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A STOCHASTIC STUDY OF THE LIFE TABLE 
AND ITS APPLICATIONS 

III. THE FOLLOW-UP STUDY WITH THE CONSIDERATION 
OF COMPETING RISKS"'2 

CHIN LONG CHIANG 

University of California, Berkeley, California, U.S.A. 

INTRODUCTION 

Statistical studies falling into the general category of life testing 
and medical follow-up have as their common immediate objective the 
estimation of life expectation and survival rates for a defined population 
at risk. Usually such a study must be brought to a close before all 
the information on survival (of patients, electric bulbs, automobiles, 
etc.) is complete, and thus the study is said to be truncated. Whether 
the investigation is basically concerned with life testing or with medical 
follow-up, the nature of the problem is the same, although differences 
in sample size may call for different approaches. Thus methods devel- 
oped for life testing may be applied to follow-up studies when the under- 
lying conditions are met, and vice versa. In this study cancer survival 
data utilizing a large sample will be used as illustrative material, and 
we shall accordingly use the terminology of the medical follow-up study 
as a matter of convenience. 

We are concerned then with a typical follow-up study in which a 
group of individuals with some common morbidity experience are 
followed from a well-defined zero point, such as date of hospital admis- 
sion. Perhaps we wish to evaluate a certain therapeutic measure by 
comparing the expectation of life and survival rates of treated and 
untreated patients. Or we may wish to compare the expectation of 
life of treated and presumably cured patients with that of normal 
persons. When the period of observation is ended, there will usually 
remain a number of individuals on whom the mortality data in a typical 
study will be incomplete. Of first importance among these are the 

'This study was completed while the author was a Special Research Fellow of the National Heart 
Institute, Public Health Service, U. S. Department of Health, Education and Welfare. 

2Parts of this paper were presented at the joint meeting of the American Statistical Association, 
the Institute of Mathematical Statistics, and the Biometric Society in Washington, D. C., December 
29, 1959. 
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persons still alive at the close of the study. Secondly, if the investi- 
gation is concerned with mortality from a specific cause, the necessary 
information is incomplete and unavailable for patients who died from 
other causes. In addition, there will usually be a third group of patients 
who were "lost" to the study because of follow-up failure. These three 
groups present a number of statistical problems in the estimation of 
the expectation of life and survival rates. Many significant studies 
have been made along these lines, among them the early works of 
Greenwood [13] and Karn [17], the actuarial method of Berkson and 
Gage [1], a stochastic model of competing risks by Fix and Neyman [12], 
the parametric studies by Berkson and Gage [2] and Boag [3], the 
non-parametric approach of Kaplan and Meier [16], studies on life 
testing by Epstein and Soble [10] and other interesting works by Dorn 
[8], Elveback [9], Fix [11], Harris, Meier and Tukey [14], and Littell [18]. 

The purpose of this paper is to adapt the biometric functions of 
the life table to the special conditions of the follow-up study. Part I 
considers the general type of study in which survival experience is 
investigated without specification as to the cause of death. An exact 
formula will be presented for the maximum likelihood estimator of 
the probability of death and its asymptotic variance. Special attention 
will be given to a method for computing the observed expectation of 
life in truncated studies and the corresponding variance. In Part II 
the discussion will be extended to apply to studies of mortality from 
a specific cause in the presence of competing risks. The relations 
between net,, crude, and partial crude probabilities will be reviewed 
and formulas developed for their estimators and the corresponding 
variances and covariances. In the last part of the paper, data obtained 
from the California State Department of Public Health will be used 
to illustrate the application of the theoretical matter presented in 
Parts I and II. 

Throughout this paper we shall assume that all individuals in a 
sample are subject to the same force of mortality (or, instantaneous 
death probability), and that the probability of dying for one individual 
is not influenced by the death of any other individual in the group. 
This is to say that the life-times of all individuals in a group are treated 
as independent and identically distributed random variables. We shall 
also assume in Part I that there will be no individuals lost to observation 
because of follow-up failure. The problem of lost cases will be con- 
sidered in Part II (Remark 3). 

For simplicity of presentation, a constant time interval (year) will 
be used. However, the methods developed in this paper apply equally 
well to cases where intervals are of different lengths; although the ob- 
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served expectation of life will have a slightly different form (Cf. [51 
and [6]). 

The probability symbols used in this paper are listed below for 
convenient reference. Considering death without specification to cause: 

Pr [an individual alive at time x will survive the interval 
(x, X + 1)], 

qx = Pr [an individual alive at time x will die in the interval 
(x, x + 1)], 

and obviously p, + q, = 1. When death is studied by cause, or risk, 
we have the net probabilities: 

qxk = Pr [an individual alive at time x will die in the interval 
(x, x + 1) if risk Rk is the only acting risk of death in the 
population], 

qx.l = Pr [an individual alive at time x will die in the interval 
(x, x + 1) if risk Rk is eliminated from the population]; 

the crude probability: 

QX, = Pr [an individual alive at time x will die from cause Rk in 
the interval (x, x + 1), in the presence of all other risks 
in the population]; 

and the partial crude probabilities: 

Qzk,.1 = Pr [an individual alive at time x will die from cause R. 
in the interval (x, x + 1), when only risk R1 is eliminated 
from the population], 

Qxk.12 =Pr [an individual alive at time x will die from cause R. 
in the interval (x, x + 1), when risks R1 and R2 are elimi- 
nated from the population]. 

