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A STOCHASTIC STUDY OF THE LIFE TABLE 
AND ITS APPLICATIONS: 

I. PROBABILITY DISTRIBUTIONS OF THE 
BIOMETRIC FUNCTIONS' 

CHIN LONG CHIANG 

Division of Biostatistics, School of Public Health, 
University of California, Berkeleyt California, U. S. A. 

1. INTRODUCTION 

The life table is one of the oldest, most useful, and best-known 
topics in the field of statistics. It has many applications in various 
areas of research where birth, death, and illness may take place. The 
earliest life tables date as far back as the seventeenth century; Halley's 
famous table for the City of Breslau, published in the year 1693 [9], 
already contained most of the columns in use today. The subject 
matter, however, is by no means limited to human beings. Zoologists, 
biologists, physicists, manufacturers, and investigators in other fields 
have found the life table a valuable means of presenting their data. 
In spite of its popularity in many research areas, the life table as a 
subject has yet to be systematically explored from a statistical point 
of view. 

There are two forms of the life table in general use: the cohort 
(or generation) life table and the current life table. In its strictest 
form a cohort life table records the actual mortality experience of a 
given group of individuals over a period of time extending from birth 
until the death of the last member of the group. A current life table, 
on the other hand, considers the mortality experience of an entire 
population at one point in time. The purpose of this investigation 
is to present a stochastic view of the subject, taking random variation 
into consideration and treating all the biometric functions as random 
variables. The results of our study will be given in a series of papers. 
In the first paper probability distributions of the main biometric func- 
tions are presented and formulas are derived for the corresponding 
mathematical expectations, variances, and covariances. Some of the 
findings are by no means original, but they are included for the sake 
of completeness. 

'Presented at the joint meeting of the American Statistical Association and thte Biometric Society, 
ENAR, in Atlantic City, September 13, 1957, under the title, "An application of stochastic processes 
to the life table and standard error of age-adjusted rates" 131. 
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Although each of the biometric functions has the same meaning 
and the same probability distribution in the cohort life table as in the 
current life table, it is important for the study of their random variation 
to keep in mind the order in which these functions are computed. 
In the cohort life table the number of survivors and the number of 
deaths are measured directly in an actual population; thus they are 
the basic random variables from which the proportion of deaths and 
other columns are obtained. In the current life table, on the other 
hand, the column of the proportion of deaths is first computed from 
the population death rate; other biometric functions are random vari- 
ables only because they are functions of this proportion. We shall, 
therefore, in the second paper of this series present formulas for the 
sample variances and covariances of the biometric functions in terms 
of the number of survivors for the cohort life table and in terms of 
the actual age specific mid-year population and age specific death rate 
for the current life table. 

The third paper will be devoted to the application of these formulas 
to practical problems in follow-up studies of patients affected with 
specific diseases in which there are some survivors on the closing date 
of the study; because of incompleteness of information, expectation 
of life and some other quantities in the life table cannot then be com- 
puted by the conventional method. Here we suggest a convenient 
means of computing the observed expectation of life and the corre- 
sponding standard error. The problem of competing r isks is also 
treated. An actual follow-up study will be used by way of illustration. 

The general form of the life table is reproduced be]ow for the purpose 
of reference; the symbols used deviate slightly from the conventional 
ones in order to simplify formulas in the text. For a detailed descrip- 
tion of life-table structure, the reader is referred to the work of Dublin, 
Lotka, and Spiegelman [5], Greville [8], and Reed and Merrell [11]. 

In the table, and throughout this paper, the term "age" refers to 
the exact age. The symbol xi is the age at the beginning of the interval i; 
x. will be used to denote the age at the beginning of the final interval 
in any given life table. 

The age xo may be taken as 0, the time of birth, and 10 the size of 
the original cohort. From lo on, all the biometric functions in the 
above table are treated as random variables that are estimators of 
the corresponding unknown quantities. The symbol qi will be used 
to denote the unknown true probability of a person of age x, dying 
between xi and xi+, , and ei the true expectation of life at age x,, for 
i = O,1, *- ..,w. 

