accident) increased with rain in rural areas, but
not in urban areas

Sherretz and
Farhar (1978)

St. Louis area,
summertime,
1971–1975

Matched-pair approach (as inAndrey and Yagar,
1993)

(A) About twice as many crashes during rain events

(B) Number of crashes increases linearly with rain
amount
(C) Rain has no effect on crash severity ratio
(injuries per crash)

Note: Unless stated otherwise, the term “crash” includes all types of crashes (fatal, injury-only, non-injury).

For example, it might be the case that some states experi-
ence much greater tourism traffic during months of the year
when it is not expected to rain much. Including state–month
fixed effects prevents this scenario from spuriously rendering
the estimated relationship between precipitation and crashes
more negative.

The “offset” term refers to the amount of exposure for
a given observation, i.e. the denominator when we talk
about crash “rates”. An estimate of vehicle miles trav-
eled (VMT) for each state–year, published by the National

Highway Transportation Safety Administration (NHTSA)
is used for this purpose. Since this measure cannot account
for day-to-day fluctuations in VMT within state–years, the
estimated relationships between precipitation and crashes
may be mediated in part by unobservable decreased traffic
volume. This idea is discussed further in the context of
specific results.

The parameterα represents an indicator of the degree
of overdispersion (or possibly underdispersion) in the data
relative to a Poisson distribution. A Poisson distribution is



4 D. Eisenberg / Accident Analysis and Prevention xxx (2003) xxx–xxx

Table 2
Descriptions of key variables

Variable name Mean S.D. Sample spanned N Source Note

Monthly
Fatal crash count 68.22 67.8 48 States, 1975–2000 14976 i
Injury crash count 6865 4607 17 States, 1990–1999 1968 ii a
Property damage only crash count 11622 8189 17 States, 1990–1999 1968 ii a
Total precipitation (cm) 7.753 5.126 48 States, 1975–2000 14091 iii b
Total snowfall (cm) 6.670 13.92 48 States, 1975–2000 14091 iii b
Average snow depth (cm) 2.417 7.271 48 States, 1975–2000 14091 iii b

Daily
Fatal crash count 2.241 2.790 48 States, 1975–2000 455856 i
Injury crash count 225.3 161.1 17 States, 1990–1999 59894 ii a
Property damage only crash count 382.0 294.8 17 States, 1990–1999 59894 ii a
Total precipitation (cm) 0.247 0.570 48 States, 1975–2000 429381 iii b
Total snowfall (cm) 0.221 1.128 48 States, 1975–2000 429253 iii b
Average snow depth (cm) 2.387 7.732 48 States, 1975–2000 428332 iii b

Sources: (i) Fatal Accident Reporting System, National Highway Transportation Administration; (ii) State Crash Data System, National Highway
Transportation Administration; (iii) Cooperative Summary of the Day, National Climactic Data Center.Notes: (a) 17 states have monthly non-fatal crash
data for 1990–1999, with the following six state–years (72 obs) missing: GA–1999, NC–1990, NC–1991, WA–1997, WA–1998 and WA–1999; the 17
states are CA, FL, GA, IL, IN, KS, MD, MI, MO, NC, NM, OH, PA, TX, UT, VA, and WA; (b) weather data are missing for some state–days (and
therefore state–months) because only data from weather stations that recorded measures at 6:00 p.m. were used. SeeSection 3in the text for a discussion
of this issue.

described by the special case, whereα is 0. In all regressions
in this study, likelihood ratio tests reject thatα equals 0 with
very high degrees of statistical confidence (P < 0.001). The
results of these tests are not reported but are available on
request.

For ease of interpretation and comparability, the estimated
coefficients for all results are presented as proportional
changes in incidence rate. Thus, the coefficients answer the
question, for a one unit change in the independent variable,
what is the predicted proportional change in crashes per
VMT? For example, a coefficient of 0.05 for the precip-
itation variable is interpreted to mean that an increase of
1 cm of precipitation is associated with a 5% increase in
the crash rate.

Table 2summarizes the variables used for the monthly and
daily analyses, respectively. The source for all crash data is
NHTSA in the US Department of Transportation. The fatal
crash data are calculated from the Fatal Accident Reporting
System (FARS), and the non-fatal crash data, divided into
injury crashes and property damage only crashes, are from
the State Data System (SDS). FARS data are available for all
states and DC for 1975–2000, while SDS data are available
for 17 states for 1990–1999.1 The present study, however, is
limited to the 48 continental states, and therefore excludes
FARS data for Alaska, Hawaii, and DC. As mentioned ear-
lier, VMT data are taken from NHTSA’sHighway Statistics
publications (NHTSA, 1975–2000, 1990–1999). The mea-
sure is computed for each state–year using a combination of
fuel consumption, roadway type, and vehicle type data.

1 Seventeen states are included in the SDS for 1990–1999: CA, FL,
GA, IL, IN, KS, MD, MI, MO, NC, NM, OH, PA, TX, UT, VA, and WA.
However, the following six state–years are missing: GA–1999, NC–1990,
NC–1991, WA–1997, WA–1998 and WA–1999.