PART I. THE ESTIMATION OF THE PROBABILITY OF SURVIVAL 
AND EXPECTATION OF LIFE 

1.1. The basic random variables and their joint probability function. 

Consider a follow-up study conducted over a period of y years. A 
total of No individuals are accepted into the study at any time prior 
to the closing date' and are observed until death or until the study is 
terminated, whichever comes first. If we set the time of entrance into 

3Although we have used the common closing date method to illustrate the techniques developed 
in this paper, it should be pointed out that these techniques are equally applicable to the date of last 
reporting method. 
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the study as the common point of origin for all No individuals, then 
No is taken to be the number with which the study began, or the number 
of individuals alive at time zero. Let x be the exact number of years 
since entrance into the study, and N. the number of individuals who 
survive to the common point x. Clearly, Nx may also be defined as 
the number of survivors who entered the study at least x years before 
its closing date. The number of survivors will decrease as x increases, 
not only because of deaths but also because of withdrawals due to the 
closing of the study. We will describe this process of depletion system- 
atically for the typical interval (x, x + 1) with reference to Table i.4 

At time x, the N. survivors who begin the interval can be divided 
into two mutually exclusive groups according to their date of entrance 
into the study. A group of m patients entered the study more than 
x + 1 years before the closing date of the study. Out of these, 6 patients 
will die in the interval and s will survive to begin the next interval. 
The second group of n patients entered the study less than x + 1 
years before its termination, and hence are all counted as withdrawals 

TABLE 1 
DISTRIBUTION OF N- PATIENTS ACCORDING TO WITHDRAWAL STATUS, SURVIVAL 

STATUS, AND CAUSE OF DEATH IN THE INTERVAL (X, X + 1)* 

Withdrawal status in the interval 

Survival status and Total number Number not due Number due for 
cause of death of patients for withdrawal** withdrawal*** 

Total N. m n 
Survivors s + w s w 
Deaths, all causes D 

Cause of death 

R2 D2 a 32 6 

R, D, cs 

*The subscript x, which should be added to each of the symbols in the table. is deleted to simplify 
formulas in the text. 

**Patients admitted to the study more than (x + 1) years before closing date. 
***Patients admitted to the study less than (x + 1) years but more than x years before closing 

date. 

4The second part of Table 1, death by cause, was included for use in Part II of this paper. 



STUDY OF THE LIFE TABLE 61 

in the interval (x, x + 1), whether or not they survive, because for 
them the closing date precedes their (x + l)-anniversary date. Let 
us say that e xvill die before the closing date and w xvill survive to with- 
draw alive. 

Thus s, 6, w, and e are the basic random variables (upper part of 
Table 1) whose distribution depends on the force of mortality. The 
values that these random variables take on will be used to estimate the 
probability px that a patient will survive the interval (x, x + 1), and 
its complement q, , the probability of death in the interval. The first 
step is to derive the joint probability function of these random variables. 

Let fl , a function of time T, be the force of mortality acting on 
each individual in the study, such that 

r AT + o(AT) = Pr [an individual alive at time T will die in the 
interval (T, r + AT)], for T > 0, 

where AT stands for an infinitesimal time interval and o(AT) a quantity 
of smaller order of magnitude than AT. It can be shown [5] that 

X I { t 

pl() = exp {-fI d} 

is the probability that an individual alive at x will survive to (x + t). 
If we assume a constant force of mortality with in the interval (x, x + 1), 
Say M = Hz depending only on x, for x < X x + 1, then the I)roba- 
b)ility of survivilig the interval is given by' 

PX C 

For the subinterval (x, x + t), with t between zero and one, we have 

p(1) = , pX for 0 < t < 1. 

Consider first the group of m individuals, each of whom has a constant 
probability px of surviving and a probability qx = 1 - px of dying in 
the interval (x, x + 1). We have then a typical binomial case with 
the probability function: 

' = -p * (1) 

The expected number of survivors and deaths are given, respectively, by 

E(s I m) = mpx, and E(a I m) = m(1-p). (2) 

The distribution of the random variables in the group due for with- 
drawal is not so straightforward. Making the assumption that, on 

'When the assumption of a constant force of mortality is strong for an interval where the death 
rate is high, one may subdivide the interval and estimate the probability for each subinterval separately. 
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the average, each of the m individuals will withdraw at the point x + 1, 
the probability of withdrawing alive is equal to p"', and the probability 
of dying before the time of withdrawal (1 -_p /2)* Again we have a 
binomial case with the probability function6 

f2 = p (1 -_ P (3) 

