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COMPETING RISKS AND CONDITIONAL PROBABILITIES

CuIN Long CHIANG

Division of Biostatistics, University of California, Berkeley, California 94720, U.S.A.

SUMMARY

This paper is in response to an article by Kimball [1969] on evaluation of the partial
crude probabilities in the theory of competing risks. Contrary to Kimball’s conclusions,
it is shown that the general model of competing risks under the proportionality assumption
satisfies the criteria of internal consistency and reasonableness in describing survival and
death processes, and that the conditional probability suggested as a substitute for the
partial crude probability violates these criteria.

1. INTRODUCTION

In a recent article in Biometrics, Kimball [1969] discussed extensively
the partial crude probability of death in the theory of competing risks and
compared it with a conditional probability. He labelled the two probabilities
Model I and Model II, respectively, and made his appraisal of the two models
according to three criteria: (1) internal consistency, (2) simplicity, and
(3) reasonableness. I have followed Professor Kimball’s criteria and used
his numerical example to evaluate the two models but arrived at quite
different conclusions.

2. THE TWO MODELS

In order to appreciate the argument in Kimball’s article and the discussion
presented below, a brief description of the two models is desirable. Detailed
discussions on competing risks may be found in Chiang [1961] and [1968].

Model I. Suppose that r risks of death, denoted by R, , --- , R, , are
acting simultaneously on an individual. For each risk, R; , there is a mor-
tality intensity function u(f; 7) (also known as force of mortality, hazard
function, failure rate). If these risks are assumed to act independently, then
it can be shown that the sum

p 1) + o F o) = u) ™

is the total mortality intensity function. For an individual alive at age =z,
we have p,(g.) the probability of surviving (dying in) the interval (z, z + 1),
with p, + ¢, = 1. When a mortality study concerns a specific cause of death,
there are three types of probabilities for an individual alive at z:

(1) the crude probability, Q:(z, x + 1) (or Q,; for simplicity), that he will
die in the interval (z, z + 1) from cause R; in the presence of all other risks;
(2) the net probability, q.(z, z 4+ 1) (or g.), that he will die in (z, z + 1)
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768 BIOMETRICS, DECEMBER 1970

if R, is the only operating risk; or conversely, the net probability, g ;(x, z + 1)
(or g,.;), of his dying in (z, z + 1) if R, is eliminated as a risk of death; and
(3) the partial crude probability, Q;..(x, x + 1) (or Q,;.,), that he will die in
interval (z, x + 1) from R, if R, is eliminated as a risk of death. Each of these
probabilities serves a definite purpose in a cause-specific mortality analysis,
and can be expressed in terms of the intensity functions. Thus

D. = exp [— f:ﬂ w(® dt] y @ =1—exp [— f:ﬂ u(t) dt:l , @

¢%=[H@mP£ﬁmwamwfmi=ann @)

WithQ:l + e + er = q:,a'nd
z+1
1— exp [— [ wo dt] ,

G =1—emp {-— [ w0 — w0 dt},

Q= [ [ew{= [ 1) = utrs 01 ar} |t 0
for 1=2,..-,r. 5)

Consider, for example, the partial crude probability @Q,;, . In order for an
individual alive at 2 to die in the interval (z, ¢ 4 1) from risk B; when R, is
eliminated, he must (i) survive to a point ¢ with the probability
exp {—J: [u(r) — u(r; 1)] dr} and (ii) die from R, in interval (¢, ¢ + df) with
the probability u(t; 7) dt; or, taking the two events together,

[exp {—— f: [u(®) — u(r; 1] d‘l‘}]u(t; 7)dt for z<t<z+41. (6)

Integrating (6) over all possible values of ¢, for z < ¢ < z + 1, yields (5).
The other formulae can be derived in a similar way. Thus the probabilities
in (2), (3), (4), and (5) are mathematical representations of the corresponding
process taking place continuously over a time interval in question. If for
each risk R, and within the time interval (z, z + 1) the ratio

ult; ) /u@) = c. fore<tLz+1, 1=1 -7, )

is assumed independent of time ¢, but is a function of the interval (z, z + 1)
and risk R; , then the partial erude probability is given by