The FARS data, which are the primary focus of this study,
represent a complete census of all fatal crashes in the US
and are collected in a thorough and highly standardized pro-
cess. The SDS data, on the other hand, are reported by the
states to NHTSA and may reflect some differences in re-
porting procedures across states or over time. However, this
caveat is unlikely to introduce any problem other than ran-
dom noise for the purposes of the estimations, because the
fixed effects can largely account for such reporting discrep-
ancies. The coefficients for the non-fatal crash regressions
will be biased, however, if reporting practices vary system-
atically within states as a function of the level of daily (or
monthly) precipitation. For example, if non-fatal crashes are
less likely to be reported on rainy days, perhaps because
people do not want to wait in the rain for police to arrive,
then the coefficients would be biased downwards.

Weather data are derived from the National Climactic
Data Center’s “Cooperative Summary of the Day (TD3200)
Database” (NCDC, 1975–2000), which is a database con-
taining daily weather measures from over 20,000 weather
stations in the US. For some stations, the period of record
extends back to the 1850s, but for this analysis only the
years 1975–2000 are used. The measures used are total pre-
cipitation, total snowfall, and average snow depth. All three
are measured in cm. Weather station level data are averaged
in order to create state-level measures. In this averaging,
weather stations are weighted in proportion to the geograph-
ical area of the division within states that they represent.2

2 For weather data purposes, each state is divided into anywhere between
1 and 10 divisions. In creating the statewide measures, weather station
level data are first averaged within divisions. Then the division level data
are averaged within states, with the divisional weights in proportion to
geographical area.
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Table 3
Monthly regressions of crash rates on precipitation

Model

1 2 3 4

Method: negative binomial regressions; unit of observation: state–month
Dependent variable Fatal crash count Non-fatal injury crash count Property damage only crash count Total crash count
Exposure measure Annual VMT Annual VMT Annual VMT Annual VMT
Sample 48 States, 1975–2000 17 States, 1990–1999 17 States, 1990–1999 17 States, 1990–1999
Number of observations 14091 1966 1966 1966

Precipitation (cm) −0.0038 (−8.12) 0.0025 (3.85) 0.0058 (4.12) 0.0043 (5.17)
Snowfall (cm) −0.0006 (−1.34) 0.0014 (2.68) 0.0022 (2.24) 0.0020 (2.58)
Average snow depth (cm) −0.0064 (−5.38) −0.0015 (−1.28) 0.0045 (5.25) 0.0022 (1.98)
Year fixed effects Yes Yes Yes Yes
(State× month) fixed effects Yes Yes Yes Yes

Notes: (1) coefficients reported are proportional changes in incidence rates for one unit changes in the independent variables; (2) correspondingZ-statistics
are in parentheses.

An important detail in the context of daily analyses is the
fact that the daily weather data are not necessarily recorded
by calendar day, i.e. from midnight to midnight. In fact,
by far the most common time of day for collecting data in
the sample is 6:00 p.m. About 45% of weather stations in
the sample collected data at this time, with the next most
common times being 6:00, 7:00, and 8:00 a.m. (about 25%
of stations combined). As a result of this pattern, 6:00 p.m.
is used in the present study as the beginning of a day. This
poses no problem for the fatal crash data, for which the
hour of occurrence is known for each individual crash. The
non-fatal crash data, on the other hand, are only available
by calendar day. Since there is relatively little daily weather
data that is recorded at midnight, the non-fatal crash data are
simply matched to the weather data that use 6:00 p.m. (of the
previous day) as the starting time for each day. Thus, 6 h of
each day do not match appropriately. It is not obvious what
direction the bias in the estimates will be, if any. However,
it is clear that any estimated lagged effects fort = −1 (the
previous day) must be viewed with skepticism.3

4. Analysis using monthly data

Results for the monthly negative binomial regressions are
reported inTable 3. The first column shows the result men-
tioned at the outset of this paper: precipitation is associ-

3 One final issue with the weather data is the fact that, by restricting
attention to measures collected at 6:00 p.m., one does not have data from
all divisions in all states for days in the sample. Thus, statewide measures
no longer represent all divisions within the states in all cases. Again, it
is not clear which direction the bias would go, if any, for the estimates.
One would expect that there is no systematic relationship between which
stations collect measures at 6:00 p.m. and how precipitation affects crashes
near those stations. In this case, we would simply have a source of random
measurement error that would bias the coefficients towards finding no
“effects.” In any case, this issue is addressed by re-estimating regressions
with the subsample of state–days for which all divisions are represented.
As expected, the results are unchanged in each case.

ated with a reduction in fatal crashes (3.73% per 10 cm of
precipitation).4 It is interesting to see that snowfall, as dis-
tinguished from precipitation in general, also appears to re-
duce fatal crashes, although the coefficient is not statistically
significant at the 90% level. Also, the average snow depth
has a clear negative association with fatal crashes, which is
consistent with findings inFridstrom et al. (1995).