The term "observed expectation of life" is introduced for the symbol 
e, to distinguish it from its unknown true value ei . Because of their 
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LIFE TABLE 

Number Total no. 
Proportion Number of of years of years Observed 

Number of deaths deaths lived remaining expecta- 
Age of within age within age within age to tion of 

interval survivors interval interval interval survivors life at 
(years) at age xi (xi, xi+,) (xi, xi+,) (xi, x?+,) at age xi age xi 

x0 to xi lo qo do Lo To 90 
. . . . . .. . . . . . . . . ... .......... 

xi to xi+1 1i di Li T0 Es 

xw toX+ lIw qw dw Lw Tw ew 

limited use, we shall not discuss the distribution of the quantities in 
the columns Li and Ti . If desired, their distributions and formulas 
for expectations and variances can be obtained, respectively, from those 
of l, and e,. 

In the text the following symbols will also be introduced: 

qji = Pr [an individual alive at age xi will die in interval (xi, x,)], 
pii = Pr [an individual alive at age xi will survive to age xj]. 

When xi = xi+, , we will drop the second subscript and write qi for 
qi,i+, and pi for Pi.i,, . Obviously, q and p are complementary. The 
corresponding estimators are denoted by 

ii 1 -_ il, Aii = li/li , di = 1 - lj+1/li , and i = 

Finally, we will write ni to denote the length of the interval i (i.e., 
xi+, - xi = ne). When n is equal to one for each age interval, we 
have the "complete" life table. 

Throughout this investigation, we shall assume a homogeneous 
population in which each individual is subject to the same force of 
mortality and in which the probability of death for one individual 
is not influenced by the death of any other individual in the group. 

2. PROBABILITY DISTRIBUTION OF l, THE NUMBER 
OF SURVIVORS AT AGE x 

In the usual life table the various biometric functions are given 
only for integral ages or at other discrete intervals In the derivation 
of the distribution of survivors, however, it is more convenient to treat 
age as a continuous variable and to derive formulas for lx , the number 
of individuals surviving the age interval (0, x), for any positive value x. 
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The distribution of 1, may be obtained by different approaches. 
Perhaps the simplest is to consider the 1 survivors as the number of 
successes in lo independent and identical trials with a probability Po, 
of surviving the interval (0, x). It follows then that lx is a binomial 
random variable. However, this approach by itself does not give the 
formula for the probability pO:, . The explicit formula for por can be 
derived by the "pure death process" (see, for example, [6] and [1]), 
which we shall sketch below. 

Let i,u be the force of mortality acting upon each individual in the 
original cohort lo, such that 
A, zAx + o(zAx) = Pr [an individual alive at age x will die between 

ages x and x + zAx], for x >0 (1) 

where LAx stands for an infinitesimal time interval and o(Ax) a quantity 
of a smaller order of magnitude than Ax. We are interested in the 
probability function of lx , given that there are lo individuals alive 
at age 0: 

PIO(O, x) = Pr [1 = k I o at age 0]. (2) 

The standard procedure for obtaining this probability function is to 
derive an explicit form of the probability generating function defined as 

10 
Gl,(t, x) = E(tl lo) = E tkPlok(O, x) (3) 

k=O 

The derivatives of this one function provide a convenient way of 
computing all of the probabilities in (2), and the moments of lx as well. 
Using the established procedure [6], we found 

G1X(t, x) = [1 - exp {-f g, dT} + t exp {-f II dr}] (4) 

Substituting 
x A 

p = exp { tdr}, for x>O (5) 

for the exponential function in (4) gives the generating function of 
the probability stated in (2): 

G1.(t, x) = [1 - Po. + tpo0]xo, for x ? 0. (6) 

Formula (6) will be recognized as the generating function of a binomial 
random variable in lo independent and identical trials with the binomial 
probability pox as given by formula (5). For x = xi , we have the 
probability that an individual will survive the age interval (0, xi), 
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Po; i exp{-f Iv d-} for i = 0, 1, ,W , (5A) 

and the generating function for the survivors 1i, 

G1i(t, xi) = [I - poi + tpoilo, for i = 0, 1, **, w. (6A) 

We are now in a position to use the binomial theorem to obtain the 
required probability function for li, 