The expected number of survivors and deaths are given, respectively, by 

E(w I n) = npl2, and E(E I n) = n(1-p (4) 

Since the Nx individuals are divided at time x into two distinctly different 
groups according to their withdrawal status, the joint probability of 
all the random variables is the product of the two probability functions 
(1) and (3), 

flf2 = PX s 2(1 - p )8(1 - (5) 

1.2. The maximum likelihood estimators and their asymptotic variances. 

We are now in a position to use the maximum likelihood principle 
to obtain the estimator of the probability px and its complement qz, 
and the asymptotic variance. Taking the logarithm of the joint proba- 
bility function (5), we have the likelihood function 

L (s + 1w) ln px + 8 ln (1 - px) + e in (1 -p1X2 (6) 

Differentiating (6) with respect to px and setting the derivative equal 
to zero give the likelihood equation 

(s + JW)p- _(1 _--1 -2 P1/2(l(1 -_ Al/2>) = 0, 

which implies 

(NX- 2 x + 2 -(S + 1 W) =0 (7) 

a quadratic equation in PX/2 Since P./2 cannot take on negative values, 
we have the estimators, 

A ?- + VE + 4(Nx - 4n)(s + 12W)12 

2(Nx- n) j (8) 

6A more plausible assumption perhaps is that a withdrawal takes place randomly throughout the 
interval. However, under this assumption the probability of withdrawing alive is 

e- (T-) Ax~ dr = -(1 - px)/ln px 

and the resulting maximum likelihood equation is too unwieldy. When the probability of survival is 
not too low, the above expression and pxi are close to each other. For px = .70, for example, pxi = .837 
and -(1 - px)/ln px = .840. In the case of extremely high mortality, one should subdivide the 
interval. 
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and 

fi 2 1 _ 
2A * (9) 

The maximum likelihood estimator (8) is not unbiased; however, it is 
consistent in the sense that when the random variables s, w, and d are 
replaced with their respective expectations as given by (2) and (4), 
the resulting expression is identical with the probability p. That is, 

r-l -p) + (1-p2)2 + 4(N, - 1 n)(mp,+ + p2 pX_ 
) 

2(Nx - 2?n) 

To derive the formula for the asymptotic variance of the estimator 
pX, (or qX), we find the expectation of the second derivative of (6): 

E( L) jM + (10) 

w here 

AfI = m + n(l +PY2 1 (11) 

and 

7r= 4( +1/2p 2)3/2 (1 pl/2)* (12) 

According to the theorem on the asymptotic efficiency of an estimator, 
the asymptotic variance of AX (or AX) is given by the negative inverse 
of the expectation (10), 

Spa= 1/[ Mx/(pxqx) + w] (13) 

Usually the quantity r in the denominator of (13) will be small in 
comparison with the preceding term, and may be neglected to give the 
approximate formula 

PL = pzqx/MX . (14) 

The sample variance of AX (or 6x) is obtained by substituting (8) and 
(9) in (13) or (14). 

Remark 1: The problem discussed here relates to the study in 
which NX is large. If N. is small, one may use the exact time of death 
of each of the D patients and the exact time of withdrawal of each of 
the w patients to estimate the probability p, . In this case, there will 
be N. individual observations within the interval (x, x + 1), and ob- 
viously it is unnecessary to consider the N. patients as two distinct 
groups according to their withdrawal status. Let t; < 1 be the time 
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of death within the interval (x, x + 1) of the i-th death, for i = 1, D, 
with a probability 

e t ixdti, for i = 1, iD; 

let Tj < 1 be the time of withdrawal alive of the j-th withdrawal, for 
j =1, * e* W, with a probability 

e Tip, for j=1, ,w; 

then the joint probability function of all the N, observations becomes 
D ' 

D w (s+ Sti+ 2Ti) D 

p5 HI (e', d) Ti) (-in px)Dp ;=i I dtA 

Maximizing the last expression with respect to px gives the maximum- 
likelihood estimator (cf. [18]), 

P = exp [ D/(s + A t + , T) 

1.3. Observed expectation of life. 

A life table for the follow-up subjects can be readily constructed, 
once AX and A, have been determined from (8) and (9) for each interval 
of the study period. Let an arbitrary number lo denote the number 
of patients admitted to the study. The number 1, who survive to the 
exact time x is computed from the formula lx = loA" A, 

. 
.. , and 

Ix/lo = Ol 
. is the estimated x-year survival rate. For a patient 

alive at time x, the observed expectation of life can be expressed by 
the equation: 

4 = a. + c.+1 A. + C.+2PxpA+1 + 

+ c" XPx +1 Pv-1 + cv + lqpXP+1 ... v + , (15) 

where ax is the average time lived in the interval (x, x + 1) by the 
patients who die in that interval, and c, = 1 - a, + ax . If, in a 
study covering a period of y years, there are no survivors remaining 
from the patients who entered the study in its first year, PY_' will 
be zero, and ex can be computed readily from the collected data. In 
the typical study, however, there will be w,-, survivors who entered 
the study in its first year and withdraw alive in the final interval 
(y - 1, y). In such cases, it is evident from (8) that Ay_, 

is greater 
than zero and the values of Ay, ) 

