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LONG-RANGE TRENDS IN ADULT MORTALITY:

MODELS AND PROJECTION METHODS*

JOHN BONGAARTS

In the study reported here, I had two objectives: (1) to test a new version of the logistic model
for the pattern of change over time in age-specific adult mortality rates and (2) to develop a new
method for projecting future trends in adult mortality. A test of the goodness of fit of the logistic
model for the force of mortality indicated that its slope parameter is nearly constant over time. This
finding suggests a variant of the model that is called the shifting logistic model. A new projection
method, based on the shifting mortality model, is proposed and compared with the widely used Lee-
Carter procedure.

ver the past two centuries, life expectancy at birth in the industrialized (“developed”)
world approximately doubled, reaching 79 years for females and 72 years for males in
2000–2005 (United Nations 2002). Much of this rise is attributable to large reductions in
infant and child mortality. Mortality among the young is now so low, however, that fur-
ther declines will have little impact on future trends in life expectancy. Future increases
in life expectancy will therefore require additional reductions in adult mortality. In this
article, I examine past trends in the age pattern of adult mortality and discuss their impli-
cations for long-range mortality projections.

The description of observed age patterns of adult mortality with mathematical mod-
els is one of the oldest and most important topics in demography. The number and com-
plexity of mortality models have grown rapidly since Gompertz proposed the first “law of
mortality” in 1825. A good model provides a simple but adequate mathematical descrip-
tion of mortality by age and/or time. The objective is to identify fundamental and persis-
tent patterns in the data and summarize them with as few parameters as possible. Models
have found many uses, including smoothing of data, construction of model life tables,
comparative analyses, testing of theories, and forecasting (Keyfitz 1984; Tabeau, Jeths,
and Heathcote 2001).

A concise model description of past mortality trends provides the basis for projec-
tions. The theory and practice of forecasting mortality have evolved rapidly in recent
decades, and there are many ways to make forecasts (Keyfitz 1991; Lee 1998; Olshansky
1988; Pollard 1987; Tabeau et al. 2001). Projections for the short run typically rely on a
simple extrapolation of historical trends in mortality rates, in life expectancy, or in model
parameters. However, in projections for periods of more than a few decades, linear ex-
trapolation can lead to implausible results, and expert judgment is then often used to de-
cide which long-range levels or trends are the most probable. For example, experts may
identify a target for life expectancy at birth in a future year. This has been the approach
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used by the United Nations, the World Bank, and many national statistical agencies to
make long-range population projections.

In the study presented here, I had two objectives: (1) to test a new version of the
logistic model to describe the pattern of change over time in age-specific adult mortality
rates and (2) to develop a new method for projecting future trends in adult mortality. The
first part of the article presents a brief overview of models for the age pattern of adult
mortality and a test of the goodness of fit of the logistic model for the force of mortality.
This test uses data from the Human Mortality Database for women and men aged 25–109
in 14 populations. The results of this exercise suggest a new version of the logistic model
that I call the shifting logistic model because the senescent component of adult mortality
is assumed to shift to higher ages over time. In the second part of the article, I propose a
new projection method that is based on the shifting mortality model. The method is com-
pared with the Lee-Carter procedure, which is one of the most widely used methods for
projecting mortality.

MODELS FOR THE FORCE OF MORTALITY

Age Pattern

Mortality rates in a wide range of populations show an approximately exponential rise
with age for adults. A simple parametric model proposed by Gompertz (1825) summa-
rizes this pattern:

µ(x) = αeβx, (1)

where µ(x) denotes the force of mortality at age x. The two parameters α and β are posi-
tive; α varies with the level of mortality, and β measures the rate of increase in mortality
with age.

For many purposes, the Gompertz model provides a satisfactory fit to adult mortality
rates. However, a close inspection of the difference between model estimates and ob-
served death rates often reveals systematic underestimation of actual mortality at young-
est adult ages (younger than 40) and overestimation at the oldest ages (over 80). The
deviation at lower ages was addressed by Makeham (1860) with the addition of a constant
to the Gompertz model:

µ(x) = αeβx + γ . (2)

The new parameter γ is usually referred to as background mortality, which is the same
for all ages. A detailed analysis of Eq. (2) was provided by Gavrilov and Gavrilova
(1991).

The Makeham model represents a clear improvement over the Gompertz model at
younger ages, but it still overestimates mortality at the oldest ages. This deviation can be
addressed in a number of ways, most simply by the following logistic model (Thatcher
1999; Thatcher, Kannisto, and Vaupel 1998):
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At lower adult ages the force of mortality estimated with Eqs. (3) and (2) are similar
because the denominator of the first term in Eq. (3) is close to 1.0. At the oldest ages,
however, the two models diverge as Eq. (3) levels off at 1+ γ, while Eq. (2) has no limit.

More-complex logistic models with additional parameters have also been proposed
(Beard 1971; Horiuchi and Wilmoth 1998; Perks 1932; Thatcher et al. 1998). On the basis
of a detailed comparison of different models, Thatcher (1999) and Thatcher et al. (1998)
recommend Eq. (3) because it provides an excellent fit to mortality rates over the entire
adult age range with relatively few parameters.
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The good fit of the logistic model in Eq. (3) is demonstrated in Figure 1, which pre-
sents observed and estimated values of the force of mortality µ(x) for Swedish women
aged 25–109 in 1850, 1950, and 2000. The proportion of the variance explained by the
model equals 0.9994 in 1850, 0.9996 in 1950, and 0.9985 in 2000.

To confirm these results for other populations, the model given by Eq. (3) was fitted
to annual mortality data from 1950 to 2000 for 14 countries, separately for men and
women. All countries in the Human Mortality Database outside Eastern European were
included. Table 1 presents averages of annual estimates for the three parameters in the
logistic model (α, β, and γ) for women and men aged 25–109 in each of the 14 countries
for all available years 1950–2000.1 These results are discussed in detail later, but for now
it should be noted that the model fits well in all these countries (see the next-to-last col-
umn in Table 1). The fit is about the same for women (R2 averages 0.9993 for the 14
countries) as for men (R2 averages 0.9996).

