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On Constructing Current Life Tables

CHIN LONG CHIANG*

The purpose of this note is to reintroduce a simple method of constructing current
life tables proposed in [2], using the concept of the fraction of the last age inter-
val of life, and to use it to construct life tables of the United States population.

1. INTRODUCTION

The main problem in developing a method of construct-
ing current life tables is to derive a formula that expresses
the probability of death (g;) in terms of the corresponding
death rate (m;) for each age group. Several methods of
obtaining such a formula have been proposed in the litera-
ture, including those of King [9], Greville [7], Reed and
Merrell [10], Keyfitz [8], Sirken [11], Coale and Demeny
[5] and Chiang [2]. However, most of these methods are
so complex mathematically and conceptually that users
in applied fields cannot appreciate the real value of life
tables as a means of summarizing mortality experience,
and theoretical statisticians find it difficult to consider the
life table as an area of research. The method suggested in
[2] was intended to resolve the problem. However, it was
introduced informally and without a theoretical basis.

The purpose of the present note is to reintroduce the
method from a theoretical viewpoint and to use it to con-
struct life tables of the United States population. The out-
line of such a table is shown in Table 1. All the quantities

1. LIFE TABLE

Number Total

Fraction Observed

Age Number  Proportion Number of years number
interval 1living dying in °£a1:“ dying in lived in  of years exg:c;;;:on
(in years) at age interval 8 interval interval lived
X (x,,%,.) interval %) (%) b d at age x;
1 1°%1417  of life 1%14+1 ¥ 141 eyon
age Xl
~ ~
XXy Yy 93 ay 4 Ly Ty 1
xg to x) "0 q, ag do LO Ty &
X, and over lw qa, dw Lw T" e,

in the life table, with the exception of £¢ and a;, are ran-
dom variables. The probability distributions and statisti-
cal properties of these random variables have been dis-
cussed in detail in [1] and [3]; the problem of estimation
has been treated in Grenander [6].

1.1. The method suggested in [2] is described here for
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easy reference. The observed data from a current popula-
tion consist of the number of deaths (D) and the cor-
responding mid-year population (P;) for each age group
(x4, zi+n;), where n;=x;.1—x; is the length of the inter-
val. Using the total United States 1967 population in
Table 2 as an example, for age interval (1, 5), z;=1,
n;=4, the estimated population size on July 1, 1967 is
P;=15,633,000, and the number of deaths occurring dur-
ing the year 1967 is D;=13,506.

Suppose that there are N; people of exact age z; subject
to the probability ¢; of dying in the age interval (z
z;+n;), among whom D; deaths actually occur. Then the
estimate of ¢; is given by

(1.1)

The (observed) age specific death rate is defined as the
ratio of D; to the total number of years lived by N, in the
interval (x;, ;-+n;). Each of the D, people lives, on the
average, a fraction a; of the interval (x;, x;+n;) before
death occurring; as a group, the D; people lived a;n.D;
years. The group of (N;—D,) survivors lived n,(N;—D;)
years. Therefore, the death rate is

D;

= . (1.2)
n«;(N«; - Di) + ain:D;

M;

Conventionally, the denominator in (1.2) is estimated
by the midyear population,

m(Nz - Dl) + amiDi = Pi, (13)
to give the familiar formula

D;
M,=—" 1.4
P, (1.4)

Solving (1.3) for N, gives an estimate
1

N;=— [Pi + (1 - (h)ﬂzDz] (15)

n;g

Substituting (1.5) in (1.1) and using (1.4) we obtain
the basic relation between ¢, and M,
n,'Mi

G, = . 1.6
T (= aynad, (1.6)

Using a similar reasoning as in (1.3), we have

Li = nl(& —_ dz) + amidi. (17)
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When §; and ¢; for each age interval are obtained, the
rest of the table can be determined as follows:

d;=4,q; and £i=4,—d;, fori=0,1, - -,w—1, (1.8)
Ti=L;+Lix1+ -+ - +Lu, fori=0,1,---,w—1, (1.9)
and

¢;= T4, fori=0,1,---,w—1. (1.10)