, are not observed within the 
limits of the study. Consequently, ex cannot be computed from equation 
(15). 
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It is nevertheless possible to estimate A, with a certain degree of 
accuracy if w.-1 is small. Suppose we rewrite equation (15) in the 
form 
A + 

XjA AX AX~ yA 
A . . 

exaZ ? C=+,Px + Cx+2PXPX?1 ?+ ? * + xPx+1 P-1 

+ I(CV?+1PV + Cy+2P1,PVF ? + ), (16) 

where l/lx is written for 'A 
. The problem is to estimate 

the values of py , py+ I, in the last term, since the preceding terms 
can be computed from the data available. 

As a fist approach, consider a typical interval (z, z + 1) beyond 
time y withl i he1 probability of surviving the interval: 

/~z+1 

pz exPl~j ( 7dOr ) for z Ayt?. for 

If the force of mortality is constant for z > y, the probability of survival 
is independent of z and we may write 

pZ =e p, for z=y,y?1, + . 
Under this assumption cz = 1, and we may replace the last term of 
(16) with (l,/l,) (i ? 2 + Al 

), which converges to (1/1X) A/l(I - ). 

As a result, we have 

id = ax + + ? Cz+2PXPz + ? 

+ C AXPX2+. 
. ? + | [5/(1 A)] 

Clearly, p may be set equal to 1 if the force of mortality is assumed 
to be constant beginning with time (y - 1) instead of time y. From 
the point of view of sample variation, however, it is desirable to base 
the estimate p on as large a sample size as possible. Suppose there 
exists a time T, for T < y, such that AT , PTA , * **are approximately 
equal, thus indicating a constant force of mortality after time T. Then 
p may be set equal to A 

T, and the formula for the observed expectation 
of life becomes (cf. [4]): 

ex = ax ? c1+1p5 + Cz+2P+1 ? *. 

? CPx+1* PV-1 + IV[fT/(1 PT)], (17) 

for x = 0, * , y -1. When a: is approximated with 2, c: = 1. 
Although formula (17) holds for x = 0, , y - 1, it will be ap- 

parent to the reader that the smaller the x, the larger the value of l, 
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and the smaller will be the contribution of the last term. If the ratio 
1,/l1 is small, the error in assuming a constant force of mortality beyond 
y and in the choice of PT will have but little effect on the value of e 

1.4. The sample variance of the observed expectation of life. 

To avoid confusion in notation let us denote by ae a fixed number 
and consider the observed expectation of life ef as given in formula (17). 
It was proven in [5] that the estimated probabilities of surviving any 
two non-overlapping intervals have a, zero covariance, and hence the 
sample variance of the observed expectation of life may be computed 
from 

Sea = Ei [Oa/02] 2S2 (18) 
xe a x > a 

where the derivatives are taken at the observed point A , for x > a. 
In the present case, we have 

[Oe/ Pz] = PIazx[+i + (1 -ax)], for x F T, (19) 
and 

[ePa/aPT] PaT7T+1 + (1 - aT) + {PTY/(l -PT)2}] for a < T, (20) 

pay/( -PT), for ai > T, 

where pa = PaPa+1 P . Substituting (19) and (20) in (18) 
gives the sample variance of ea 

V-1 

2= E paJ[++l + (1 - ]2S 

x0T 

+ paT[eT+l + (1 - aT) + {PTY/(1 - qTT)2}]ST (21) 

for a < T, and 
v-1 

Se a Az[6+l + (1 - a])12S2 
xr=a 

+ {IA2V/( _- PT) S4T , for ae > T. (21a) 

The value of Ar and the sample variance of 6x are obtained from formulas 
(8) and (13), respectively. When a: is approximated with 2X the quantity 
(1 - ax) in formulas (21) and (21a) may be replaced by 2. 

PART II. CONSIDERATION OF COMPETING RISKS 

2.1. Relations between net, crude, and partial crude probabilities. 

In a follow-up study, as in general mortality analysis, one may be 
interested in death due to a specific cause, or to a group of causes. 
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Depending upon the questions to be answered, the investigator may 
explore three general types of probabilities of death with respect to 
a specific cause, or risk: 

1. The crude probability. The probability of death from a specific 
cause in the presence of all other risks in a population. 

2. The net probability. The probability of death if a specific cause 
were the only cause in effect in the population or, conversely, 
the probability of death if a specific risk were eliminated from 
the population. 

3. The partial crude probability. The probability of death from a 
specific cause in the presence of all other risks but with a second 
risk eliminated from the population. 

Obviously, in the human population, the net and partial crude proba- 
bilities usually cannot be estimated directly except through their 
relations with the crude probability. The study of such relations is 
part of the problem of "competing risks", or "multiple-decrement". 
The subject has been variously discussed in the literature (see, for 
example, [12], [15], and [19]) and will be reviewed here only by way of 
introducing notation. 