Although the simple logistic model is well suited for my present purposes, its fit is
not perfect. An examination of differences between observed and fitted values reveals
small systematic overestimation of mortality between ages 60 and 80, as well as some
underestimation at the highest ages among women in a number of countries. This pattern
is consistent with the findings of Himes, Preston, and Condran (1994).

In the following analysis of trends in adult mortality, it is useful to distinguish be-
tween senescent mortality, which rises with age, and background mortality, which does

Figure 1. Age-Specific Death Rates for Swedish Women, Observed and Estimated With Logistic
Model
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1. Data are available for most years from 1950 to 2000 in the 14 countries, but in several cases, data for the
last year(s) in the late 1990s or the early 1950s are missing. For details, see http://www.mortality.org. The
nonlinear least-squares routine in STATA was used to obtain estimates of the parameters in the logistic model.
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Table 1. Parameters of the Logistic Model for Adult Mortality Fitted to Observed Age-Specific
Death Rates for Ages 25–109, Average of Annual Estimates for All Available Years From
1950 to 2000 in 14 Countries

α(t) × 105 β(t) γ(t)

R2 R2(level) (slope) (background)

Variable Constant
_________________ _________________ ___________________

Coefficient Coefficient Coefficient
of of of β(t), β,

Average Variation Average Variation Average Variation Average Average

Females
Austria 0.87 0.310 0.117 0.016 0.00052 0.512 0.9991 0.9991

Canada 1.55 0.292 0.106 0.019 0.00035 0.389 0.9996 0.9996

Denmark 1.52 0.203 0.108 0.042 0.00029 0.658 0.9988 0.9987

England 1.42 0.184 0.109 0.016 0.00027 0.729 0.9997 0.9997

Finland 0.75 0.349 0.119 0.019 0.00053 0.633 0.9991 0.9991

France 0.85 0.443 0.115 0.027 0.00068 0.341 0.9992 0.9991

Italy 0.73 0.346 0.118 0.020 0.00052 0.556 0.9996 0.9996

Japan 0.76 0.628 0.118 0.033 0.00093 0.969 0.9996 0.9995

Netherlands 0.76 0.181 0.116 0.016 0.00035 0.304 0.9994 0.9993

Norway 0.65 0.189 0.117 0.016 0.00032 0.465 0.9992 0.9992

Sweden 0.69 0.290 0.117 0.019 0.00038 0.330 0.9992 0.9992

Switzerland 0.62 0.551 0.120 0.031 0.00047 0.301 0.9991 0.9991

United States 2.18 0.253 0.101 0.018 0.00042 0.183 0.9996 0.9996

West Germany 0.85 0.228 0.116 0.011 0.00046 0.346 0.9994 0.9994

Average 1.01 0.318 0.114 0.022 0.00046 0.480 0.9993 0.9993

Males
Austria 2.98 0.215 0.106 0.018 0.00097 0.267 0.9995 0.9994

Canada 3.97 0.333 0.100 0.039 0.00066 0.180 0.9996 0.9995

Denmark 2.66 0.278 0.106 0.039 0.00057 0.296 0.9994 0.9993

England 2.82 0.272 0.107 0.020 0.00032 0.482 0.9995 0.9995

Finland 5.77 0.351 0.099 0.035 0.00088 0.473 0.9994 0.9993

France 4.20 0.249 0.101 0.019 0.00098 0.242 0.9995 0.9995

Italy 2.54 0.332 0.107 0.032 0.00076 0.431 0.9996 0.9996

Japan 2.23 0.366 0.108 0.017 0.00104 0.809 0.9998 0.9998

Netherlands 1.99 0.318 0.109 0.036 0.00042 0.421 0.9996 0.9995

Norway 1.96 0.330 0.109 0.039 0.00067 0.334 0.9996 0.9995

Sweden 1.48 0.299 0.112 0.030 0.00073 0.207 0.9997 0.9996

Switzerland 1.80 0.408 0.111 0.035 0.00090 0.236 0.9994 0.9994

United States 6.36 0.412 0.094 0.041 0.00087 0.348 0.9998 0.9996

West Germany 2.92 0.173 0.105 0.017 0.00070 0.297 0.9998 0.9998

Average 3.12 0.310 0.105 0.030 0.00075 0.359 0.9996 0.9995

Source: Estimated from data in the Human Mortality Database.



Long-Range Trends in Adult Mortality 27

not vary with age (Gavrilov and Gavrilova 1991; Horiuchi and Wilmoth 1998; Makeham
1860). The sum of these two components equals the force of mortality:

µ(x,t) = µs(x,t) + µb(t), (4)

where µs(x,t) is the senescent force of mortality and µb(t) is the background force of mor-
tality. For the logistic model, the first term on the right-hand side of Eq. (3) equals the
senescent force of mortality µs(x,t), and the background parameter γ(t) equals the back-
ground force of mortality µb(t).

Figure 2 plots model estimates of these two components for Swedish women in 1850,
1950, and 2000. The senescent component rises linearly from age 25 to about age 75
because in this age range, the denominator of the senescent component of Eq. (3) is close
to 1.0, and the remaining exponential term in the numerator becomes a straight line when
plotted on a logarithmic scale, as is the case in Figure 2. At ages older than about 75, the
rate of increase in the force of mortality with age declines in the logistic model, and at
very high ages, the senescent force of mortality µs(x,t) approaches 1.0. The age-invariant
background component (plotted as horizontal lines in Figure 2) has declined sharply over
time, from 0.0071 in 1850 to 0.00078 in 1950 and to 0.00013 in 2000. The senescent and
background components in Figure 2 add up in each year to the overall model estimate of
the force of mortality plotted in Figure 1. At high ages, background mortality is small
compared with senescent mortality, and it may be ignored for many analytic purposes,
especially in contemporary countries with high life expectancy.