Qui = [ — i, ®
zl

q: —
or, in terms of the intensity functions,

o= i [1- e {- [Mp0 - wmaf] @

w(®) — u@; 1)
The assumption in (7) is also known as the ‘proportionality assumption.’

q:u'
@
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When the intensity functions are constant in the interval (z, z + 1), with
u(®) = u(@) and u@; 7) = u(z; 9), forxz < ¢ < z + 1, the probability Q. .,
has the expression:

— p(z; 9) . p-le@) =a(ziD)])

in.l - I-‘(x) — ﬂ(x; 1) [1 € ] (10)
Model II. The approach in Model II is quite different. Here one is con-
cerned only with the probability of dying in an interval ¢, (denoted by S
in Kimball’s original notation) and the probability of dying from a particular
cause Q,; (p; in the original notation). The main feature of Model II is the
conditional probability that an individual alive at z will die from R; in

(z, z + 1) given that he does not die from R, , or

@) = Qu/(1 — Qu). (11)
We shall now discuss the two models in terms of the criteria in Kimball’s
paper.

3. INTERNAL CONSISTENCY

After having examined ‘Model I in terms of the criteria of desirability
set forth’ in his article, Kimball stated that ‘It is certainly internally con-
sistent.” This may be demonstrated as follows: Consider an individual alive
at time z = 0 and the probability of his dying from risk R; in the time in-
terval (0, 2). Since the interval (0, 2) may be decomposed into two adjoining
intervals (0, 1) and (1, 2), we have the equation

Q:(0,2) = Q:0,1) + p(0, )E:(1, 2) (12)

for the crude probability, where (0, 1), (0, 2), and (1, 2) indicate the intervals
in question and p(0, 1) is the probability of surviving the interval (0, 1).
When risk R, is eliminated, the corresponding equations are

2.1(0,2) = ¢.(0,1) + [1 — ¢..(0, 1)]g..(1, 2) (13)
for the net probability, and
Q:.:(0,2) = Q:.,(0,1) + [1 — ¢.,(0, D]Q:..(1, 2) (14)

for the partial crude probability. The quantity [1 — ¢.,(0, 1)] is the net
probability of surviving the interval (0, 1) when R, is eliminated. To verify
(14), we substitute formula (5) for the partial crude probabilities and (4)
for the net probability ¢.,(0, 1) in (14) and simplify the resulting expression
to find

f: [exp {— ‘/: (u(r) — u(r; 1] d‘r}]u(t; %) dt
= fol [eXp {_' fot [u(r) = u(r; D] dT}]u(t; i) dt

i f [exp {— [ 1 = utr; 10 df}]u(t;i) a. (15
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The two terms on the right-hand side of (15) have the same integrand and
can be combined to give the expression on the left-hand side, proving (14).
Equations (12) and (13) can be verified similarly. Therefore, Model I meets
the eriterion of internal consistency.

A similar statement, however, cannot be made for Model II. The con-
ditional probability (p!) violates this criterion. For this conditional prob-
ability, the equation corresponding to (12) is

Qi(O) 2) — Qi(O) 1) P(O, 1) Qi(l’ 2) . (16)
1 - QI(O) 2) 1- Ql(Oy 1) 1 - QI(O: 1) 1- Q1(17 2)
The numbers inside ( ) again indicate the time intervals involved. Equation
(16) is not true in general. Take, for example, the case where @;(0,1)=
Q:(1,2) = Qfori=1,---,r,s0othat p(0, 1) = p = 1 — rQ. the right-hand
side of (16) becomes
Q pQ _ Q1 — Q) +pQ

1-Q (1-9r -
while the left-hand side of (16), after the substitution of (12), becomes