Comparison of the results for non-fatal crashes (columns
2 and 3) to those for fatal crashes reveals a distinct pattern.
As the severity of crashes falls (from fatal, to injury, to
property damage only), the associations between crashes
and all three weather measures become more positive. This
observation fits with the idea that people drive more slowly
in bad weather conditions (Edwards, 1999), and therefore
the crash mix becomes less severe. Also, snow depth may
lessen the severity of many crashes by preventing cars from
going off the road. The number of total crashes (the sum
of the three severity types) has a positive coefficient on all
three weather variables, reflecting the fact that less serious
crashes constitute the vast majority of all crashes, as can be
seen inTable 2.

How can we explain the relatively large negative coeffi-
cient for precipitation in the fatal crash regression inTable 3?
Before turning to an investigation of daily data and lagged
effects, it is reasonable to consider a handful of straightfor-
ward explanations. First, perhaps there are simply fewer ve-
hicles on the road during wet conditions and therefore less
exposure to risk. Indeed, other studies have found some re-
duction in traffic volume due to precipitation; for example,
Doherty et al. (1993)andCodling (1974)both find about a
2% decrease in traffic volume during rain. However, some

4 Note that, given how the regression is specified and the coefficients
reported, the predicted proportional change in the incident rate, for a given

change inx, �x, is calculated as e�xB̂. So in this case, the predicted
proportional change is e10(−0.0038) = 0.9627, or a 3.73% decrease. Note
that simply multiplying 10 by the coefficient−0.0038 yields a reasonable
approximation, a 3.8% decrease. This shortcut will be used henceforth
when making statements about the magnitude of predicted effects.
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simple calculations demonstrate that this degree of traffic
volume reduction cannot account for the size of the coef-
ficient on precipitation in the first column ofTable 3. This
can be seen as follows. The estimates from the above two
studies imply that, over the course of a month, traffic vol-

Table 4
State-by-state monthly regressions of fatal crash rates on precipitation

State Precipitation Snowfall Snow depth

B Z B Z B Z

AL −0.006 −4.16 0.000 −0.02 −0.070 −0.36
AR −0.005 −2.65 0.001 0.11 −0.066 −1.36
AZ −0.006 −1.59 −0.003 −0.89 0.009 0.69
CA −0.001 −1.40 0.000 0.06 −0.010 −1.30
CO −0.016 −2.30 −0.002 −1.71 −0.005 −2.60
CT 0.001 0.27 −0.003 −0.75 −0.014 −1.57
DE −0.008 −1.38 −0.005 −0.64 0.012 0.27
FL 0.000 −0.33 −37.65 −2.20 4775 2.19
GA 0.000 0.15 −0.002 −0.10 −0.206 −0.36
IA −0.004 −1.37 −0.001 0.72 −0.012 −3.51
ID −0.031 −3.50 0.002 1.46 −0.008 −3.02
IL −0.006 −3.56 −0.002 −1.45 −0.013 −3.83
IN −0.003 −1.65 0.001 0.68 −0.026 −5.63
KS −0.008 −2.42 0.005 1.56 −0.064 4.88
KY −0.003 −1.85 0.008 2.66 −0.084 −5.35
LA −0.003 −1.19 −0.121 −0.57 3.578 0.50
MA 0.001 0.25 −0.003 −1.13 −0.021 −4.59
MD −0.003 −1.58 −0.001 −0.42 −0.013 −1.19
ME 0.000 −0.10 −0.002 −1.17 −0.009 −4.07
MI −0.003 −1.12 0.001 1.70 −0.005 −4.12
MN −0.007 −1.79 0.001 0.54 −0.007 −3.95
MO −0.005 −3.06 0.000 0.02 −0.017 −2.57
MS −0.003 −1.76 −0.016 −1.18 0.097 0.56
MT −0.010 −1.04 0.000 −0.09 −0.016 −3.26
NC −0.003 −2.20 −0.005 −1.15 0.010 0.19
ND −0.019 −2.02 −0.006 −1.49 −0.006 −1.16
NE −0.023 −3.92 0.003 1.158 −0.022 −3.05
NH −0.009 −2.01 −0.003 −1.86 −0.003 −0.89
NJ −0.002 −1.45 0.002 0.736 −0.024 −2.60
NM −0.004 −0.66 −0.002 −0.54 −0.007 −0.37
NV −0.014 −1.31 −0.002 −0.57 −0.012 −1.88
NY −0.003 −1.43 0.000 −0.53 −0.006 −5.68
OH −0.005 −2.91 0.000 −0.2 −0.020 −5.27
OK −0.006 −2.91 0.008 2.595 −0.098 −3.07
OR 0.002 0.54 0.000 0.176 −0.006 −0.86
PA −0.005 −3.26 0.000 0.571 −0.009 −4.62
RI −0.003 −0.69 0.008 1.752 −0.049 −2.71
SC −0.002 −1.15 −0.004 −0.38 0.041 0.37
SD −0.014 −1.77 −0.002 −0.65 −0.015 −2.83
TN −0.003 −1.76 −0.002 −0.4 −0.040 −0.99
TX −0.006 −4.31 −0.003 −0.52 −0.056 −0.80
UT −0.007 −0.67 0.002 0.781 −0.013 −1.96
VA −0.001 −0.39 0.002 0.835 −0.026 −1.60
VT −0.009 −1.41 −0.001 −0.58 −0.011 −3.11
WA 0.000 −0.20 −0.002 −1.85 0.003 1.34
WI 0.000 −0.05 0.001 0.499 −0.010 −5.73
WV −0.001 −0.19 0.001 0.351 −0.017 −2.68
WY −0.023 −1.58 0.000 0.048 −0.007 −1.57