Trends Over Time

Trends in adult mortality can be summarized with time series of the three parameters of
the logistic model, α(t), β(t), and γ(t). Panels a–c of Figure 3 present estimated trends in
these parameters for each of the 14 countries from 1950 to 2000. Several conclusions can

Figure 2. Model Estimates of the Senescent and Background Death Rates of Swedish Women, by
Age
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Figure 3. Estimates of Level Parameter αα, Slope Parameter ββ, and Background Parameter γγ in the
Logistic Model for 14 Countries: Women, 1950–2000
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be drawn from these results. There is considerable variation among countries in the level
parameter α(t), but the trend in this parameter is typically downward. The same is true for
background mortality γ(t) (see Panel c of Figure 3), but there is less variation among
countries in γ(t) than in α(t). In addition, declines in background mortality are confined
mostly to the period 1950 to 1975. After 1975 there appears to be little systematic trend
in γ(t) in many of these countries, suggesting that background mortality has reached a
low-level plateau.

The most interesting finding in Panel b is that the values of the slope parameter β(t)
are nearly constant for each population. Similar patterns are observed for men (data not
shown). This finding confirms earlier observations by Gavrilov and Gavrilova (1991) and
Thatcher (1999). In fact, the near-constancy of the slope parameter extends further into
the past. For example, for Swedish women β(t) averaged 0.112 for 1850–1900, 0.119 for
1900–1950, and 0.117 for 1950–2000.

The conclusion about the lack of variation with time in the slope parameter β(t) is
confirmed in Table 1, which presents averages of annual estimates of the coefficients of
variation in the parameters of the logistic model α(t), β(t), and γ(t) for women and men in
14 countries for the period 1950–2000. The coefficient of variation of the slope parameter
β(t) is small, averaging just 2.2% for women and 3.0% for men. In contrast, the coeffi-
cients of variation for the level and background parameters, α(t) and γ(t), are at least an
order of magnitude larger for both men and women. Clearly, the level and background
parameters are much more variable than the slope parameter.

Shifting Logistic Model

The finding that slope parameter β(t) is nearly constant suggests a variant of the logistic
model in which this parameter is assumed to be fixed over time for a population. The
senescent component of the standard model in Eq. (3) then simplifies to
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and the total force of mortality is given by
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In this formula, α(t) and γ(t) are the only time-varying parameters. The value of the slope
parameter β can differ among populations and may take different values for men and
women, but it is constant with respect to time.

A change in the senescent force of mortality from µs(x,t0) at time t0 to µs(x,t) at time t
is conventionally interpreted as a rise or decline in mortality rates. Eq. (5) offers an alter-
native and unconventional description of changes in the force of mortality. Instead of
interpreting mortality as rising or falling, the schedule of the force of senescent mortality
can be viewed as shifting to higher or lower ages over time. This interpretation is possible
because Eq. (5) has an interesting and useful property: the age pattern of the senescent
force of mortality µs(x,t) at time t is the same as at an earlier time t0, except that the
function has shifted to higher (lower) ages as senescent mortality falls (rises). The senes-
cent force of mortality at age x in year t is identical to the value in an earlier year t0 at age
x – S(t) except around age 0. As a result, Eq. (5) can be written as
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where S(t) equals the amount of the shift in years up or down the age axis between t0 and t
(Eq. (7) holds for x > S(t), and µs(x,t) = 0 for x < S(t)). As shown in Appendix A, the
conventional up-down and the alternative shifting interpretations are formally equivalent
for the logistic model with

    
S t

t t
( )

ln( ( ) / ( ))
.= − α α

β
0 (8)

That is, a change in the senescent force of mortality between t0 and t can be described
with Eq. (5) as a change in the level parameter α(t0) to α(t) or equivalently with Eq. (7) as
a shift by S(t) years.

The idea of a shifting mortality schedule can be clarified further by introducing the
senescent life expectancy at birth, denoted as es(t) and defined as
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It equals the average age at death of a newborn, subject to the senescent force of mortal-
ity µs(x,t), assuming no background mortality and no nonsenescent mortality at younger
ages. The shift to higher or lower ages in the force of the senescent mortality function
between t0 and t is closely approximated by the change in senescent life expectancy be-
tween t0 and t:

S(t) ≈ es(t) – es(t0) (10)

because µs(x,t) is very small around age 0.
The pattern of the force of senescent mortality µs(x,t) given by Eqs. (5) and (7) is

referred to as the shifting logistic model. It is a member of a more general class of models
for which the shifting assumption holds with

µs(x,t) = µs(x – S(t),t0). (11)

The shifting logistic model always implies Eq. (11), but the shifting assumption given by
Eq. (11) may hold even when µs(x,t) does not follow a logistic pattern (discussed later). It
should be emphasized that, in general, the shifting property applies only to senescent
mortality, not to all adult mortality.

The shifting is evident in Figure 2, where the lines for senescent mortality in 1850,
1950, and 2000 have similar shapes, with the schedules for later years moved to higher
ages compared with earlier years. The shift equaled four years between 1850 and 1950
and seven years between 1950 and 2000. A shifting pattern for mortality change was pro-
posed earlier by Kannisto (1996), and some of its implications were examined by
Bongaarts and Feeney (2002, 2003).

The shifting logistic model describes changes over time in the age pattern of senes-
cent mortality with only one time-varying parameter (either the level α(t) or the shift
S(t)). This advantage is offset by some loss in the goodness of fit. However, the propor-
tion of variance explained by the shifting model with constant slope parameter β is still
an impressive 0.9993 for women and 0.9995 for men (average of 14 populations and all
years from 1950 to 2000). The last column of Table 1 presents the R2 values for men and
women in each of the 14 countries, with the slope β held constant at its average for 1950–
2000. These results are only slightly smaller than the R2 for the logistic model with a
variable β(t) presented in the next-to-last column in Table 1.