__ _ _ __ _ _ kc 1o-k Pr [li =k lo at age 0] = - ( )!po1qO 

for k =01, I**..lo; i=O,1, ...,w, (7) 

the mathematical expectation, 

E(li lo) = lopoi I for i =0, 1, ** *, w, (8) 

and the variance 

71illo =nlopoi qo , for i 0,1 , , w, (9) 

with poi + qo0 = 1. 
In general, the probability of surviving an age interval (x,, xi) 

is given by 

pii= exp{-fA, dr}, for i? j; i,j=0,1, .,w, (10) 

with the obvious relationship, 

Pi = PaiPii , for a ? i < j; a, i, j = 0,1, , w. (11) 
The generating function for the conditional distribution of 1j given 
li is 

G11l1,(t;) = E(ti li) = (1 - Pii + tjpij)li, 
for i<j; i,j=0,1,*..,w. (12) 

When j i + 1, (12) becomes 

Gjj+1jjj(ti+j) = E(tij1 I li) = (1- Pi + ti+1pi) 

for i=O, 1, * ,w- 1. (13) 

Although formula (12) holds whatever may be xi < xi, it is im- 
portant to point out that the conditional probabilities of lI relative 
to lo, 1 , ,li are the same as those relative to li in the sense that 
for each k 

Pr [lI = kj|l, lo , li] = Pr [lI = k I li], 

for i<j; i,j=O,1,***,w. 
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In other words, the sequence 11 , 12 , l,1 is a Markov process ([6], 
p. 338). Thus we have 

E(li lo, li) =E(l; I li), for i < j; i,j = ,1, ** *,w, (14) 

and also 

E(tlI lo, ,ii) =E(t' I li), for i < j; i, j = 0,1, ., w. (15) 

3. JOINT DISTRIBUTION OF 11, *.., lt, THE 
NUMBERS OF SURVIVORS 

Following the idea of the preceding section, we introduce the gene- 
rating function of the joint probability distribution of 1l, *., 1,. 

Gll,... l,D(t1,** t,,) = E(tl .. tlt I lo), (16) 

which uniquely determines the joint probability 

Pr[l, = ko , ***nl, i = k. Ilo atage 0]. 

Using a procedure described previously ([2], pp. 84-85) we obtain 

Lemma 1. The survivors 11 , * * , lw1 in the life table form a random 
vector with components having the binomial distribution; the generating 
function of the joint distribution and the covariance between any two of 
the random variables are given, respectively, by 

GI I.. I w(tl, **,-- two) = [I1- I POI(I -tl) + P02 ti (I t2) 

+ p03t1t2(1 - t3) + * + p0Otlt2 * tw.1(1 - t.)}]o (17) 

and 

Oali. =lo?Ip0(l -poi), for i < j; i, j = 0,1, *, w. (18) 

Proof of formula (17) follows from the identity 

E[tl *... tl'i +] = E[ tll ***. t1'Eft'l l I 1 ] 19 

and from formula (15). Combining (15) and (19), we can write 

E[t' l***t' ' ]E[tl ...* tEl Et" f1 li)}], 

for i= 0, 1, ,w-1, (20) 

where the conditional expectation of the quantity inside the braces 
is the generating function of the conditional distribution of 1,+1 given 
1i with the explicit function as presented in (13). Formula (17) is 
obviously true for w = 1, since in this case (17) becomes 

Gl,(t1) = [1 - pol(-t)]lo, (21) 
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which is identical to (6) for x = xl Now suppose (17) is true for 
w - 1, and we may write 

E[t' ... tlw-l] = [1 - {Po1( - t1) + p02t1( - t2) -I* 

+ Po.W-Itl . tw-2(l - tv 1)1]l', (22) 

we want to prove that (17) is true also for w. Using identity (20) for 
i = w - 1, generating function (16) may be written as 

G1, l, , *, , t_) - EEl" * .. C v tlltlw IE(t I &...)]. (23) 

Writing (13) for i = w -1 and substituting in (23) give 

GI* ..... ,(t***, tJt) = E[t8 * * * t 1 to - Pw-p + tu,pw..}1} '] 