Notes: (1) these are the results of 48 separate regressions, 1 per state;
(2) the method is negative binomial regression, with exposure proxied by
annual VMT; (3) coefficients (denoted byB) reported are proportional
changes in incidence rates for one unit changes in the independent vari-
ables; (4)Z-statistics (denoted byZ) are next to corresponding coefficients.

ume would fall by 2% if it rained constantly. Assuming that
traffic volume is roughly proportional to exposure to fatal
crash risk, one would then expect a 2% reduction in fatal
crashes due to reduced traffic volume. However, recall that
the result inTable 3equates to a 3.73% reduction in fatal
crashes per 10 cm of precipitation in a month. Consider that
10 cm of rain typically falls over the course of a handful
of hours, and is therefore a tiny fraction of the precipita-
tion that would fall during a month ofconstant precipita-
tion. Thus, one can calculate that the estimated effect in the
present study is about two orders of magnitude greater than
that implied by the traffic volume argument above.

Another possibility is that the negative relationship be-
tween fatal crashes and monthly precipitation is driven by
a particular segment of the sample, such as a particular re-
gion of the country, time period, age group, or type of crash
(e.g. drunk driving, or ones that involve pedestrians or cy-
clists). The analysis is repeated for subsets of the sample
broken down along these dimensions, and in all cases the
negative coefficient remains. For example,Table 4shows
regression results for each separate state. The estimated co-
efficient on precipitation is negative for all but 4 of the 48
states (CT, GA, MA, and OR), and these four positive co-
efficients are not statistically different from zero. Of the 48
negative coefficients, 21 are statistically different from zero
at the 90% confidence level. Regression results for the other
sample subsets (time period, age group, etc.) are available
on request.

5. Analysis using daily data

The daily version of the monthly analysis inTable 3is
shown inTable 5. The same basic pattern across crash sever-
ity levels is evident, but now the coefficients for precipitation
and snowfall are positive and significant for fatal crashes.
The daily results are more aligned with those of the liter-
ature than the monthly results are. An increase of 1 cm of
precipitation is associated with a 1.15% increase in the fatal
crash rate, and an additional 1 cm of snow corresponds to a
0.9% increase. Snow depth, on the other hand, continues to
be associated with fewer fatal crashes (0.84% decrease for
1 cm).

With the large amount of data in the sample, there is an
opportunity to look more closely at the relationships between
the weather variables and crash rates. For example, rather
than specifying the weather variables as linear terms, one
can construct categorical dummy variables corresponding
to various intervals. This approach is taken inTable 6. For
example, precipitation is broken into the following intervals
(in cm): (i) x = 0 (none); (ii) 0< x ≤ 0.5 (very light); (iii)
0.5 < x ≤ 1 (light); (iv) 1 < x ≤ 2 (medium); (v) 2< x ≤
5 (heavy); (vi) 5< x (very heavy). The intervals defined for
snowfall and snow depth are similarly defined, as shown in
the table. In the regressions, the omitted category for each
weather measure isx = 0 (none).
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Table 5
Daily regressions of crash rates on precipitation

Model

1 2 3 4

Method: negative binomial regressions; unit of observation: state–day
Dependent variable Fatal crash count Non-fatal injury crash count Property damage only crash count Total crash count
Exposure measure Annual VMT Annual VMT Annual VMT Annual VMT
Sample 48 States, 1975–2000 17 States, 1990–1999 17 States, 1990–1999 17 States, 1990–1999
Number of observations 427824 59764 59764 59764

Precipitation (cm) −0.0115 (3.15) 0.1082 (9.94) 0.1224 (10.41) 0.1150 (10.62)
Snowfall (cm) 0.0090 (2.74) 0.0356 (4.87) 0.0580 (6.01) 0.0505 (5.23)
Average snow depth (cm) −0.0084 (−6.49) −0.0001 (−0.11) 0.0063 (3.62) 0.0041 (2.56)
Year fixed effects Yes Yes Yes Yes
(State× month) fixed effects Yes Yes Yes Yes

Notes: (1) coefficients reported are proportional changes in incidence rates for one unit changes in the independent variables; (2) correspondingZ-statistics
are in parentheses.