These results indicate that the shifting logistic model provides a good general
description of age patterns of adult mortality in many countries for the past half century.
The implications of this finding for mortality projections are discussed next (see
Appendix B for an analysis of the implications of the model for rates of change in
mortality).
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PROJECTING ADULT MORTALITY RATES

The models for the force of mortality discussed in the preceding section are now applied
to gain insights into projection methods. After a brief description of the Lee-Carter
method, a new forecasting approach is proposed.

The Lee-Carter Method

Lee and Carter (1992) described a new statistical method for modeling and forecasting
mortality by age that has been adopted widely. For example, the U.S. Census Bureau uses
the Lee-Carter forecast as a benchmark for its long-run forecast of life expectancy
(Hollman, Mulder, and Kallan 2000), and a Social Security Technical Advisory Panel
recommended the adoption of the method (Lee and Miller 2001; Technical Panel on As-
sumptions and Methods 1999). Projections of mortality for the G7 countries by
Tuljapurkar, Li, and Boe (2000) also used this method. On the basis of the recommenda-
tions of an expert group, the United Nations Population Division has prepared its long-
range projections to 2300 for all countries in the world with a variant of the Lee-Carter
model (United Nations 2003). Recent discussions of the model and its applications can be
found in Booth, Maindonald, and Smith (2002), Carter and Prskawetz (2001), Lee (1998,
2000), Lee and Miller (2001), and Tabeau et al. (2001).

The Lee-Carter method is based on the following mortality model:

ln[m(x,t)] = a(x) + b(x)κ(t) + ε(x,t), (12)

where m(x,t) is the central death rate at age x and time t, κ(t) is the index of level of
mortality, a(x) are age-specific constants describing the general pattern of mortality by
age, b(x) are age-specific constants for the relative speed of mortality change, and ε(x,t)
is the residual. This model provides a good fit to past age-specific mortality rates in the
United States, explaining 93% of the within-age-group variance between 1900 and 1987
(Lee and Carter 1992).

Eq. (12) provides the basis for making mortality projections. A projection requires
only the extrapolation of the index κ(t) because a(x) and b(x) are estimated from past data
and are held constant for the duration of the projection. An ARIMA time-series model is
usually used for the index κ(t), and Lee and Carter (1992) and other analysts have as-
sumed a random walk with a drift that describes past trends in κ(t) well. The implication
of assuming a linear trend in κ(t) to continue into the future is that mortality rates at all
ages follow an exponential decline. That is, the projected proportional rate of mortality
decline ρ(x,t) in a future year t varies by age, but it is assumed to remain equal at each
age to the rate observed in the past:

ρ(x,t) = ρh(x), (13)

where ρh(x,) is the observed rate of decline in the death rate at age x over some historical
period h that ends in the base year of the projection. To ensure robust results, Lee and
Carter recommended that estimates of past rates of decline ρh(x) be based on historical
data for periods of several decades.

The model has several attractive features: a relatively simple demographic model
captures the main trends in patterns of past mortality change, forecasting is based on
persistent long-term trends and involves no subjective judgment, and the application of
statistical time-series methods provides probabilistic confidence intervals for the fore-
cast (Booth et al. 2002; Lee and Miller 2001). In addition, tests in several populations
have indicated that the projections made with this method are accurate over short time
horizons (Lee and Miller 2001). The Lee-Carter method, however, also has a limitation
that becomes increasingly significant as the projection duration rises. The central as-
sumption that the rate of decline in mortality at each age remains invariant over time
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have been violated in several countries in recent decades. Instead of being constant, rates
of improvement in mortality have tended to decline over time at younger ages, while
they have risen at older ages (Booth et al. 2002; Carter and Prskawetz 2001; Lee 2000;
Lee and Miller 2001). Appendix B confirms that the age pattern of the rate of mortality
decline ρ(x,t) has varied over time and examines the factors underlying this variation.
This finding implies that rates of improvement are likely to continue to change in the
future. By not allowing such change, the Lee-Carter method may produce implausible
results in projections over many decades. Some investigators have attempted to address
this limitation by adding complexity and additional parameters to the Lee-Carter model
(Booth et al. 2002; Carter and Prskawetz 2001). The alternative approach proposed next
provides a simpler solution.

A New Projection Procedure

The shifting logistic model suggests several ways to project future age-specific rates of
adult mortality. The simplest approach consists of fitting the logistic model with a fixed-
slope parameter to past data, followed by extrapolation of the model parameters. The
preparation of such a basic projection consists of the following four steps:

1. Fit the three-parameter logistic model in Eq. (3) to mortality schedules for a se-
lected period before the base year of the projection. This fitting exercise produces time
series for each of the three parameters in the logistic model, α(t), β(t), and γ(t). As I
discussed earlier, Figure 3 illustrates this step for women in 14 countries from 1950 to
2000. (These estimates were obtained with the nonlinear least-squares routine in STATA.)

2. Fix the value of the slope parameter β at its average value and fit the two-parameter
model in Eq. (6) to the same data. The resulting time series of level parameter α(t) and
background parameter γ(t) differ slightly from those obtained in Step 1. Figure 4 presents
these new estimates for the same 14 countries from 1950 to 2000 (note the logarithmic
scale).

3. Extrapolate the level parameter α(t) and background parameter γ(t) obtained in
Step 2 for the desired duration of the projection.2

4. Construct future adult mortality schedules as logistic curves using Eq. (6), based
on the extrapolated values of parameters α(t) and γ(t).