= E[t" *'. t7 Ws- 2sw-il], (24) 

where 

S.-, = tw-1(1 - Pw-i + tPw -1) = tw-.l[ - P[-1(1 - tw)]. (25) 

Because of formula (22), (24) becomes 

[1 - {po1(l - tl) + po2tl(l - t2) + * 

+ po,w-2tlt2 . . . tw3(1 - tw-2) + pOw-1t1t2 . . . tw-2(1 - sW,1)] . (26) 

Now substituting (25) in the last term inside the braces, 

PO,w-ltlt2 ''* * tw-2(1 - Sw-) 

= Po,w-ltlt2 . ..tw-2[1 - tw-lf I - P10 - t0) U 

=Po Ow-ltl t2 . tw-20 1 tiv-1) + Pow tl t2 ...tw-1 (1 - 01 (27) 

where po,, is written for po,ipw-i [equation (11)]. Formula (26) 
thus becomes identical with the generating function (17), and the proof 
is completed. 

Formula (18) can be proven by direct computation from the relation 

?l i=ati a-ti t (dt. lt)aa 1 

where the symbol G is written for the generating function (17) and the 
partial derivatives are taken at the point (t,, ** . , tw) = (1, ... , 1). 

When i = j, formula (18) reduces to the formula for the variance 
of 1i [equation (9)]. 

The joint probability of the random variables 11, lw, lW can now 
be obtained from (17) by differentiating with respect to the arguments. 
It turns out to be 
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Pr Ill = ki 1 = kwllo I 

I=1 k '! (k.! p- k_-k 

for ki = 0,1, I *, , with ko = lo* 

4. JOINT PROBABILITY DISTRIBUTION OF do, d. w, 
THE NUMBERS OF DEATHS 

In a life table covering the entire life span of each individual in a 
given population, the sum of the deaths at all ages is equal to the size 
of the original cohort. Symbolically, 

do + di + * v v + dw = lo. (28) 

Each individual in the original cohort has a probability of dying in 
the interval (xi , xi+,), which is easily shown to be 

poiqi, for i=, ***,w; (29) 

for, if an individual at age 0 is to die between ages xi and xi+1, he must 
first survive the age interval (0, xi). The multiplication theorem implies 
(29). Since he is to die once and only once somewhere in the life span 
covered by the life table, the sum of the probabilities in (29) is unity; or 

pooqo + * + powqw = 1, 

where poo = 1 and qw = 1. Thus we have the well-known 

Lemma 2. The numbers of deaths, do I , * * I dwI in a life table have a 
multinomial distribution with the joint probability distribution 

Pr [do0 = 6o dw = -w] = (pooqo) * (powqw)3"; (30) 

expectation, variance, and covariance are given, respectively, by 

E(di I lo) = lopoiqi, for i = O, ***,w; (31) 
2 

Odi = lOpOiqi(- Poi q1), for i = 0, ** , w; (32) 

and 

adi,dj = -lopoiqpip0qi , for i 5 j; i, j = 0, *, w. (33) 

Remark 1: In the above discussion, age 0 was chosen only for 
simplicity of presentation. For any given age, say xsa , the numbers 
of deaths occurring in subsequent intervals also have a multinomial 
distribution with the total number of deaths equal to the number of 
survivors at age xa . The probability that an individual alive at age 
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x, will die in the interval (xi , xi+,) subsequent to xa is given by 

Pai4qj for i = a, , w. (34) 

It can be readily shown that the sum of the probabilities in (34) is 
unity but we shall not give the details here. 

5. VARIANCE AND COVARIANCE OF ji, THE PROPORTION 
OF DEATHS IN THE AGE INTERVAL (xi, xi+,) 

The proportion of deaths occurring in an age interval is the ratio 
of two random variables 

=i =-l , for i = O, 1, * , w-1. (35) 

Our interest in this section is to derive formulas for the expectation, 
variance, and covariance of these proportions. 

It is convenient at this point to reintroduce the proportion of 
survivors in the age interval (x,, xi+,), 

PtA for i = 0, 1, ** *,w-1. (36) 
ii 

Since 

Pi + di = 1, (37) 

the mathematical expectation of the proportion of deaths is comple- 
mentary to the expectation of the proportion of survivors. These 
proportions have the same formulas for the variance and covariance: 

2 2 

oaC = ,(JPi and - 
= C ,for i, j 0, 1, * , w - 1. 