Q+pQ _ Q1 — Q) +pQ
1—Q—pQ a-e

+

+

+

Qp* QU — Q) + pQ

> . 17
(—Q0-Q-p@° 0-0Q a7
Therefore Model II does not meet the criterion of internal consistency set
forth in this section. See also Pike [1970]

4, SIMPLICITY

Kimball was correct in saying that the conditional probability (p/) in
Model IT is simpler to compute than the partial crude probability Q.. , in
Model I, but neither is @,;.; too complex. The important point, however, is
that conceptually they are different probabilities, and one cannot be substi-
tuted for the other. Further, the simplicity of Model I seems to have been
achieved with an unusual approach. In introducing the conditional prob-
ability (p/) in place of the partial crude probability @.;., , one seems to have
collapsed the time interval to a single point and simply ignored the fact that
survival or death of an individual in a time interval is the outcome of a
continuous process. Instead of observing an individual continuously over
the interval, one is in effect drawing a ball from an urn once to decide if the
individual dies from a specific cause or survives the interval. This approach is
not realistic. Of course, we could reintroduce the concept of continuous process
in Model IT to make the probabilities more meaningful analytically, but
then we would probably find ourselves back in Model I. In this connection,
Kimball was also critical about the assumption of constant forces of mor-
tality made over a time interval, and implied that this assumption was not
made in Model II. But after we have collapsed an entire time interval to a
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single point in Model II, there is no room for such an assumption. Certainly,
using a single point to describe a continuous process is a much more bold
undertaking than making an assumption of constant forces of mortality
over the interval.

5. REASONABLENESS

In his investigation of ‘reasonableness’ of Model I, Kimball used the
partial crude probability Q,.., for illustration. According to Kimball, a
model should be reconcilable ‘with the fact that when only two diseases are
present ab nitio, the crude probability of death from R; decreases as u,
increases given u; constant.” This criterion is quite reasonable. When his
numerical results showed the opposite, Kimball ‘was led to suspect the
proportionality assumption’ in (7). Further, when ‘Q,,, and Q,;., vary di-
rectly, not inversely, when R, is eliminated’ in his example, Kimball again
attributed the anomaly to the proportionality assumption. Actually, the
contradictory results were not due to the proportionality assumption but
rather because of differences between the crude probabilities Q,; and the
intensity functions u(z; 7). In the following paragraphs we shall show (a)
that Model I satisfies his criterion of ‘reasonableness’ quoted above; (b) that
his numerical example in fact supports the proportionality assumption in (7);
and (c) the source of diserepancy between Kimball’s conclusions and the
present findings.

(a) Let us recall the formula for the partial crude probability:

_ M(IIJ, 3) - o lu@) —u(zit
Qz3.'l - /J'(x) — ,U(fl?§ 1) [1 e { e )’]' (10)

In the case of r = 3 risks of death, u(z) — u(z; 1) = u(z; 2) + w(z; 3) and
(10) may be rewritten as

- p(z; 3) k@) +uz3)]
Qor = L) + D ¢ ) (10%)
According to Kimball’s criterion, the right-hand side of (10a) should decrease
monotonically as u(z; 2) increases for every fixed value of u(z; 3). This can
be proven as follows. Let u = u(z; 2) + u(z; 3) and

fw) = p7'(1 — ™).

We need to prove that f(u) is a monotonically decreasing function of u, or
the derivative f'(u) is negative, for 0 < u < «. Easy computations give the
derivative

—n
f’(u)=—-i7-(e“—l—y)<0 for 0 <pu< o, (18)

since ¢, and u® and (¢¥ — 1 — u) are all positive, whatever may be the
positive value u. Therefore Model I under the proportionality assumption
actually complies with Kimball’s criterion.
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TABLE 1

COMPUTATION OF THE PARTIAL CRUDE PROBABILITIES Q2.1 AND Q3.1
FROM MORTALITY INTENSITY FUNCTIONS u(Z; %)