This four-step projection procedure is straightforward and relatively easy to apply,
and it should give satisfactory results in populations in which the logistic model in
Eq. (6) fits well. However, in some populations, the differences between the observed and
fitted mortality rates may be significant and systematic at some ages. In such cases, one
of the following variants of the foregoing basic projection procedure will be preferable:

Variant 1. Although the standard logistic model in Eq. (5) fits well, more-complex
logistic models provide an even better fit. As Thatcher (1999) noted, a simple four-
parameter logistic model can be obtained by multiplying the numerator of the senescent
force of mortality µs(x,t) in Eq. (5) by an additional parameter λ. In the three-parameter
model used in this study, λ is assumed to be equal to 1. Allowing λ to deviate from 1
should provide a better general description of age patterns of mortality, particularly at the
highest ages. In projections λ may be held constant, as is the case now for slope param-
eter β. The implementation of this variant follows the previous four steps, but in Step 1,
four parameters—α(t), β(t), γ(t), and λ(t)—are estimated, and in Step 2, β(t) and λ(t) are
held constant while α(t) and γ(t) are reestimated.

Variant 2. An approach that is still more flexible is not to rely on a logistic model in
Step 4 and to assume only that the shifting assumption holds in the future. That is, instead
of constructing future adult mortality schedules as logistic curves, senescent mortality is

2. To avoid the influence of random fluctuations in past estimates of α(t) and γ(t) on the projection, it is
usually desirable to smooth these time series by taking a three- or five-year moving average before extrapolating.
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projected as a shifted version of the observed schedule in the base year, using Eq. (11). In
this approach, the age pattern of senescent mortality observed in the base year is shifted
to higher ages in future years while maintaining its original shape.3 The amount of the
shift S(t) for each future year is estimated from the projected trend in level parameter α(t)
with Eq. (8). Background mortality is projected separately on the basis of the extrapola-
tion of background parameter γ(t).

The choice of whether to use the basic method or one of these two variants should be
informed by how well the simple three-parameter logistic model fits recent observed mor-
tality rates. If the fit is extremely good and only random deviations are present, then the
basic method may be adequate. If the fit is good at all ages except among the oldest-old,

Figure 4. Estimates of Level Parameter αα and Background Parameter γγ in the Shifting Logistic
Model (Constant ββ) for Women in 14 Countries
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then Variant 1, with the four-parameter logistic, is a better choice. Finally, if systematic
deviations between model and observed rates are present, then Variant 2 should give the
best results. This variant is more complex to implement, but it has clear advantages: there
are no discontinuities in trends in age-specific mortality rates at the beginning of the pro-
jection, and the country-specific features of the mortality schedule that are not captured
by the logistic are preserved in the projection.4

A brief comment on the method of extrapolation of the level and background param-
eters is in order. As shown in the top graph in Figure 4, the values of the level parameter,
as measured by log[α(t)], have declined at a nearly constant pace over the past half cen-
tury in the 14 countries. Extrapolation of log[α(t)] can therefore rely on the same time-
series model used by Lee-Carter to project their index κ(t): a random walk with a drift.
The near-linear trends in log[α(t)] that are observed in the top graph of Figure 4 suggest
that it is reasonable to assume that this trend will continue for a few more decades, but it
is not clear whether this will be the case in very long-range projections. It is interesting to
note that, according to Eqs. (8) and (10), linear extrapolation of log[α(t)] yields a linear
extrapolation of senescent life expectancy, es(t).

The same extrapolation approach can be used to project values of the logarithm of
background mortality. However, it is evident from the bottom graph in Figure 4 that the
pace of decline in log[γ(t)] is not as steady as in log[α(t)]. Alternative nonlinear methods
may therefore be preferable for extrapolating background mortality, but these methods
are not examined further here. Values of background mortality have reached such low
levels in contemporary developed countries that a small error is of little consequence in
projections.

Since this article focuses on adult mortality, no attempt is made to propose alterna-
tive ways to project child and young adult mortality. Moreover, the shifting model does
not apply to mortality patterns at ages younger than 25. No improvement over conven-
tional methods can therefore be suggested. Further details on projection methods for the
youngest age groups can be found in Pollard (1987), Tabeau et al. (2001), and United
Nations (2002).

Illustrative Applications

A detailed evaluation of the new projection methods and comparison with the Lee-Carter
approach are beyond the scope of this article, but Figure 5 presents an illustrative applica-
tion for adult mortality of Swedish women. The initial year for the projection is 1975, and
the projection from 1975 to 2000 is based on an extrapolation of estimated parameters
from 1950 to 1975. Figure 5 presents three mortality schedules for 2000: the observed one
and two projections, obtained with the new method and with the Lee-Carter method.5 Both
methods performed well, and their projected age-specific mortality rates are similar to the
observed rates in 2000. The observed life expectancy at age 25 rose from 49.9 years in
1950 to 54.12 years in 1975 to 57.5 years in 2000. The projected life expectancies at age 25
in 2000 were 57.7 years for the new method and 58.0 years for the Lee-Carter method. In
this application, the differences between the two methods are minor.

Figure 6 presents another illustrative application in which the initial year for the pro-
jection is 2000, and the projection from 2000 to 2100 is based on an extrapolation of
estimated parameters from 1950 to 2000. In this long-range projection, the two methods

4. The new projection method can also be applied in populations for which mortality data are available
only for a single year or period. This is the case for many developing countries, where mortality data are often
limited. The available information for one period provides the baseline estimates of levels of background and
senescent mortality, but in the absence of past data, analysts will have to make assumptions about future trends
in the parameters α(t) and γ(t).

5. Annual estimates of parameters and age-specific death rates from 1950 to 1975 that are used in these
projections were smoothed by taking a five-year moving average.
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Figure 5. Comparison of Alternative Projections of Death Rates in 2000 (1975 Base Year): Swedish
Women
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Figure 6. Comparison of Alternative Projections of Death Rates to 2100: Swedish Women
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produce different age patterns in 2100. Compared with the new method, the Lee-Carter
projection expects little improvement in mortality at the highest ages and large improve-
ments in the 60–80 age group. It is not obvious which projection is preferable. However,
a simple theoretical argument supports the view that the new approach gives more-robust
long-range projections for the age pattern of mortality than does the Lee-Carter method.
The Lee-Carter method is equivalent to extrapolating past trends in mortality rates for
each age group at its own exponential rate (Lee and Miller 2001; McNown 1992). This
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method is potentially problematic because any differences between the b(x) values of suc-
cessive age groups will eventually cause differences between the projected mortality rates
of these age groups either to become very large or to turn negative. In either case, the
Lee-Carter method may forecast implausible age patterns in the very long run. In con-
trast, the new method ensures that the age structure of senescent mortality remains plau-
sible, regardless of the duration of the projection.