The generating function (13) shows that the conditional distribution 
of li+, given 1i is binomial and has the conditional expectation 

E(li+l I li) = lipi, for i = 0,1, *, w- 1. (38) 

From (38) we derive the expectation of Pi, 

E(pi) = El 1)= EDI E(li +Il 1i)] 

= E[l- ltpij= pi, for i= 0, 1, *.., w, (39) 

and hence the expectation of Q., 

E(6i) = 1-pi =qi, for i= 0, 1, **, w. (40) 

It is interesting to note from formula (10) that the ratio of the 
expectation of survivors at the end of an interval to the expectation 
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of survivors at the beginning of the interval is also equal to the prob- 
ability of surviving the interval. Consequently, 

E[l i] j = ) f or i = O,1, *, w- 1, (41) 
= =E(li+) 

the expectation of the ratio of the two random variables, 4i+j to 1, 
is equal to the ratio of the expectations, a relationship not necessarily 
true in general. 

The variance of Ai (or 4i) may be written in the form 

J2; 
= E[17 2] ]p2 

2 E[+E(li+1 2 ii) - 

where 
1[l2+1 1 li] -lipi(Il-pi) + 12pi2 

is again obtained from the generating function (13). By substit-ution 
and collection of terms we have the formula for the variance, 

2-Pi = E pi(p-pi), for i = 0, 1, ..., w. (42) 

When lo is large, formula (42) may be approximated by 

2 1- 
i= E(1) pi(l - pi), for i = 0, 1,*, w. (43) 

The expectation of the reciprocal of 1i can be written as 

E(j ) = E(11) 
+ 

[E(11)]2 + O([E(I12)}' (44) 

where the second term inside the square braces is the relative-variance 
of 1i and the third term is a quantity of a smaller order of magnitude 
than the relative-variance. Using the formulas (8) and (9) for the 
expectation and variance of 1,, we have 

2 
li __ qo. 

[E (l ]2 l p , 

which may be taken as zero for large values of 1,, . Consequently, the 
quantity inside the square braces in (44) may be taken as unity and 
formula (42) is approximated by (43)2. 

21t is obvious from formulas (35) and (36) that q, and Pi are defined only for positive values of 
1i . If 1, were equal to zero, di and 1j+j would certainly equal zero, and the biometric functions de- 
scribed in the life table, as well as the life table itself, will have ceased to be meaningful. Thus we shall 
use the convention that the denominator of (42) cannot take on the value of zero before the interval 
w+1, which is to say, before the termination of the life table. 
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To derive the formula for the covariance between the proportions 
of survivors (or deaths) in two age intervals, we write 

f = E[P,Pj] - pip 

-E[PiE(pQ I Pi)] - pip, for i < j; i, j , 1, **,w, (45) 

with the conditional expectation, 

E( |I 
A 
j) + [ 1i+11 

Recalling from formula (14) that the conditional expectation of lI.+, 
relative to li, li,, and ij is the same as the conditional expectation 
of lj+l relative to Il, we have 

E1 1 + 1 | I+ 1 E[ I 
E(l -1 I I l)| + ] 

E Iii li ] (46) 

Substitution of (46) in (45) gives the covariance 

E[Lj6pi] - pip, - pipi - pip, = 0, 

for i 5 j; i,j = 0, 1, , w. (47) 

Remark 2: What is proved above is the zero covariance between 
Pi and pj , but not their independence. In fact, it can be shown [4] 
that Ai and Ai are not independently distributed; and in particular, 
Greenwood's assumption [7] E( Al 

Al) = E( A')E( Al) is proven to be false. 
The findings in this section may be summarized in 

Lemma 3. The proportion of deaths, qi, (or of survivors, Pi) in an age 
interval is an unbiased estimator of the probability of dying in (or of 
surviving) the interval with a variance as given by (42); the covariance 
between two proportions qi and ji (or between pi and pj) vanishes whatever 
may be i F j, for i, j = 0,*** ,w. 