Assume c risks of death (or causes) acting simultaneously on each 
individual of a population (that is, competing for the life of the indi- 
vidual), and let these risks be denoted by R, , * *, R. For each 
risk there is a corresponding force of mortality, PT, PT, v , , each 
of which is a function of time r, and the sum of these 

PTI + + PTC PT (22) 

is then the total force of mortality. Within the time interval (x, x + 1), 
we shall assume a constant force of mortality for each risk, say 
P~k = VPk , depending only on x and k, for x < r < x + 1. For all 
risks, we have p, =w , for x < K < x + 1. 

Let Q.k(t) be the crude probability that an individual alive at time 
x will die in the interval (x, x + t), for 0 < t < 1, from cause Rk in 
the presence of all other risks. It follows directly from addition and 
multiplication theorems that 

r+ t 

Qxk(t) = f eC(T-X) 1Vxkdr, for 0 < t < 1; k = 1, C. (23) 

The first factor of the integrand is the probability of surviving from 
x to r when all risks of death are acting, while the second factor is 
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the instantaneous probability of death from cause Rk . Integrating (23) 
gives 

Qxk(t) = vzk [1 - - [1 - pj(t)] 

for O< t< ; k =, I*,c. (24) 

It is clear from (22) that the sum of the crude probabilities in (24) 
is equal to the complement of pj(t), or 

QXI(t) + + Qzc(t) + pZ(t) = 1, for 0 < t < 1. (25) 

For t = 1, we shall abbreviate Qx,(l) to Qx, , etc. For the purpose of 
this study we are particularly interested in the subinterval (x, x + 1), 
with 

Qxk(l) 
= k [1 - = Qk[1 + 

P1/2]4, for k = 1, ., c. (26) 
Ax 

In this case the sum of the crude probabilities (26) is the complement 
of pV, the probability of surviving half the interval, and 

Qx 1 + px ]Y + + Qx [1 + pl/2-1 + Y2= (27) 

When risk R, acts alone, the net probability that an individual 
alive at time x will die it the interval (x, x + 1) is 

qxk 
= I-e vxk = 1- [e-x]vx/x (28) 

From formulas (24) and (28) we obtain the relation between the net 
and crude probabilities 

qx= 1-pQk/x , for k = 1, *, c. (29) 

By analogy we can write the net probability of death in the interval 
(x, x + 1) when risk Rk is eliminated, 

q.= 1 - ( for k = 1, , c. (30) 

Now suppose that R1 is eliminated as a cause of death, and let 
Qzk.l be the partial crude probability that an individual alive at time 
x will die in the interval (x, x + 1) from cause Rk in the presence of all 
other risks, for k = 2, , c. Using a similar reasoning as in the 
crude probability [eq. (23)], we can write 

x+1 

Qzk.1 = f e(T-) (AX-Xl)V) dcr 

Q," -[1 - 
pfqx-Qxl)l'x], for k = 2, , c. (31) 
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Similarly, if risks RI and R2 are eliminated, the partial crude proba- 
bility that an individual alive at x will die in the interval (x, x + 1) 
from cause Rk in the presence of all other causes is given by 

Qzk 12 = 
QXk (q-Q I 

-QTX 

q ] t for kc = 3, * ,c. (32) Qxk 12 "= Q =1-P 
qx - Qx1 - Qx2 

A detailed discussion on the partial crude probabilities is given in [7]. 

2.2. The basic random variables and their joint probability function. 

The identification of the random variables in a follow-up study 
in the presence of competing risks and the derivation of their joint 
probability function follows directly from the discussion in Section 1 
of Part I. The deaths in each of the two groups according to withdrawal 
status are further divided by cause of death as shown in Table 1, Part I. 

Each of the m individuals not due for withdrawal in the interval 
(x, x + 1) will fall into one of the c + 1 mutually exclusive groups, 
depending upon whether he survives the interval or dies from cause 
R1, * R , f., with the sum of the corresponding probabilities p., 
QX1 . , QZC , equal to unity [eq. (25)]. Thus we have a multinomial 
case with the probability function 

f1 =PQ1 ... Q, (33) 
where s is the number of survivors and 8k is the number of deaths from 
cause Rk , for k = 1, * , c. Their mathematical expectations are 
given respectively, by 

E(sI m) = mpx, and E(3k I m) = mQk, for k =1, ,c. (34) 

Each individual in the group of n due for withdrawal in the interval 
(x, x + 1) has the probability pI/2 of withdrawing alive and the proba- 
bility 

Qxk(1) = Qxk(1 + P1/2 )2 for l - 1, **, c, (26) 

of dying from cause Rk . Since p1/2 and the probabilities in (26) again 
add up to unity [eq. (27)], the n observations also constitute a multi- 
nomial case with the probability function (cf. footnote 6) 

f2 = PI 

I 
[Qzk(1 

+ 
p1/2) 1]e1k, (35) 

k=1 

where w is the number of individuals withdrawing alive and Ek the 
number of individuals who die from cause Rk before the time of with- 
drawal. The mathematical expectations are, respectively, 