CONCLUSION

Past age patterns in the force of mortality among adults are well described with a simple
logistic model in which the slope parameter is assumed to be constant over time within
each population. The model includes separate components for background and senescent
adult mortality, each of which is summarized with one time-varying parameter. Despite
its simplicity, this model captures the main features of complex changes over time in age-
specific mortality rates among adults.

The constancy of the slope parameter in this model implies that the senescent compo-
nent of the force of mortality shifts to higher or lower ages as mortality conditions improve
or deteriorate for adults. This shifting model introduces an alternative way of thinking
about changes in mortality. The conventional view is that a change in senescent mortality
implies increases or decreases in age-specific mortality rates. The proposed new view
considers a change in senescent mortality rates to be the result of delays in the timing of
death. This alternative perspective is captured in the shifting logistic model, which pro-
vides a parsimonious description of past trends in senescent mortality.

The shifting mortality model also provides the basis for a new method for making
projections of age-specific mortality that has certain advantages over existing procedures.
In particular, the method addresses a key weakness in the Lee-Carter method (i.e., the
assumption that the age-specific rate of decline in mortality remains constant over time).
Further research is needed to establish whether and under what conditions the proposed
new method produces more-accurate projections than do existing methods.

APPENDIX A: RELATIONSHIP BETWEEN LEVEL PARAMETER αααααααααα(t) AND
THE SHIFT IN THE SENESCENT FORCE OF MORTALITY

A decline in the value of the level parameter from α(t0) at time t0 to α(t) at time t implies
a decline in senescent mortality from µs(x,t0) to µs(x,t) as estimated from Eq. (5).

Let the ratio of α(t) to α(t0) be denoted p(t), with
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Substitution of Eq. (A1) in Eq. (5) gives
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Substitution of Eq. (A3) in Eq. (A2) gives
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A decline in α between t0 and t is equivalent to a shift of S(t) years in the schedule of the
force of mortality, with S(t) given by Eq. (A3).

APPENDIX B. MODELS FOR THE RATE OF CHANGE IN THE FORCE OF
MORTALITY

Past studies of mortality trends have yielded important insights by examining the rate of
change in the force of mortality with respect to age or time (Horiuchi and Coale 1990;
Horiuchi and Wilmoth 1998; Keyfitz 1977; Vaupel 1986; Vaupel and Romo 2003). The
shifting model provides useful insights into the factors that determine trends in the rate of
change in the force of mortality.

Rate of Change by Age

The relative derivative of the force of mortality µ(x,t) with respect to age is defined as

    
k x t

x t

x t

x
( , )

( , )

( , )= 1

µ
∂µ

∂
(B1)

and is referred to as the age-specific rate of mortality change with age (Horiuchi and
Coale 1990) or the life-table aging rate (Horiuchi and Wilmoth 1998).

Figure B1 plots observed and model estimated values of k(x,t) for Swedish women in
1850, 1950, and 2000. The pattern is bell shaped and varies over time. It is also somewhat
different for men than for women (data not shown).

To interpret these changes with age and over time, it is useful to decompose
k(x,t) into two additive factors representing the senescent component ks(x,t) and the
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background component kb(x,t) (see Horiuchi and Wilmoth 1998 for a slightly different
decomposition):

k(x,t) = ks(x,t) + kb(x,t). (B2)

The senescent component ks(x,t) is defined as the aging rate that would be observed in the
absence of background mortality, and kb(x,t) equals the difference between k(x,t) and
ks(x,t).

As shown in Appendix C, for the shifting logistic model,
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Figure B2 plots the model senescent component ks(x,t) for Swedish women in 1850, 1950,
and 2000. At the youngest ages, ks(x,t) is approximately constant and equal to β because

   
µ

s
x t( , ) �1. With advancing age, ks(x,t) declines and reaches 0 at very high ages. The

schedules for ks(x,t) and µs(x,t) shift together to higher (lower) ages as senescent life ex-
pectancy rises (falls).

Figure B3 plots model estimates of the background component kb(x,t) for Swedish
women in 1850, 1950, and 2000. The value of kb(x,t) is negative and rises from –β at very
young ages to 0 at the oldest ages. An interesting property of the kb(x,t) schedule is that it
shifts to higher or lower ages. But, in general, this shifting occurs at a different rate from
the shifting in µs(x,t) and ks(x,t). In most countries, kb(x,t) either moves more slowly to the
right than does ks(x,t) (when γ(t) declines but less rapidly than α(t)) or shifts to the left
(when γ(t) declines more rapidly than does α(t)). For Swedish women, the background
component clearly moved to the left between 1850 and 1950 and again between 1950 and
2000 because of a rapid decline in background mortality.

The background and senescent components combine to produce the overall pattern of
k(x,t), as shown in Figure B4 for Swedish women in 1950. In general, shifts over time of

Appendix Figure B2. Senescent Component of the Life-Table Aging Rate, Estimated With the
Shifting Logistic Model: Swedish Women
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the ascending portion of the bell shape at lower ages are attributable to shifts in the
background component kb(x,t), and shifts in the descending portion of the bell shape at
higher ages are caused by shifts in the senescent component ks(x,t) (see the related discus-
sion in Horiuchi and Wilmoth 1998). As a result, the overall bell-shaped pattern for k(x,t)
exhibits complex changes and can move to the left or right and become wider or narrower,
depending on trends in ks(x,t) and kb(x,t), which, in turn, are determined by α(t), β, and γ(t).
This complexity makes it difficult to draw conclusions about trends in senescent mortality
from the overall shape of k(x,t). It is therefore preferable to analyze the background and

Appendix Figure B3. Background Component of the Life-Table Aging Rate, Estimated With the
Shifting Logistic Model: Swedish Women
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Appendix Figure B4. Senescent and Background Life-Table Aging Rate, Estimated With the Shifting
Logistic Model: Swedish Women, 1950
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senescent components separately or to limit the analysis to the highest ages, when senes-
cent mortality dominates.