It should be pointed out that formula (47) of zero covariance is 
obtained only between proportions for two non-overlapping age intervals. 
If we are considering two intervals both beginning with the same age 
x<, and extending to the ages xi and xi , respectively, the covariance 
between the proportions pj5 and paj is not equal to zero. Using the 
same approach as in the derivation of (42), it is easy to show that the 
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formula for the covariance is given by 

= E(I9Pai(l - pc,,), for a < i < j; a, i, j 0, *, w. (48) 

When 10 is large, we have the approximate formula 

OFDA{Pa ib (l ) pc,(l - p), for a < i < a, i, j = 0, , ?v. (49) 

For i = j, (48) and (49) become formulas for the variance of P.i . 
If xc = 0,lo is constant; both formulas (48) and (49) are reduced to 

aP, P, - i = poi(l - Poi), for i < j; i, j = 1, .., wI 
to 

which is the covariance between the xi- and xi-year survival rates, 
and can be obtained directly from the covariance between 1i and 1, 
as given by (18). 

6. DISTRIBUTION OF da , THE OBSERVED EXPECTATION 
OF LIFE AT AGE x. 

The observed expectation of life at any age x, summarizes the 
mortality experience of the population under consideration beginning 
with age xi, for i = 0, 1, * , w. Certainly to the demographer or 
public health worker, this column is the most useful in the life table. 

To avoid confusion in notation, let us denote by a a fixed number 
and by x,, a particular age; we are interested in the distribution of 
ea y the observed expectation of life at the age x,, . Consider 14, , the 
survivors to the age xa , and let Y, denote the future lifetime of a 
particular individual beyond the age xc, . Clearly Ya is a continuous 
random variable that can assume any positive real value. Let y,, be 
the value that the random variable Y,, takes on; thus x,, + y,, is the 
entire length of life of the individual from the time of birth until death. 
Let f(ya,,) be the probability density function of the random variable 
Y,, and dy,, an infinitesimal time interval. Since Y,, can assume values 
between Y, and y,, + dy,, if and only if the individual of age Xa survives 
the age interval (x, , x, + y,,) and then dies in the interval (xa + ya ) 

X,, + y, + dy,), the probability density function of Ya is given by 

f(y,) dya = pa.a+v Ax.+v. dya , for Ya _ 0, (50) 

where Pa. a+Va , the probability of surviving the interval (x<,,, x<, + y .), 
is defined in (10) and z is the force of mortality at age x<, + Ya 
given in (1). 
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The function f(ya,,) in (50) is an honest probability density function 
in the sense that it is never negative and that the integral of the func- 
tion from ya = 0 to y,, = c* is equal to unity. Clearly, it can never 
be negative, whatever may be the value of y,, . To evaluate the integral, 
we recall formula (10) and write 

J f(ya) dy, f exp {f p d}/x.a+v. dya 

Now define a quantity 4 such that 

Xla +Va ova 
P. 
H 

dr 
JO .,j- dt 

and stubstitute the differential 

dq = ii-v dy. 

inl the integral to give the solutionl 

ff(ya)dya f ' 
e-d4= 1. 

The mathematical expectation of the random variable Ya is the 
expected length of future life beyond the age xa , and thus may be 
called the true expectation of life at age xa . In accordance with the 
definition given the symbol ea , we may write 

cco o f a + va A 

ea j yaf(y)dya = J ya exp j j A dr xa+lla dya (51) 

Thus the explicit function of e,,, and the variance of Ya, 
co z ( a+Va + 

= f2 (Yat -e)2 exp -j , drfrx.-va. dy.a , (52) 

both depend on the force of mortality3. 
We will consider the future lifetimes of 1a survivors as a sample 

of la independent and identical random variables, Y,i , ... , Yla , 
each of which has the probability density function (50), the mathe- 
matical expectation (51), and variance (52). According to the central 
limit theorem, as 1a approaches infinity, the distribution of the sample 
mean 

Ya (Ya ? + + YaIa) 

3While it is not the purpose of this paper to consider particular functions of the force of mortality, 
a separate study of the observed expectation of life under various assumption of the force of mortality 
is in preparation. 
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is approximately normal, with a mean of eCa as given in (51). Clearly 
Ya is equal to 9, , the observed expectation of life at age x,a . 