The quantities in the last age interval are computed
from the equations:
and d, = .

o =—>1 Tu=Ly=Llubu, (1.11)

2. CONSTRUCTION OF ABRIDGED LIFE TABLE FOR
TOTAL UNITED STATES POPULATION, 1967

Fraction

Midyear Number of last Proportion
spe | forsacion  of demihe et rate "o dvine o
interval (x,,x,.,)8 (x,,x, ..)b x,,%,..) interval (x, 1%, .1)
(in years) 1274+1 1274+1 1°71+1 of life 1274+1
Xy O Xy Py Dy My 3y 4
1) 2) 3) (%) (5) (6)
0-1 3535000 79028 .022356 .09 .02191
1-5 15633000 13506 .000864 .39 .00345
5-10 20908000 8809 .000421 .46 .00210
10 - 15 19889000 8084 .000406 .54 .00203
15 - 20 17858000 18168 .001017 .57 .00507
20 - 25 15178000 19538 .001287 .49 .00641
25 - 30 12108000 16355 .001351 .50 .00673
30 - 35 10978000 18431 .001679 .52 .00836
35 - 40 11616000 28382 .002443 .54 .01215
40 - 45 12382000 45657 .003687 .54 .01828
45 - 50 11848000 68247 .005760 .54 .02842
50 - 55 10791000 96794 .008970 .53 .04392
55 - 60 9529000 130937 .013741 .52 .06651
60 - 65 8056000 163225 .020261 .52 .09660
65 - 70 6507000 199615 .030677 .52 .14286
70 - 75 5178000 238304 .046022 .51 .20679
75 - 80 3787000 250552 .066161 .51 .28466
80 - 85 2160000 219117 .101443 .48 .40135
85+ 1173000 227987 .194362 1.00000

8 U.S. Dept. of Commerce, Bureau of the Census, Current Population Reports,
Series P-25, No. 441 (March 19, 1970), 14-5.

b .. Dept. of Health, Education and Welfare, Public Health Service, National
Center for Health Statistics, Vital Statistics of the U.S., 1967, Vol. II, Part B, Tables
7-5, 7-114, 7-115.

2. ABRIDGED LIFE TABLE FOR THE TOTAL
UNITED STATES POPULATION, 1967

An important element of life table construction by the
present method is a;, the fraction of the last age interval
of life; the practical usefulness of the method depends
upon the invariant property of this fraction. Two exten-
sive studies have been carried out on a;. One study was
based on some 135,000 California resident deaths in 1960
collected by the California State Department of Public
Health, reported at the American Public Health Associa-
tion’s Annual Meeting in 1961 [4]. The other study was
made on a 10 percent sample of United States deaths in
1963 compiled by the National Center for Health Statis-
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tics of the Department of Health, Education, and Wel-
fare.

In both studies the exact number of dayslived by every
person who died was recorded and the mean value and
variance of days lived were computed for each age. With
the exception of the first year of life, both studies showed
that the fraction a; is subject to little variation with re-
spect to race, sex, cause of death, geographical location
and other demographic variables. Therefore, once a; is
determined for each age interval it can be used for many
populations, with revision being made every ten years.

The application of the present method is illustrated
with the construction of the life table for the total United
States population, 1967. The values of a; are given in
Column 5 of Tables 2 and 3. In Table 2 the estimate of
probability of death, §;, is computed from (1.6). The
quantities in Table 3 are computed from the respective
formulas (1.7) through (1.11).

3. ABRIDGED LIFE TABLE FOR TOTAL UNITED STATES
POPULATION, 1967

Total

Propor- Number

Fraction number Observed
bl aving tn Meiws  vimpin  Of 1t TLIPT of years ewectation
(in years) t:te;‘val) at age x; t:te;val) 1nt§rva1 %:te)r(val) beyond at age x,

1°7441 1274+ of life 107141 age x;