Rate of Change Over Time

The relative derivative of the force of mortality with respect to time is defined as
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and is called the rate of improvement in mortality (Keyfitz 1977; Vaupel 1986; Vaupel
and Romo 2003).

Annual estimates for ρ(x,t) tend to fluctuate widely, and the empirical analysis of this
variable is therefore usually restricted to averages over periods of one or more decades.
Figure B5 plots observed and model estimated values of ρ(x,t) for Swedish women from
1850 to 1950 and from 1950 to 2000. To interpret these changes with age and over time,
it is again useful to decompose ρ(x,t) into two additive factors—the senescent component
ρs(x,t) and the background component ρb(x,t):

ρ(x,t) = ρs(x,t) + ρb(x,t). (B6)

The senescent component ρs(x,t) is defined as the rate of improvement in mortality that
would be observed in the absence of background mortality, and ρb(x,t) equals the differ-
ence between ρ(x,t) and ρs(x,t).

As shown in Appendix D, if the shifting assumption in Eq. (11) holds, then

   
ρ

s s s
x t e t k x t( , ) ( ) ( , )= � (B7)

   
ρ

µ
µ

b s b

bx t e t k x t
x t

d t

dt
( , ) ( ) ( , )

( , )

( )
,= −�

1
(B8)

where 
   
�e t
s
( ) denotes the derivative of senescent life expectancy with respect to time:

   
�e t de t dt
s s
( ) ( ) /= . Note that Eqs. (B7) and (B8) are valid even if senescent mortality does

Appendix Figure B5. Rate of Mortality Improvement, Observed and Estimated With the Shifting
Logistic Model: Swedish Women
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not follow the logistic, provided that the shifting assumption holds. If the shifting logistic
model does apply, substitution of Eq. (B3) in Eq. (B7) gives

   
ρ β µ

s s s
x t e t x t( , ) ( ) ( , ) ,= − � 1 (B9)

and γ(t) can be substituted for µb(t) in Eq. (B8). Eq. (B9) is a more general version of the
formula 

   
ρ β

s s
t e t( ) ( )= �  derived by Vaupel (1986) for the Gompertz model. (Note also that

when background mortality is constant, 
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Figure B6 plots model estimates of ρs(x,t) obtained from Eq. (B9) for Swedish women
from 1850 to 1950 and from 1950 to 2000. The age pattern of 

  
ρ

s
x t( , )  (but not its level) is

the same as for ks(x,t): at the lowest ages, ρs(x,t) is constant with age, equal to 
   
β �e t

s
( ),

because 
   
µ

s
x t( , ) �1. With advancing age, ρs(x,t) declines and reaches 0 at very high ages,

following the same pattern of relative decline as ks(x,t). The level of ρs(x,t) is substan-
tially higher for 1950–2000 than for 1850–1950 because senescent life expectancy rose at
a more rapid pace in the former than in the latter period. The schedule for ρs(x,t) shifts to
the right as senescent life expectancy rises, as was the case for ks(x,t) and µs(x,t). Varia-
tions in the schedule ρs(x,t) over time and with age are therefore the net result of two
factors: (1) up or down movements over time that are due to variation in 

   
�e t
s
( )  and (2)

shifts to higher (lower) ages as es(t) rises (falls).
Model estimates of the background component of the rate of improvement in mortality

for Swedish women from 1850 to 1950 and from 1950 to 2000 are plotted in Figure B7.
Over these two periods, the decline in background mortality was rapid, and the second
term on the right-hand side of Eq. (B8) has dominated. This term is directly proportional to
the rate of change in background mortality, and, since γ(t) has declined over time (i.e., its
derivative is negative), ρb(x,t) has been positive, as is evident in Figure B7. The more
rapidly γ(t) declines, the more positive ρb(x,t) becomes. In addition, ρb(x,t) declines sharply
with age and approaches zero at high ages. (Note that ρb(x,t) is negative when background
mortality is constant and senescent life expectancy is rising because kb(x,t) is negative.)

The senescent and background components combine to produce the patterns of change
in the overall rate of improvement in mortality ρ(x,t), as illustrated in Figure B8 for Swed-
ish women for the period 1950–2000. At ages younger than about 70, the decline in ρ(x,t)

Appendix Figure B6. Senescent Component of the Rate of Mortality Improvement, Estimated the
With Shifting Logistic Model: Swedish Women
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with age is attributable to a decline in the background component, while the senescent
component is approximately constant at 

   
β �e t

s
( ) . At ages older than 70, 

  
ρ

b
x t( , ) is near zero

and ρs(x,t) declines, reaching zero at very old ages.
The pattern of ρ(x,t)  varies widely over time and among countries, as shown in Fig-

ures B9–B12, which compare model estimates of ρ(x,t) for 1950–1960 and 1985–1995 for
England and Wales, France, Italy, and Japan. To facilitate the interpretation of these results,
the values of 

   
β �e t

s
( )  for 1950–1960 and 1985–1995 are plotted as horizontal dashed lines.

In the middle adult ages (about age 70) ρ(x,t) is to this line. At younger ages, ρ(x,t) is either

Appendix Figure B7. Background Component of the Rate of Mortality Improvement, Estimated
With the Shifting Logistic Model: Swedish Women
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Appendix Figure B8. Decomposition of the Model Estimated Rate of Mortality Improvement:
Swedish Women
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above (1950–1960) or below (1985–1995) this line, depending largely on the rate of de-
cline in γ(t). At older ages ρ(x,t) declines with age and shifts to higher ages as senescent
life expectancy rises.