1/2 +P/)1 E(w I n) = np , and E(Ek I n) = nQxk(l + px2)', 

for k== I, ,c. (36) 
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Because of the separation of the individuals into two distinct groups 
at time x according to their withdrawal status, the joint probability of 
all the random variables in Table 1 is the product of the two joint 
probabilities (33) and (35): 

f12=ps+w/2 J u 17 [QQk(1 + pl/2)l] ek* (37) 
k=l =1 

Formula (37) may be simplified by rearranging terms and using the 
relations, Dk 8k + Ek , and e- e, + + E, , to give the final form 
of the joint probability function 

flf2 = ps+w/2(1 + pl/2 )eI QDk (38) 
k=1 

2.3. Mllaximum-likelihood estimators of crude, net, and partial crude 
probabilities. 

We will again use the maximum likelihood principle to obtain the 
estimators of the probabilities: px, , ,x . In this case the 
likelihood function obtained from (38) is 

L = (s + 4w) In p -e In (1 + p/2) 2~ ~ C 

+Di n (I - - pE Qk + E Dk InQZk (39) 
k=2 k=2 

where the substitution 

Qzi I l-px Qzk (40) 
k=2 

has been made. Differentiating the likelihood function (39) with respect 
to p- , *Q.2 * ., Qx, respectively, and setting the derivatives equal 
to zero, we obtain a system of c simultaneous equations: 

&L/Opx = [(s + lw)/px] - E/[2pl2(1 + pA/2)] - (D1/Q1l) = O, (41a) 

OL/OQxk = (Dk/Qxk) - (Dl/Qzx) 0, for k =2, ,c. (41 b) 

From (41b) it can be deduced that 

Dk/Qxk = D/(1- ) for k = 1, *,c, (42) 

and therefore the ratio D,/Qz, in equation (41a) can be replaced with 
D/ (1 - p). When this substitution is made and the terms in (41a) 
are rearranged we have a quadratic equation in All'2 that is identical 
to equation (7) in Part I. Hence the estimators p, ,in (8), 
and qZ for all causes of death will have the same value as in the simple 
case where death is investigated without specification to cause, as one 
would anticipate. Substituting (8) in (42) gives the estimators 
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Qzk = (Dk/D)4> , for k= 1, ,c. (43) 

To obtain the estimators of the net and partial crude probabilities, 
we substitute (43) in formula (29), (30), (31), and (32), and after 
simplification, 

qzk 1 - pz/, for k = 1, *,c; (44) 
1 P (D-Dk)/D for lc = 1, **, c; (45) 

Qxk 1= [Dk/(D - Dj)][1 _ P5(D-D)/D] for lc k 2, c; (46) 

and 

k . 1 2 = [Dk/(D - DI - D2)][1 - P.(D1 2)/D], for ls = 3, *, c. (47) 

The estimators given in formulas (44), (45), (46), and (47) are also 
maximum likelihood estimators because of the invariance property of 
maximum likelihood estimators. 

Remark 2: If there were no withdrawals in the interval (x, x + 1), 
i.e., if n = 0, the problem is reduced to the classical multiple-decrement 
problem, with s survivors and Dk = 3k deaths from cause RM , for 
k = 1, *., c. These random variables will still have a multinomial 
distribution [eq. (33)], and the formulas for the estimators of px, q, 
and Qx, are reduced to 

A = s/Ni, (8a) 

= D/NX (9a) 
and 

Qzk= ,DkIN, for k = 1, *,c. (43a) 

Formulas (44) through (47) may still be used for the estimators of 
the net and partial crude probabilities, but with A_ given by (8a). 

Remark 3: The problem of cases lost to the study due to failure 
of follow-up is still unsolved, and perhaps it has no unique solution. 
Since the probability that a patient will be lost to follow-up is in part 
dependent upon the type of a study, assumptions with respect to lost 
cases may be valid for one study but not for another. If the number 
of lost cases is small. depending upon the type of study, one of the 
following assumptions may be made and the data handled accordingly: 
(1) patients lost will have the same probability of surviving as patients 
not lost, and may be deleted from the study; (2) all lost cases survive 
to the close of the study; (3) all die at the time of becoming lost; and 
(4) becoming lost is another competing risk. If sufficient knowledge 
of follow-up is unavailable, the fourth alternative is preferred. 
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2.4. Asymptotic variance and covariance of the estimators. 