The results show some striking patterns. First, very light
precipitation (0< x ≤ 0.5) is associated with a 1.1% de-
crease in the fatal crash rate. In fact, only substantial pre-
cipitation (heavy or very heavy) is associated with an in-
crease in the fatal crash rate. A possible explanation is that
light precipitation alerts drivers to be more careful without

Table 6
Daily regressions of crash rates on categorical precipitation dummies

Model

1 2 3 4

Method: negative binomial regressions; unit of observation: state–day
Dependent variable Fatal crash count Non-fatal injury crash count Property damage only crash count Total crash count
Exposure measure Annual VMT Annual VMT Annual VMT Annual VMT
Sample 48 States, 1975–2000 17 States, 1990–1999 17 States, 1990–1999 17 States, 1990–1999
Number of observations 427824 59764 59764 59764

Precipitation
(0 cm, 0.5 cm] −0.0114 (−2.74) 0.0652 (6.68) 0.0797 (7.79) 0.0722 (7.92)
(0.5 cm, 1 cm] −0.0079 (−1.22) 0.1648 (11.92) 0.1822 (11.49) 0.1712 (12.58)
(1 cm, 2 cm] 0.0000 (0.00) 0.2213 (11.18) 0.2432 (12.37) 0.2307 (12.26)
(2 cm, 5 cm] 0.0351 (3.41) 0.2759 (9.39) 0.317 (11.59) 0.2952 (10.93)
(5 cm, ∞ cm] 0.1066 (3.78) 0.2819 (12.01) 0.3259 (11.35) 0.3021 (12.45)

Snowfall
(0 cm, 1 cm] 0.0039 (0.47) 0.0717 (5.54) 0.1041 (6.55) 0.0925 (6.36)
(0.5 cm, 5 cm] 0.0743 (4.83) 0.1978 (6.21) 0.2793 (5.88) 0.2541 (5.74)
(1 cm, 10 cm] 0.1076 (3.40) 0.2435 (5.28) 0.3457 (7.30) 0.3127 (6.12)
(2 cm, 20 cm] 0.0343 (0.93) 0.2415 (3.84) 0.3582 (7.26) 0.3103 (5.02)
(5 cm, ∞ cm] −0.2377 (−2.12) −0.4387 (−1.85) −0.2778 (−1.89) 0.3401 (−1.97)

Snow depth
(0 cm, 5 cm] −0.012 (−0.69) 0.0055 (0.34) 0.0641 (2.67) 0.0416 (1.88)
(0.5 cm, 10 cm] −0.0915 (−3.83) 0.0225 (1.23) 0.1489 (5.75) 0.1052 (4.19)
(1 cm, 20 cm] −0.1613 (−4.71) 0.024 (0.89) 0.1413 (3.09) 0.0879 (2.11)
(2 cm, 50 cm] −0.2698 (−6.22) 0.0241 (−0.72) 0.1 56 (2.74) 0.0937 (1.69)
(5 cm, ∞ cm] −0.4083 (−10.02) 0.0350 (0.30) 0.2409 (2.65) 0.1556 (1.35)

Year fixed effects Yes Yes Yes Yes
(State× month) fixed effects Yes Yes Yes Yes

Notes: (1) coefficients reported are proportional changes in incidence rates for one unit changes in the independent variables; (2) correspondingZ-statistics
are in parentheses.

posing a significant risk. Meanwhile, all levels of precipi-
tation predict increases in non-fatal crashes, whether injury
or property damage only. Second, snowfall shows an upside
down U-relationship with respect to crash rates. Crash rates
appear to peak around the medium level of snow, and ac-
tually decrease in very heavy snowfall. This fact is not sur-
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Table 7
Daily regressions of fatal crash rates on 1-day lagged precipitation

Model

1 2

Method: negative binomial regression; unit of observation: state–day
Dependent variable Fatal crash count Fatal crash count
Exposure measure Annual VMT Annual VMT
Sample 48 States, 1975–2000 48 States, 1975–2000
Number of observations 427561 427625

Precipitation (cm) 0.0183 (5.21) 0.0210 (6.12)
1-day lagged precipitation (cm) −0.0306 (−10.21) −0.0374 (−10.42)
(Today is dry)× (1-day lagged precipitation) 0.0221 (2.83)
Snowfall (cm) 0.0114 (3.31) 0.0091 (2.75)
1-day lagged snowfall (cm) 0.0156 (−6.74)
Average snow depth (cm) −0.0074 (−6.29) −0.0083 (−6.46)
Year fixed effects Yes Yes
(State× month) fixed effects Yes Yes

Notes: (1) coefficients reported are proportional changes in incidence rates for one unit changes in the independent variables; (2) correspondingZ-statistics
are in parentheses; (3) non-fatal crashes are not included here for reasons discussed inSection 3.

Table 8
Precipitation effect as a function of “time since last precipitation”

Model

1 2 3 4

Method: negative binomial regressions; unit of observation: state–day
Dependent variable Fatal crash