*g o Xy a &y 43 ay Ly Ty A
1) @ 3) %) (5) (6) (¢)] (8)
0-1 .02191 100000 2191 .09 98006 7058889 70.59
1-5 +00345 97809 337 .39 390413 6960883 71.17
5-10 .00210 97472 205 46 486806 6570470 67.41
10 - 15 .00203 97267 197 .54 485881 6083664 62.55
15 - 20 .00507 97070 492 .57 484292 5597783 57.67
20 - 25 .00641 96578 619 W49 481311 5113491 52.95
25 - 30 .00673 95959 645 .50 478182 4632180 48.27
30 - 35 .00836 95314 796 «52 474659 4153998 43.58
35 - 40 .01215 94518 1148 .54 469949 3679339 38.93
40 - 45 .01828 93370 1706 .54 462926 3209390 34.37
45 - 50 402842 91664 2605 .54 452328 2746464 29.96
50 - 55 04392 89059 3911 .53 436104 2294136 25.76
55 - 60 .06651 85148 5663 .52 412148 1858032 21.82
60 - 65 .09660 79485 7678 .52 378997 1445884 18.19
65 - 70 14286 71807 10258 .52 334415 1066887 14.86
70 - 75 +20679 61549 12728 .51 276561 732472 11.90
75 - 80 .28466 48821 13897 .51 210057 455911 9.34
80 - 85 .40135 34924 14016 .48 138178 245854 7.04

85+ 1.00000 20908 20908 107676 107676 5.15

3. THEORETICAL JUSTIFICATION

For an individual alive at (exact) age z, the probability
that he will die in interval (z;, x;+n,) is given by

gi=1-— exp{—jv tu(xi + T)dr}
0

where p(x;+7) is the mortality intensity function (force
of mortality, failure rate) at age x;+7. For derivation of
g, see [3, pp. 60-61].

The theoretical age specific death rate for the interval
(i, :+ns), denoted by m;, is defined as the ratio of the
probability ¢; to the expected duration of the interval
lived by an individual. To derive the formula for m;, de-
fine an indicator function I;(y) such that

3.1)
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Ly) =1

= 0 if he dies before z; + y.

The individual will live a time element (z;+y, z;+y-+dy)
once he survives to z;+y. The probability of surviving
from z; to x;+y is

exp {— fo y#(xi+T)JT}.

Therefore, the expectation of I;(y) is given by

ElL)] = exp{~ f e+ »dé}» .

It is clear that the expected duration of the interval
(x4 x:+n:) lived by the individual is

LME[Ii(y)]dy = fomexp {— foyﬁ(xi + T)dr} dy.

It follows from the definition that the theoretical age
specific death rate is given by

foniexp {— foyp(x,- + ‘I‘)dT} dy

Graphically, the denominator in (3.2) is the area under
the survival curve between the ordinates at z; and z;+n..

When the upper limit of the outer integral is infinity,
the denominator in (3.2) becomes the expectation of life
at age x;, denoted by e;. That is,

e; = f exp {-—f w(r; + T)d‘r} dy.
0 0

Formula (3.3) may be derived directly as follows. Let
a random variable Y, be the future life time of an indi-
vidual now aged z., so that z;+ Y, is the entire life span
of the individual. It is easy to verify that the density
function, f(y), of Y, is given by

(3.3)

w)dy = exp {— f e + r)dr}m ol

for0 <y < =,
with

sy =1 (3.5

The mathematical expectation of Y, denoted by e;, is
the expectation of life at z;; or

ei = E(Y)
= f:y exp{_ fo”“(xi + T)dr} (@ + v)dy. (3.6)

Now let u=vy, du=dy,

v = — exp{— foyu(m + T)dT}
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if the individual alive at z; survives to z; + ¥ and

dv = exp {-— fo”u(x,' + T)dT} wx: + y)dy. (3.7

Integrating (3.6) by parts gives

e; = — Y exp {-—- fyu(x,' + ‘r)d‘r}
0 0
+ f exp {— fy;u(xi + T')d‘r} dy.
0 0

The first term on the right-hand side of (3.8) vanishes
and the second terr‘;n is the same as (3.3), as required to be
shown. ‘