Formulas for the variance and covariance of the estimators may 
be determined by using the asymptotic property of maximum-likeli- 
hood estimators. The inverse of the asymptotic covariance matrix 
of the estimators, Ip, I , * *, Q., ,is given by 

-E (Pf) -E( QLQ) 

lS _E ~ 2 
apQ)||I| -E aQ.d.)i 

(c-1) X1 (c-1)X(c-1) 

in which the elements are obtained by differentiating formula (41a) 
and (41b). Direct calculation gives the following mathematical ex- 
pectations 

-E(a2L/p2)= Mz[(l/pz) + (1/Qz1)] + w, (49) 

-E(a2L/Opx aQxk) -Mx/Qxl , for kI 2, ***, c, (50) 

-E(O2L/OQxh aQxk) = Mz/Qzl, for h # k; h, k =2, *, c, (51) 

and 

-E(O2L/Qk)a M[(1/QX1) + (1/Q k)], for k = 2, , c, (52) 

where MIL and X are defined by equation (11) and (12), respectively, 
of Part I. Substituting the respective expectations into (48), we have 

MX/QZ1 MZ(Q1 H+QJ) MZ/QX1 ... MZ/QX1 

AU= (53) 
Ill /QX1 MZ/QX, .i1 -+- ) MZ/QZ1 

*I* *XI * * 

I** 

M.Qg E MZ/QZI MZ/QX, M( + 
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with its determinant 

A = (3Ic/Q.1 ... Q.,P) + 7r (1i1 -1l/Q1 I Q. ) (1 - Pr). (54) 

Denoting the cofactors of the determinant by A,, , for h, k = 1 * , cy 
the formulas for the asymptotic variance and covariance are given by 

2g = A1,/A = iqfl)[1 {1 + (wpzqz/M~)}], (55) 

2 = AkuJA = [Q71J1 - Qj) /1IA 
I [1 ? 7wp,(q - Qxk) /ilIx(l 

- Q~i:) izx) kl /IQk zt/r + f7rp~q, /AI, t ] 

for h = 2, **, C, (56) 

P, = AI = - [1/ 1+ (7rpz q,/ilzI) 

for k = 2, *y, c, (57) 

and 

hA.(k I/s (QrQrk11IxZ) [ {1 + (irp,/AIii)}/{1 + (wp qz/3I,)1}] 

for h 51 c; hl = 2, 3, *.,c. (58) 

Since the term Q.1 was not explicitly included in the likelihood function 
(39), the formulas for the variance of Qxj and the covariances between 
Qzj and other estimators were not presented. It is obvious by reason 
of symmetry, however, that expressions for QXk do start from Q, 
which is to say that formulas (56), (57), and (58) hold also for k = 1. 

The quantities inside the square brackets in formulas (55) through 
(58) may be approximated with unity when MlIx is moderately large. 
These formulas then reduce to familiar expressions of the multinomial 
case: 

veis= pxq/Mllz , (59) 

0a6Xk =Qr(l - Qxk)/MAIx, for I = 1, , c, (60) 

_PXQX1-= -, for k = 1, *, C, (61) 

and 

,(^,, = ,QxQxk/ixI for It # 1; IT, lC = 1, 2, , C. (62) 

Formulas for the asymptotic variance and covariance of the esti- 
mators of the net and partial crude probabilities can be obtained with 
the same approach as employed in [7]. To save space, only two formulas 
are presented below. 

2 
= [(1 - qzk)2/M1p~qz] 

*[p, In (1 - qxi:) In (1 - qz.,!) + (qx - Qx:)21] (63) 
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for k = 1, *., c, for the net probability of death when risk Rk is 
eliminated, and 

2 - 
:)Qk]2 0'6xk.1 = [(q- - Q~k)/1{AM(q. QXQzk}1Qzk. 1 

+ [{Qzk.1(q. - Q.1) - } - {Mzpxqx(q Q) } ] 

[(qx - Qxj) + Qxlpx(ln p./qx)2], (64) 
for k = 2, * I, c, for the partial crude probability. 

AN EXAMPLE OF LIFE TABLE CONSTRUCTION 
FOR THE FOLLOW-UP POPULATION 

The application of the methods developed in Parts I and If will 
be illustrated with data collected by the Tumor Registry of the Cali- 
fornia State Department of Public Health. The material selected 
consists of 5982 patients7 admitted to certain California hospitals and 
clinics between January 1, 1942, and December 31, 1954, with a diag- 
nosis of cancer of the cervix uteri. For the purpose of this illustration, 
the latter date is taken as the common closing date of the study; the 
date of entrance to follow-up for each patient is the date of hospital 
admission. 

The first step is to construct a table similar to Table 2, showing the 
survival experience of the patients grouped according to their with- 
drawal status. The interval length selected (column 1) will depend 
upon the nature of the investigation; in this case a fixed length of one 
year was convenient and satisfactory. The total number of patients 
admitted to the study is entered as No in the first line of column 2, 
which in this example is 5982. To determine their withdrawal status 
in the first interval (0, 1) the patients were separated into two groups: 
admissions before 1954, and consequently at least one year before the 
close of the study; and admissions during the year 1954, all due for 
withdrawal since the study was terminated before their first anniversary. 
Of the patients admitted prior to 1954, s8 (4030 in column 3) survived 
to their first anniversary and 60 (1287) died during the first year. The 
deaths were further divided by cause into 30l (1105) deaths due to 
cancer of the cervix uteri and 50, (182) deaths from all other causes. 
The survival status of the 1954 admissions is determined at the close 
of the study, as it is for patients due for withdrawal in any interval. 
In this study, w0 (576) patients withdrew alive in the first interval, 
and E, (89) patients died before the closing date. These deaths were 
again divided by cause into E0l (70, column 9) and E0, (19, column 10). 