As in the case of any continuous random variable, the value of 
Ya is not accurately measured. In point of fact, the values of lay random 
variables are not individually recorded in the life table, but rather 
they are grouped in the form of a frequency table in which the ages 
x, and xi+, are the lower and upper limits for the interval i and the 
deaths di are the corresponding frequencies, for i = a, a + 1, * - *, w. 
The sum of the frequencies equals the number of survivors at age x,I or 

da + *? + dw = la . 

The total number of years remaining to the la survivors depends on the 
exact age at which death occurs, or on the distribution of deaths within 
each age interval. 

Suppose that the distribution of deatlis in each interval is such 
that, on the average, each of the di persons lives aini years in the age 
interval (xi , xi+1), where ai is a fractional number, then on the average 
each of the di persons will have lived xi + aini years, or xi - xa + a,ni 
years after age xf , and the observed expectation of life at age xa is 
obviously 

1 w 

e, a=-Z(xi -xa + aini)di, for ao=,I,*** ,w. (53) 
a" i=a 

Using the relationship di = li- 1+1 , and arranging terims, we lhave 
a general formula for the observed expectation of life, 

ea aatn, + E C. - 
i=a+l xx1 

- ana + CiA Cai, for a = 0, 1, w, (54) 
i= a + 1 

where c; = (1 - aj-,)nj-j + ainT, for i > a. Now, if ni = n, for 
a= , a + 1, , w, and if the distribution of deaths in each interval 

is assumed to be uniiform so that ai = , then ci = n and (54) re(duces to 

Ca, -+(la+l? +Iu) (55) 2 l 

a formula often used to compute the observed expectation of life at 
age x. . 

Clearly, under the respective assumptions regarding the distribution 
of deaths in each age interval, the observed expectation of life given 
in formula (54) or (55) is an unbiased estimator of the corresponding 
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true expectation of life as expressed in formula (51). On the other 
hand, because the mathematical expectation of the ratio of survivors, 
li to l, , is equal to the ratio of their expectations, lopoi to loPoa , as 
shown in formula (41), the mathematical expectation of the observed 
expectation of life as given by (54) is simply 

ea = aana + E cipi,, for a = 0, 1, ***,w. (56) 
i= a+l 

Formula (56) will be used in developing the formula for the variance 
of 'a . As a further aid in deriving the variance of e'a it is convenient 
to note the relationship between ej+, and ei , the expectation of life 
at the begiinnng of two consecutive intervals, 

ei-aini = [e,+? + (1 -aj)njpj, for i-1, *=*, w -1. (57) 

The variance of the observed expectation of life is obtained from (54), 
expressing ea as a linear function of the proportions of survivors. Thus 
its variance is 

w w-1 W 
2 2 2 ci +2 S E , for a = 0, , w. (58) 

i= a+ i=a+l i=i+l 

Substituting formula (48) in (58), we have 
W t w-l IV 

ea- 
E 

C2iPai(l-pai) 
+ 2 CiciPai(pa 

ai) 
la -i=a t-l i=a+l i=i+l 

IV ?U-1 ?V W2 

LE L Cipai + 2 E Ci E CjPa - E CiPai (59) la -i=a+l i=a+l i=i+l i=a+l 

Using the relation Paj = PaiPii and formula (56), 

2 
ECa 

1 2 + 2 cipai(ei -an)- (ea -aana)2 
a = y'- (eaWn)21 &a/Li.a+l J=+ 

= E() a {c,(ci -2aini) + 2cjejjpai -(e,,aan-)2] (60) la -i=a+1 

Since ci- (1 - a-,)nj- + aini , the quantity inside the braces may 
he rewritten as 

ci(ci- 2aini) + 2ciei 

= [(1 - a_)2n,a - -naini] + 2[(1 - aj-)nj-, + ainije 

= [ei + (1 - ai-j)ni1]2 - [ei -ainj 

= [ei + (1 - aiI)nj ]2-[ei+l + (1-a)n a inp 
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Substitution of the last expression in (60) gives 