Mortality intensity functions Partial crude probabilities*
wx;1) u(x;2) p(x;3) Q2.1 %31
(1) (2) (3) (4) (5)
.01 .01 .30 .0086 .2580
.01 .05 .30 +0422 .2531
.01 .10 .30 .0824 L2473
.01 .25 .30 .1923 .2308
.01 .50 .30 L3442 .2065
.05 .01 .30 ,0086 .2580
.05 .05 .30 L0422 .2531
.05 .10 .30 .0824 L2473
.05 .25 .30 .1923 .2308
.05 .50 .30 3442 .2065
.10 .01 .30 . 0086 .2580
.10 .05 .30 L0422 .2531
.10 .10 .30 .0824 L2473
.10 .25 .30 L1923 .2308
.10 .50 .30 L3442 .2065

* Computed from equation (10).

The relationship between the partial crude probabilities Q,..; and Q.s.;
may be derived from (10a), namely

Qu2.1/Qusr = n(x; 2)/u(z; 3). (19)

Thus formula (19) also is consistent with Kimball’s keen observation that
Q.2.1 and Q,5., should vary inversely.

(b) Numerical verification of the above theoretical results is given in
Table 1. In columns (1), (2), and (3) are values of the mortality intensity
functions u(x; 1), u(x; 2), and u(zx; 3), with u(z; 3) = 0.30 being constant in
all the 15 cases. For these values of the intensity functions, the corresponding
partial crude probabilities have been computed from formula (10). Column (5)
shows that the partial crude probability Q.,., of dying from risk R, ‘decreases
as u(z; 2) increases given u(z; 3) constant,” again consistent with Kimball’s
criterion. Furthermore, Q,,, and Q,s; , in columns (4) and (5) do vary in-
versely, as prescribed by Kimball.

(¢) The remaining question is how did Kimball use the same numerical
example but arrive at contradictory conclusions. The answer is that Kimball’s
conclusion concerning the intensity functions u(x; 7) was based on the varia-
tion of the ecrude probabilities Q,; rather than u(z; 7). In the case of constant
intensity functions assumed in the example, the probabilities @,; and the
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intensity functions u(z; 2) have the following relationships

Q=200 — ) and we) =~ ma-g), @0
where In stands for the natural logarithm. When several sets of values are
considered, the form of variation of @,; may be quite different from the
form of variation of u(z; 7). To be specific, let us take the first five cases in
Kimball’s example with ., = .01,..05, .10, .25, and .50, respectively. Table 2
shows that although Q,; = .01 and Q,; = .30 are constant in all 5 cases, the
corresponding intensity functions w(z; 1) and u(x; 3) are not constant but
rather they increase with the increasing values of @, . Generally, when @,
are kept constant, for 7 £ 2;7 = 1, 3, --- , r, the corresponding intensity
function u(z; 7) increases with increasing values of Q,, , or with increasing
values of ¢, (since ¢. = Q,; + --+ + Q.,). In other words, the function

hg:) = —¢;" In (1 — ¢.) 1)

in the second equation of (20) is a monotonically increasing function of ¢, .
Taking the derivative of %(g,) with respect to ¢, yields

] T )

n=2 n

"o = L _ _
h(g.) = % l:ln A=g)+72 Py
since g, lies in the interval 0 < ¢, < 1. The last expression in (22) is always
positive for positive values of ¢, . Hence the function A(qg,) increases with ¢ ,
and u(z; 7) increases with @Q,, , as required to be shown.

Kimball used @,; and formula (8) to compute the partial crude probability
Q.s., and observed ‘an ¢ncrease in the probability of death from R; (i.e. Q.a.1)
as the probability of death from cause R, is increased.” Based on this observa-
tion he arrived at his conclusions regarding Model I under proportionality
assumption. As we can see from Table 2 now that the increasing values of
the partial crude probability @,s., are associated with the increasing values
of u(z; 3), this is not a surprising phenomenon.

It may be interesting to note in Kimball’s computations (reproduced in
columns (7) and (8), Table 2) that the conditional probability (p4) in Model
II does not decrease (but remains constant) as @,, increases given Q,; con-
stant; and neither do (pj) and (pj) vary inversely. Thus Model II seems to
have violated the criterion of ‘reasonableness.’