Given the complexity of changes in ρ(x,t), it is difficult to draw conclusions from
them about overall trends in adult mortality. As was the case for k(x,t), it is preferable
to analyze the background and senescent components of ρ(x,t) separately. Limiting the
analysis to the highest ages, where the senescent component dominates, is somewhat
helpful, but it is difficult to determine whether changes at the highest ages are due

Appendix Figure B9. Rate of Mortality Improvement for Women in England and Wales, Estimated
With the Shifting Logistic Model

0

1

2

3

4

5

6

7

R
at

e 
of

 I
m

pr
ov

em
en

t 
(%

)
1950–1960

1985–1995

1985–1995

1950–1960

England and Wales

 βdes / dt

0 25 50 75 100
Age

Appendix Figure B10. Rate of Mortality Improvement for Women in France, Estimated With the
Shifting Logistic Model
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to shifting (caused by a change in the level of senescent life expectancy) or to an up
or down movement (caused by variation in the rate of change in senescent life expectancy).

This analysis of the rate of change in the force of mortality leads to two conclusions.
First, the age pattern of ρ(x,t) has changed substantially in recent decades in many coun-
tries. This change makes it likely that the rate of improvement in mortality will not be
constant in the future, as assumed in some existing projection methods. Second, the fac-
tors that are responsible for the variation in ρ(x,t) include different trends in background
and senescent mortality and a shifting pattern of senescent mortality.

Appendix Figure B11. Rate of Mortality Improvement for Women in Italy, Estimated With the
Shifting Logistic Model
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Appendix Figure B12. Rate of Mortality Improvement for Women in Japan, Estimated With the
Shifting Logistic Model
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APPENDIX C: DECOMPOSITION OF THE AGING RATE FOR THE SHIFTING
LOGISTIC MODEL

The objective is to derive Eqs. (B3) and (B4). The first step is to find an equation relating
k(x,t) to the parameters in the shifting logistic model. Substitution of Eq. (6) in Eq. (B1)
yields
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The senescent component kb(x,t) of k(x,t) is defined as the aging rate that would be ob-
served in the absence of background mortality. Substitution of µb(x,t) = γ(t) = 0 in Eq.
(C1) gives
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thus confirming Eq. (B3).
The background component ks(x,t) of k(x,t) is defined as the difference between k(x,t)

and ks(x,t):

kb(x,t) = k(x,t) – ks(x,t). (C3)

Substitution of Eqs. (C1) and (C2) in Eq. (C3) yields
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Simplification of Eq. (C4) gives Eq. (B4).
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APPENDIX D: DECOMPOSITION OF THE RATE OF MORTALITY
IMPROVEMENT

The aim of this appendix is to derive Eqs. (B7) and (B8) for the senescent and back-
ground components of the rate of mortality improvement, provided that the shifting as-
sumption in Eq. (11) holds.

Senescent Component ρρρρρρρρρρs(x,t)

By definition, the senescent component equals the rate of mortality observed when back-
ground mortality equals zero, so that

    
ρ

µ
∂µ

∂
∂ µ

∂s

s

s sx t
x t

x t

t

x t

t
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.= − = −1

(D1)

To derive Eq. (B7) from Eq. (D1), it is necessary first to examine the relationship be-
tween ks(x,t) and µs(x,t) in more detail. The relative derivative of µs(x,t) with respect to
age is defined as
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so that

    
µ µs s s

x

x t t k a t da( , ) ( , ) exp ( , ) .= ∫






0
0

(D3)

If the shifting assumption in Eq. (11) holds, then changes in ks(x,t) occur through the
same shifts to higher or lower ages, as in µs(x,t):

ks(x,t) = ks(x – S(t),t0), (D4)

where S equals the amount of the shift in years up or down the age axis µs(x,t) or ks(x,t)
between t and t0. When senescent life expectancy is rising, S(t) is positive, and Eq. (D3)
holds for x > S(t) with ks(x,t) for x < S(t); when S is negative, Eq. (D3) holds for x > 0).
The shift in S is a function of t and t0, but subscripts will be dropped to simplify the
notation. In most populations, it is possible to select the base year t0 so that S is positive
because senescent life expectancy has risen between t and t0. The following derivation
assumes that this is the case.

With S(t) > 0, µs(S(t),t) = µs(0,t0) and substitution of this and of Eq. (D4) in Eq. (D3)
gives
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for x > S(t) and µs(x,t) = 0 otherwise.
Substitution of Eq. (D5) in Eq. (D1) now gives
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And substitution of Eqs. (D4) and (10) in Eq. (D6) yields
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thus confirming Eq. (B7).

Background Component ρρρρρρρρρρb(x,t)

The background component of the rate of mortality improvement is defined as

ρb(x,t) = ρ(x,t) – ρs(x,t). (D8)

Substitution of
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and of Eq. (D7) in Eq. (D8) gives
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The first term on the right-hand side of Eq. (D10) can be simplified by noting that
dµb(x,t) / dx = 0 because background mortality does not vary with age. This implies that
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and therefore
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Substitution of Eq. (D12) in Eq. (D10) with k(x,t) = ks(x,t) + kb(x,t) gives
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thus confirming Eq. (B8).
A simpler expression for ρ(x,t) can be obtained if background mortality is constant, as

appears to be approximately the case over the past two decades in the 14 countries plotted
in Figure 3c. With dµb(t)(x,t) / dt = 0, the second term on the right side of Eq. (D13)
disappears. The sum of the senescent and background components then becomes
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In this special case, the age pattern of ρ(x,t) has the same shape as k(x,t), and the
entire schedule of ρ(x,t) is proportional to the rate of change in senescent life expectancy.
The three schedules—µ(x,t), k(x,t), and ρ(x,t)—maintain their shape over time and shift
to higher or lower ages at the same pace as senescent life expectancy rises or falls.
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