7An additional 231 cases of uncertain survival status were deleted from this illustration. 
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TABLE 3 
SURVIVAL EXPERIENCE AFTER DIAGNOSIS OF CANCER OF THE CERVIX UTERI: 

THE MAIN LIF:Ei TABLE FUNCTIONS AND THEIR STANDARD ERRORS 

Interval 
since Estimated probability Observed 

diagnosis x-year survival rate of death in interval expectation 
(years) pox (X, X + 1) of life at X 

X-X?+ 1 1000 Pox 1000 S 1000 Sq, 1000e S; 

(1) (2) (3) (4) (5) (6) (7) 

0-1 1000.00 0.00 242.54 5.69 12.90 2.83 
1-2 757.46 5.80 181.43 6.26 15.86 3.74 
2-3 620.03 6.65 103.03 5.95 18.27 4.57 
3-4 556.15 7.01 85.76 6.38 19.31 3.09 
4-5 508.46 7.33 64.13 6.50 20.08 5.56 
5-6 475.85 7.61 58.20 7.23 20.42 5.94 
6-7 448.15 7.95 43.76 7.34 20.65 6.31 
7-8 428.54 8.29 43.20 8.45 20.57 6.60 
8-9 410.03 8.71 33.69 8.85 20.48 6.89 
9-10 396.22 9.17 46.55 12.15 20.17 7.13 

10-11 377.77 9.98 43.85 14.30 20.13 7.47 
11-12 361.21 10.97 51.06 20.30 20.03 7.81 
12-13 342.77 12.73 00.00 00.00 20.08 7.79 
13 342.77 12.73 - - 19.08 7.79 

Source: California Tumor Registry, Department of Public Health, State of California. 

The second interval began with the 4030 survivors from the first interval, 
which is entered as N1 in line 2 of column 2. All 1953 admissions in- 
cluded in N1 were due for withdrawal in the second interval. 

The main life table functions and the corresponding sample standard 
errors as shown in Table 3 are determined from the data given in Table 2. 
The x-year survival rate p is by definition equal to I. divided by the 
radix 1o , or pop', , .1 The sample variance of pot is computed 
from a formula given in a previous publication [6] (see also [13]): 

X-1 

AX= pE A2 S 
u=O 

Formulas (13) and (14) were both used to compute the sample standard 
error of A , with numerical results that were almost identical to the 
fourth decimal place. The figures appearing in column 5 of Table 3 
were obtained by formula (14). The observed expectation of life was 
determined from formula (17), for which A% was set equal to A 
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TABLE 4 
SURVIVAL EXPJRIE-cJL AFTEJR DIAGNOSIS 01' CANCER 01' TIE CERVIX UTrElu: 

ESri.AIATED CRUDE AND NLJri PROBABILITIES OF1 DEJAr1I FROMr CANCER 
OF TIHE CERVIX UTERI AN-D FROM OT1fI]HR CAUSES 

Estimated crude Estimated net 
probabilities of death probabilities of death 

in interval in interval 
Estimated (x, x + 1) from (x, x + 1) wihen 

Interval probability 
since of surviving Cervix Cervix 

diagnosis interval Cervik Other cancer cancer 
(years) (x, x + 1) cancer causes Acting alone Eliminated 

X - X + 1 1000 Px 1000 Qzl 1000 Qz2 1000 qzi 1000 you 

(1) (2) (3) (4) (5) (6) 

0-1 757.46 207.11 35.43 211.17 39.77 
1-2 818.57 155.97 25.46 158.11 27.71 
2-3 896.97 84.65 18.38 85.46 19.22 
3-4 914.24 62.89 22.87 63.63 23.63 
4-5 835.87 44.40 19.73 44.85 20.19 
5-6 941.80 25.76 32.44 26.19 32.87 
6-7 956.24 23.17 20.59 23.41 20.84 
7-8 956.80 22.47 20.73 22.70 20.97 
8-9 966.31 14.44 19.25 14.58 19.39 
9-10 953.45 29.93 16.62 30.18 16.88 

10-11 956.15 24.36 19.49 24.60 19.73 
11-12 948.94 17.02 34.04 17.32 34.34 
12-13 1000.00 . 

Source: California Tumor Registry, Department of Public Health, State of California. 

Table 4 shows the estimated probability of surviving each interval 
and the estimated crude and net probabilities of death from R, , cancer 
of the cervix uteri and R2 , all other causes of death. Since only two 
risks are studied, the probability qx2 is equal to q. l, the net proba- 
bility of death when cancer of the cervix uteri is eliminated as a risk 
of death from the population. For each interval the sum of A 

, 

and Q,2 is unity, and the estimated net probability QwA is always greater 
than the corresponding crude probability Qk . 
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