It should be emphasized that this paper is not intended to be eritical
of Kimball’s fine work. Certainly the discussion in this section does not imply
in any way that Kimball was unaware of the difference between the prob-
abilities @,; and the intensity function u(zr; 7). Kimball was more concerned
with the biological application than mathematical properties of the models
in his paper. In using the probability rather than the intensity function in his
evaluation of the two models, Kimball in effect sacrificed his statistical per-
fection for practical application. Such an attitude is quite plausible, and we
all have to have it at times. Unfortunately, in this case, unexpected con-
tradictory results have crept in.
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6. INDEPENDENCE OF RISKS

Kimball has also pointed out in his paper, as many other authors have
done in the past, the independence assumption regarding the risks R, , - - - , R,
made in Model I as shown in equation (1). Under this assumption, the risks
act independently from one another on every individual exposed to these
risks. Actually this is much stronger an assumption than necessary for the
formulation of competing risks. It was made more for the simplicity of
formulae than anything else. To clarify this, let us suppose that the inde-
pendence assumption is not true and that there is an ‘interaction’ between
two risks, say R; (tuberculosis) and R; (pneumonia). How to evaluate the
crude probability of dying from pneumonia if tuberculosis is removed as a
cause of death in this situation? The problem can be resolved by creating
another risk, say R, (pneumonia and tuberculosis). When tuberculosis is
removed as a cause of death, the partial ecrude probability of dying in interval
(x, * + 1) from pneumonia is Q,;.,, rather than @Q,;; . The probability
Q.3.12 can be computed from the probabilities p. , ¢, and the crude probabilities
Q.. . Of course, one can visualize other situations for which more complex
solutions will be necessary. Incidentally, the independence assumption is
also implied in the multinomial distribution in Model II; without this as-
sumption, we will have difficulties in justifying that Q.; are multinomial
probabilities.

To be quite frank, the entire idea of limiting our attention to death is
not realistic. We must recognize the fact that the death of an individual is
usually preceded by an illness (condition, disorder). It is not realistic to
speak of a person’s chance of dying from tuberculosis when he is not even
affected with the disease. Also competition of risks of death depends on the
health condition of an individual: a person affected with a disease (say,
cardiovascular-renal (cvr) diseases) probably has a probability of dying of a
second disease different from a person who is not affected with cvr. There-
fore, a mortality study is incomplete unless illness is taken into consideration.
Illness and death are distinct and different types of events. Illnesses are
potentially concurrent, repetitive, and reversible, whereas death is an irre-
versible or absorbing state. The study of illness adds a new dimension and a
new complexity to the general problem of mortality, but it makes the under-
lying assumption regarding mortality intensity functions more realistic and
more reasonable. A detailed exploration of the illness processes is beyond the
domain of the present note. The reader may refer to Fix and Neyman [1951]
for early work and to Chiang ([1968] chapters 4 & 5) for a discussion on the
illness process.

RISQUES COMPETITIFS ET PROBABILITES CONDITIONNELLES
RESUME

Cet article est écrit en réponse 4 un article de Kimball [1969] sur I’évaluation des
probabilités brutes partielles dans la théorie des risques compétitifs. Contrairement aux
conclusions de Kimball on montre que le modéle général de risques compétitifs, sous
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I’hypothése de proportionnalité, satisfait les critéres de consistance interne et est un modéle
raisonnable pour décrire les processus de survie et de mort, et que les probabilités con-
ditionnelles suggérées comme substituts des probabilités brutes partielles n’obéissent pas a
ces critéres.

REFERENCES

Chiang, C. L. [1961]. On the probability of death from specific causes in the presence of
competing risks. Fourth Berkeley Symp. IV, 169-80.

Chiang, C. L. [1968]. Introduction to Stochastic Processes in Biostatistics. Wiley, New York.