count
Non-fatal injury
crash count

Property damage
only crash count

Total crash count

Exposure measure Annual VMT Annual VMT Annual VMT Annual VMT
Sample 48 States,

1975–2000
17 States, 1990–1999 17 States, 1990–1999 17 States, 1990–1999

Number observations 427197 59695 59695 59695

Precipitation (cm)× (1 day since last precipitation) 0.0037 (0.89) 0.0965 (9.71) 0.1121 (9.93) 0.10 (10.27)
Precipitation (cm)× (2 days since last precipitation) 0.0372 (4.47) 0.1326 (6.03) 0.1416 (7.00) 0.1359 (6.62)
Precipitation (cm)× (3 days since last precipitation) 0.0340 (4.26) 0.1449 (6.53) 0.1560 (8.22) 0.1490 (7.57)
Precipitation (cm)× (6 days since last precipitation) 0.0593 (5 53) 0.1787 (8.97) 0.1847 (7.92) 0.1791 (8.52)
Precipitation (cm)× (7–10 days since last precipitation) 0.0598 (8.34) 0.1629 (4.55) 0.1711 (5.46) 0.1652 (5.05)
Precipitation (cm)× (11–20 days since last precipitation) 0.0744 (3.39) 0.2143 (5.99) 0.2037 (5.73) 0.2031 (5.88)
Precipitation (cm)× (21+ days since last precipitation) 0.0916 (2.68) 0.2306 (5.69) 0.2670 (6.67) 0.2530 (7.02)
Snowfall (cm) 0.0092 (2.80) 0.0352 (4.74) 0.0577 (5.91) 0.0502 (5.14)
Snow depth (cm) 0.0084 (−6.50) 0.0000 (−0.04) 0.0064 (3.65) 0.0042 (2.61)
Year fixed effects Yes Yes Yes Yes
(State× month) fixed effects Yes Yes Yes Yes

Notes: (1) coefficients reported are proportional changes in incidence rates for one unit changes in the independent variables; (2) correspondingZ-statistics
are in parentheses.

prising considering that traffic volumes, not to mention driv-
ing speeds, are undoubtedly reduced severely during snow-
storms. Third, all levels of snow depth are associated with
the following: reduced fatal crash rates, increased property
damage only rates, and no significant relationship with in-
jury crash rates. In this case, the interesting pattern in the
data reads from left to right in the table, rather than from up
to down. As the severity of crash category declines from fa-
tal to injury to property damage only, snow depth goes from
a protective, to an insignificant, to a damaging factor.

As with the monthly results, one must keep in mind that
these daily results do not control for how exposure (VMT)

varies except at the state–year level. Since there are gen-
erally fewer vehicles on the road during wet conditions, as
discussed earlier, then the coefficients are likely to underes-
timate the true relative risks faced by any given driver. How-
ever, one can repeat the simple calculations done earlier to
show again that this bias is likely to be small compared to
the size of the coefficients estimated.5

5 The bias is probably substantial, however, if one were to focus on the
relative risks of extreme precipitation conditions, during which case traffic
volume is likely to be reduced by much more than the 2% estimate cited.
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6. More analysis using daily data: lagged effects

Thus far, the monthly analysis has shown a negative
and significant relationship between precipitation and fatal
crashes that is present not only for the whole sample (US
1975–2000) but also for a variety of subsamples. In con-
trast, the daily analysis has shown a positive and significant
relationship between precipitation and fatal crashes, at least
in a simple linear specification. One way these opposite re-
sults might be reconciled is if there are negative “spillover”
effects of precipitation on crashes across days and within
state–months. In other words, an increased amount of pre-
cipitation during a particular day in a state–month somehow
reduces the number of fatal crashes on a different day or
days within the state–month. In this scenario, the affected
day or days must be in the future relative to the day with in-
creased precipitation, because it is hard to imagine any way
in which precipitation might affect the number of crashes
in past days.6 Therefore, lagged effects (dayt affects day
t + x: wherex > 0) are the focus here. They are examined
in a variety of ways, as follows.

First, simple 1-day lagged effects are analyzed.Table 7
reports the results. The analysis is only conducted for fatal
crashes due to the time of day inconsistency of the non-fatal
crash data with respect to the weather data (as discussed in
Section 3). The regression reported in the first column of
Table 7is the same as that in the first column ofTable 5, ex-
cept that 1-day lagged precipitation and 1-day lagged snow-
fall have been added as RHS variables. The coefficients for
the lagged variables are negative and significant, as hypoth-
esized, and their magnitudes are even larger than the cur-
rent day coefficients. One centimeter of precipitation on day
(t − 1) is associated with a 3.06% decline in the fatal crash
rate on dayt, whereas 1 cm of precipitation on dayt is only
associated with a 1.83% increase in the fatal crash rate on
day t. For snowfall, the values are 1.56 and 1.14%, respec-
tively.

Why does yesterday’s precipitation predict a reduction in
today’s fatal crashes? One well-known mechanism involves
engine oil and gasoline that accumulate on the road. When
precipitation falls for the first time after an extended dry
period, these oils mix with the water to create slick con-
ditions. However, if precipitation has fallen yesterday, then
today’s rainfall is less hazardous, because the oils have been
washed off the road recently. Even if the roads are dry to-
day, yesterday’s precipitation might have had a beneficial
effect by removing oils from the road. The effect is likely
to be less, however, because oils are most dangerous when
they are spread all over the road by water. Another possi-

6 One might argue that people anticipate precipitation in future days
based on weather forecasts, and this anticipation affects driving patterns.
If this is the case, if anything one would think that anticipated future
precipitation increases the amount of driving today and thereby increases
crashes. So this scenario, even if it is true, would not help explain the
contrasting monthly and daily results.

ble mechanism is that precipitation conditions drivers to be
more careful in the near future. It could condition drivers to
be more careful in future wet conditions, or it could even
condition drivers to be more careful in all conditions.