2 1i\F 2 ( 
= a...E [ {e + -ai-i)nil}2pai 

la -i aC+1 

- Iei+1 + (1 -a)ni}2p ipa]-(ea -aana)2] (61) 

Making the substitutions of pa,w+i - 0 and (ea - aana) = 

[ea+i + (1 -aa)na]pa in (61) and combining terms, 

2 \l/L2p[Ia ( Pa t+I vea = E(l )[ [{ei+- + (? -(ai)nj Panipl 

- lei+, + (l- ai)nj 
1 2 

ptai] 

Since p.,i+l = paipi , we have the final formula for the variance of 
the observed expectation of life at age xa, 

ea = E(L E [F {ei+1 + (I - aj)nj} Paipi(j pi) 2 
la/Li&=a1 

for a = 0, 1, ** *,w-1. (62) 

When E(1/la) is approximated by I/E(la), Pcai is written for E(li)/E(la), 
and (43) is used for the variance of di , formula (62) is reduced to 

w-1 
2 

= E pci[ei+ 
? (1-aI) ]2_ i for -0, 1, *, w - 1. (63) 

i=ai 

Thus we have proved a rather useful theorem in the study of the 
life table. 

Theorem. If the distribution of deaths in the age interval (xi , xi+,) 
is such that, on the average, each of the di individuals lives a,n, years 
in the interval, for i = a, a + 1, * , w, then as la approaches infinity, 
the probability distribution of the observed expectation of life at age Xa 

as given by (54) is asymptotically normal and has the mean and the variance 
as given by (56) and (63), respectively. 

It should be noted that (63), which is an approximation to the exact 
formula (62) for the variance of 9,, when lr is a random variable, is 
identical with (62) when la is a given constant, such as lo . 

As a matter of practical interest, the following corollary deserves 
particular mention. 

Corollary: If the age interval is constant, that is, if ni = n, and 
if the distribution of deaths in each interval is such that, on the average, 
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each of the di individuals lives half the interval (xi , xi+,), for i = a, 
ce + 1, *., w, then the variance of the observed expectation of life at 
age Xa as given by (55) is 

2 w ( nl2j 
a= E 2n E pae-ea + , for ae = 0,***, w. (64) 

Proof. When ni = n and ai = c = n and ci - 2aini 0. From 
(60) we have 

Sa2 

_ 

E(-)I2n , PaiCe 
- 

a -2 ] 

which can be rewritten as (64). 
Remark 3: Although the theorem concerning the asymptotic dis- 

tribution of the observed expectation of life is true for the cohort and 
the current life table, it is not clear why formula (63) holds also for 
the latter case. In the current life table, the basic random variable 
4i is computed from actual mortality experience and, in general, its 
variance is not given by either formula (42) or formula (43). There- 
fore it is essential to prove (63) from the viewpoint of the current 
life table.4 

The observed expectation of life, as given in (54), is a linear function 
of Pai , which, in the current life table, is computed from 

Pai papa+1 Pi-1, for j= + 1, **,w. (65) 

Clearly, the derivatives taken at the true point (Pa , Pa+i, ** , pi-l are 

[apjPai ] = PaiPi+ 1, i for a < i < j; 

= 0, for i?j, (66) 

and hence 

{dfi ea} = E CjpipiI., i 

-P ai ci+i + ] Cjpil i 
j-i+2 

= p,ai[ei+j + (I- aini]. t67) 

4Using a different approach [12], professor E. B. Wilson derived the following formula for the 
variance of Az, 

w-1 

2 - 
12 ei+1 + ain i 2 

a i ra 

which is in error in that the quantity aini should be replaced by (1 - ai)nj . 
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Because of (66), the derivative (67) vanishes when i = w. Since it 
has been shown in Lemma 3 that the covariance between proportions 
of survivors of two non-overlapping age intervals is zero, the variance 
of the observed expectation of life may be computed from the following: 

2 w-1 2 2 

a@; = 1E KA e, 2 (68) 

Substitution of (67) in (68) gives formula (63). 
When the distribution of deaths within each age interval is assumed 

to be uniform, ai = 2, and (63) becomes 

a Pt i esl + 2 ] for a =, 1, I , w. (69) 
= >j ? 
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