Fix, E. and Neyman, J. [1951]. A simple stochastic model of recovery, relapse, death and
loss of patients. Human Biol. 23, 205-41.

Kimball, A. W. [1969]. Models for the estimation of competing risks from grouped data.
Biomeirics 25, 329-37.

Pike, M. C. [1970]. A note on Kimball’s paper ‘Models for the estimation of competing
risks from grouped data.” Biometrics 26, 579-81.

Received December 1969, Revised July 1970



	Article Contents
	p.767
	p.768
	p.769
	p.770
	p.771
	p.772
	p.773
	p.774
	p.775
	p.776

	Issue Table of Contents
	Biometrics, Vol. 26, No. 4 (Dec., 1970), pp. i-ii+613-885+iii-xii+i-xxxiii
	Volume Information [pp.i-xxxiii]
	Front Matter [pp.i-ii]
	The Choice and Use of Tests for the Independence of Two Sets of Variates [pp.613-624]
	Selection Index Estimation from Partial Multivariate Normal Data [pp.625-639]
	Calculation of Expected Mean Squares by the Abbreviated Doolittle and Square Root Methods [pp.641-655]
	A Comparison of Variances of Some Estimators in the Balanced Incomplete Block (BIB) Variance Components Model [pp.657-669]
	Significance Test for Grubbs's Estimators [pp.671-676]
	Robust Procedures for Variance Component Problems Using the Jackknife [pp.677-686]
	A Class of Permutational and Multinomial Tests Arising in Epidemiological Research [pp.687-700]
	On Some Methods of Drawing Inferences about Antigen Systems from Serological Data [pp.701-711]
	Evaluation of a Quantal Response Model with Estimated Concentrations [pp.713-722]
	On the Question of an Infectious Process in the Origin of Childhood Leukemia [pp.723-737]
	A Markovian Sampling Policy Applied to Water Quality Monitoring of Streams [pp.739-747]
	Statistical Models for Animal Survival Time in Mouse Lymphoma [pp.749-766]
	Competing Risks and Conditional Probabilities [pp.767-776]
	The Simulated Population Method of Analysis of Animal Painting Experiments in Cancer Research [pp.777-785]
	On Double-Stage Estimation of the Mean Using Prior Knowledge [pp.787-800]
	The Log-Zero-Poisson Distribution [pp.801-813]
	A Method of Exponential Curve Fitting by Numerical Integration [pp.815-821]
	On Component Analysis of Factorial and Fractional Factorial Experiments [pp.823-833]
	Queries and Notes
	290. Note: Regression with Correlated Residuals: An Example from Competition Experiments [pp.835-840]
	291. Note: The Equivalence of Different Sets of Stability Conditions for Multiple Allelic Systems [pp.840-845]
	292. Note: A Problem of Optimum Stratification [pp.845-847]
	293. Note: An Alternative Test for the Symmetric Folded Binomial Distribution [pp.848-851]
	294. Note: The Comparison of Two Poisson-Distributed Observations [pp.851-854]
	295. Note: The Use of Order Statistics with Selected Records [pp.854-859]

	Corrections: A New Test of Association for Continuous Variables [p.860]
	Corrections: Analysis of Growth and Dose Response Curves [p.860]
	Corrections: Analysis of Categorical Data by Linear Models [p.860]
	Corrections: The Sampling Variance of the Correlation Coefficients Estimated in Genetic Experiments [p.860]
	Correspondence
	Model I or Model II in Competing Risk Analysis [pp.861-863]

	Book Reviews
	untitled [p.864]
	untitled [pp.864-865]
	untitled [p.865]
	untitled [pp.866-867]
	untitled [pp.867-868]
	untitled [pp.868-870]
	untitled [p.870]
	untitled [p.870]
	untitled [p.871]
	untitled [p.871]
	untitled [pp.871-872]
	[Books Received] [pp.872-873]

	The Biometric Society [pp.874-882]
	News and Announcements [pp.883-885]
	Back Matter [pp.iii-xii]