To derive a relation between ¢; and m; we introduce a
random variable «; denoting the fraction of the interval
(24, z:+mn;) lived by an individual who dies in the interval.
Clearly the density function of «; is

nit
- i d }
exp{ fo wlas + ndr ~u(x; + nib)dnit,

q:

0

(3.8)

gﬂi(t)dt =

0<t<1. (3.9

The quantity inside the brackets in (3.9) is the condi-
tional probability that an individual alive at x; will sur-
vive to z;+n.t if he dies in (x;, x;+ns), and u(x;+nit)dnt
is the probability that he will die in (z;+nid, zi+n.t
+dn;t). In other words, the product on the right-hand
side of (3.9) is the probability that «; will assume a value
between ¢ and {+-dt, that is the density function g.,(t)dt.
When the integral in the numerator of (3.9) is evaluated,
we have

1 nit
f exp {— f w(z; + T)dT} w(zs + nit)ndt
0 0

=1 — exp {— f :i i+ T)df} _ g, 810

1
f gai(t)dt = 1>
0

and «; is a proper random variable.

The expectation of a;, which is called the fraction of the
last age interval of life, denoted by a;, may be computed
directly:

so that

(3.11)

a; = E(az)
nit
e AR
= t ’ ,U(xi -I- mt)nidt
0 qi

(3.12)

= ?quli—exp{— fomu(xi + T)d’r}
+ niifoniexp {— foyﬂ(xi + T)dT} dy:l-
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Substituting (3.1) and (3.2) in (3.12) gives

1 1
ai=1-—+
q: nm;

. (3.13)

Equation (3.13) is solved for ¢; to give the basic rela-
tionship between ¢; and my,
nims;

= . 3.14

q;

The relationship between the theoretical values ¢; and
m; in (3.14) is exactly the same as the relationship be-
tween the observed values ¢; and M;in (1.6).

In the life table where there are £; individuals alive at
z;, let E(L;) be the expected number of years to be lived
by £; in the interval (z;, ;4n.). An individual alive at z;
will live n; years of the interval if he survives to the end
of the interval (for which the probability is 1—g.), or he
will live an expected duration asm; if he dies in the interval
(for which the probability is ¢;). It follows that

E(Lz) = ni(l - q,)& -+ ainiqiti. (315)

For the final interval (z,, and over) in the life table, the
expectation e, is directly related to the death rate, m.,. We
see from (3.1) that ¢, =1, and the death rate in (3.2) be-
comes

1
My = =—

f <>°exp {— f yu(xw + r)dr} dy o
0 0

(3.16)

so that

(3.17)

which is a well-known formula. Formulas (3.14), (3.15)
and (3.17) provide the theoretical basis for the method of
constructing current life tables described in Section 1.1
and Equations (1.6), (1.7), and (1.11).

Remark. The similarity between the definition of the
expectation of life in (3.6) and the definition of the frac-
tion of the last age interval of life in (3.12) suggests a
relation between the two quantities. The relation is as fol-
lows [cf. 3, p. 237]:

w—1
ei=ami+ D [(1 — a)n; + ajmsalpijy  (3.18)

where a,n,=e, and p;;, the probability of surviving the
interval (z;, z;), is given by

Di; = €Xp {— f xiu(r)dr} . (3.19)

Ty

To prove (3.18), we start with (3.6) and write
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© v
e; = f y exp{— f w(x: + T)dT} w(@: + y)dy
0 0

zjH1—24

= Z;:z Y

i~

exp {— [ utai+ r>dr} w(a: + y)dy

(3.20)

with ,.1= «. Each of the integrals in (3.20), when evalu-

ated and simplified, becomes

zj+1—as y
f Y exp {— f w(s + T)dr} p(z: + y)dy
0

T~ (3.21)
= (z; — @i + an)(Psj — Piig1)
for j=1, - - -, w—1;and
w y
Y exp 4 — x; + d} z; + y)d
f L p{= [ utoi+ Aarf e+ iy .

= (Ty — T + €w)Piny forj = w.
Substituting (3.21) and (3.22) in (3.20) and simplifying

the resulting expression, we recover (3.18).

[Received August 1971. Revised February 1972.]
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