Table 9
Analysis of Table 8, by state and with fewer time intervals

State Precipitation×
(1 day since)

Precipitation×
(2–5 days since)

Precipitation×
(6+ days since)

B Z B Z B Z

AL 0.017 1.80 0.048 2.55 0.100 2.92
AR 0.011 0.86 0.073 2.07 0.017 0.26
AZ 0.005 0.13 0.260 1.26 0.400 1.82
CA 0.023 2.20 −0.110 −1.68 0.076 0.79
CO −0.170 −3.26 0.049 0.25 0.274 0.79
CT −0.007 −0.26 0.021 0.61 0.029 0.47
DE 0.025 0.72 0.006 0.13 0.062 1.02
FL 0.014 1.80 0.016 0.74 0.015 0.56
GA 0.037 4.05 0.078 2.91 0.141 2.62
IA −0.069 −3.07 −0.011 −0.21 0.088 0.79
ID −0.201 −2.85 0.156 0.64 −0.679 −0.93
IL −0.014 −1.18 0.068 2.23 0.229 2.50
IN −0.007 −0.53 0.043 1.29 0.025 0.35
KS −0.071 −2.95 0.030 0.95 0.040 0.66
KY 0.034 2.91 0.041 1.22 0.026 0.34
LA 0.002 0.16 −0.010 −0.36 −0.042 −0.75
MA −0.017 −0.70 0.146 0.79 −0.350 −0.54
MD 0.012 0.88 0.119 4.24 0.138 2.50
ME −0.055 −1.75 0.030 −0.65 −0.274 −1.98
Ml 0.024 1.38 0.088 1.77 0.136 0.45
MN −0.049 −2.07 −0.118 −1.97 −0.044 −0.26
MO −0.018 −1.51 0.048 1.97 0.075 1.73
MS 0.017 1.68 0.013 0.76 0.024 1.57
MT −0.173 −2.14 −0.653 −0.61 1.624 0.90
NC 0.045 4.84 0.061 2.282 0.034 0.67
ND −0.087 −1.13 0.200 0.655 0.466 0.27
NE −0.064 −1.65 0.022 0.191 0.149 0.68
NH −0.049 −1.56 0.021 0.519 −0.098 −1.02
NJ 0.021 2.00 0.020 1.258 0.095 3.87
NM −0.120 −2.09 0.354 −0.8 0.810 1.33
NV −0.126 −1.20 0.118 −0.27 0.180 0.19
NY 0.021 1.86 0.029 1.046 0.157 1.39
OH −0.019 −1.61 0.048 1.811 0.064 1.13
OK 0.004 0.26 −0.041 −1.03 0.103 2.01
OR −0.013 −0.42 0.053 0.214 −0.472 −0.58
PA −0.015 −1.38 0.030 1.441 0.056 1.22
RI 0.032 0.93 0.034 0.739 0.074 1.04
SC 0.031 2.80 0.094 2.951 0.071 0.98
SD −0.054 −0.90 −0.206 −0.63 0.117 0.09
TN 0.001 0.12 0.025 0.955 0.071 0.90
TX −0.003 −0.19 0.077 0.992 0.177 1.33
UT 0.038 0.46 0.397 0.818 0.703 0.73
VA 0.020 1.66 0.127 3.656 0.070 0.82
VT −0.060 −1.30 0.040 −0.56 0.245 2.17
WA −0.004 −0.17 0.100 0.814 0.832 2.83
WI −0.026 −1.36 −0.001 −0.02 0.077 0.72
WV −0.033 −1.42 0.057 1.322 0.065 0.69
WY −0.356 −3.08 −0.566 −1.04 1.550 1.76

Notes: (1) these are the results of 48 separate regressions, 1 per state;
(2) the method is negative binomial regression, with exposure proxied by
annual VMT; (3) coefficients (denoted byB) reported are proportional
changes in incidence rates for one unit changes in the independent vari-
ables; (4)Z-statistics (denoted byZ) are next to corresponding coefficients;
(5) snowfall and snow depth are controlled for, but are not shown.
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The discussion above suggests that yesterday’s precipita-
tion is likely to have the most beneficial effect on today’s
crashes if precipitation falls today, but there might still be
some beneficial effect if conditions are dry today. The next
set of results, shown in the second column ofTable 7, looks
at this issue by estimating the lagged precipitation effect as
a function of today’s precipitation. A dummy variable is de-
fined that is equal to 1 if today is dry (zero precipitation)
and 0 if not (positive precipitation). This dummy is inter-
acted with the lagged precipitation variable. The interaction
term is included as an independent variable. In this frame-
work, the interpretation of the coefficients is as follows. The
lagged effect of precipitation if today is dry is calculated as
the sum of the two lagged coefficients (−0.0374+0.0221=
−0.0153). The lagged effect of precipitation if today is wet
is simply the coefficient on lagged precipitation (−0.0374).
Statistical tests reveal that both of these estimates are signif-
icantly different from zero. As anticipated, lagged precipi-
tation has its most beneficial effect if today is wet. But there
is still some benefit if today is dry.

To get a fuller picture of the lagged effects of precipita-
tion, the next part of this analysis looks beyond 1-day lags
to longer lags. The question is asked, what is the effect of
today’s precipitation on today’s crash rates, given that pre-
cipitation has not fallen in the pastX days?Table 8reports
the results of this analysis. Mechanically, the independent
variables are constructed by interacting today’s precipitation
with, one at a time, a list of dummy variables that equal 1 if
it has been within the specified time interval since the last
precipitation and 0 otherwise. Note that these dummies are
mutually exclusive; for example, if the last precipitation fell
5 days ago, then the 4–6 days dummy would equal 1 but the
3 days dummy would not equal 1 (but rather 0). Also note

Table 10
Analysis of Table 8, by time (1975–1983, 1984–1992, and 1993–2000)

Model

1 2 3

Method: negative binomial regressions; unit of observation: state–day
Dependent variable Fatal crash count Fatal crash count Fatal crash count
Exposure measure Annual VMT Annual VMT Annual VMT
Sample 48 States, 1975–1983 48 States, 1984–1992 48 States, 1993–2000
Number of observations 155832 146946 124419

Precipitation (cm)× (1 day since last precipitation) −0.0034 (−0.83) 0.0148 (3.19) 0.0096 (1.49)
Precipitation (cm)× (2 days since last precipitation) 0.0663 (2.50) 0.0314 (1.86) 0.0254 (2.13)
Precipitation (cm)× (3 days since last precipitation) 0.0347 (1.52) 0.0539 (4.32) 0.0080 (0.55)
Precipitation (cm)× (4–6 days since last precipitation) 0.0823 (2.38) 0.0532 (3.99) 0.0378 (2.36)
Precipitation (cm)× (7–10 days since last precipitation) 0.0909 (2.62) 0.0872 (6.72) 0.0256 (2.88)
Precipitation (cm)× (11–20 days since last precipitation) −0.0098 (−0.20) 0.0703 (1.32) 0.0588 (2.38)
Precipitation (cm)× (21+ days since last precipitation) 0.1330 (23.92) 0.0829 (0.62) 0.0485 (1.39)
Snowfall (cm) −0.0056 (−1.44) 0.016 (4.22) 0.015 (4.08)
Snow depth (cm) −0.0107 (−692) −0.0083 (−5.79) −0.0065 (−5.51)
Year fixed effects Yes Yes Yes
(State× month) fixed effects Yes Yes Yes

Notes: (1) coefficients reported are proportional changes in incidence rates for one unit changes in the independent variables; (2) correspondingZ-statistics
are in parentheses.

that the non-fatal crashes are now included in the lagged ef-
fects analysis. The reason is that the problem with the time
of day inconsistency will not clearly bias the estimates as
we look beyond the 1-day lag.

The results follow the expected pattern. As the number
of days since the last precipitation increases, precipitation
becomes relatively more dangerous. The estimates suggest
that, if precipitation has fallen yesterday, then the current
day’s precipitation does not increase fatal crashes at all (but
does increase non-fatal crashes). Comparing the situations
in which precipitation last fell 2 days ago versus 21 or more
days ago, one can see that in the latter situation precipitation
adds nearly three times as much risk in terms of fatal crashes
and nearly twice as much risk in terms of non-fatal crashes.

7. Policy lessons

What policy lessons can be drawn from the results of this
study? First, the results just discussed have a clear impli-
cation: drivers are at significantly elevated risk when pre-
cipitation falls after a dry period of several days or more.
As noted earlier, an appropriate policy response would be
to warn drivers using electronic signs on the roadside. Elec-
tronic signs and non-electronic signs have already been used
for many years to warn drivers of hazardous weather con-
ditions, but more of these signs might be called for given
the estimated magnitude of the risks. Cost–benefit studies of
such signs could further address this issue. Additionally, the
signs might be made more effective if they emphasize the
hazard of wet conditions more when precipitation follows a
dry period, rather than providing the same warning for all
precipitation events. It is possible that these signs have more
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impact per warning on driver awareness if they issue warn-
ings less frequently. Targeting the warnings to the most dan-
gerous situations may be most effective in reducing crashes.

Analyses of the type in this study can also be used to learn
about what factors mediate traffic safety in wet conditions.
For example, the effect of precipitation on traffic crashes
can be estimated separately by state or by time period. One
could then note which states, or time periods, appear to
experience relatively less or more crashes as a result of wet
conditions. Studying these differences could yield estimates
of the beneficial effects of road quality projects or driver
education programs that are present in certain states or time
periods.

Tables 9 and 10show regressions by state and by time
period, respectively, using daily data. At a glance, it appears
that some states experience greatly increased fatal crash rates
in wet conditions (e.g. AZ and MD), while others are hardly
affected at all (e.g. CT and IN). The analysis by time pe-
riod suggests that the risk of fatal crashes due to wet condi-
tions has diminished some from the first period (1975–1983)
to the second (1984–1992) to the third (1993–2000). Fur-
ther research could determine why these effects differ across
states and over time.

Another productive strategy for informing policies may
be to focus on one particular intervention, such as a road
quality improvement project in a state. The relationship be-
tween precipitation and crashes could be compared before
and after the intervention. This type of analysis could also be
applied to the electronic signs discussed above or to lower
speed limits for wet conditions in order to evaluate the ef-
fectiveness of such policy devices.
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