Key equations in the Tuljapurkar-Lee model of the Social Security system

Ryan D. Edwards, Ronald D. Lee, Michael W. Anderson, Shripad Tuljapurkar, and Carl Boe*

March 27, 2003

The Tuljapurkar-Lee (henceforth “TL”) model generates a large set of Monte Carlo simulations of future outcomes in the U.S. Social Security system. Four types of key macrodemographic and macroeconomic variables are modeled as stochastic components using standard time series methods. These include age-specific mortality rates, age-specific fertility rates, the rate of growth in real covered wages per capita, and real rates of return on two classes of financial assets: the special-issue Treasury obligations in the Social Security Trust Fund, and the S&P 500 stock index.

This paper is a revision of the technical appendix in Lee and Edwards (2002), updated to reflect the modeling techniques employed during the latest round of revision to the TL model.

1 Population forecasts

1.1 Mortality

Let \(m_{x,t} \) be a central death rate for age \([x, x+5)\), and time \([t, t+1)\). Suppose we have a matrix of \(X\) age-specific death rates over \(T\) years. The Lee-Carter method estimates the model:

\[
\log(m_{x,t}) = a_x + b_x k_t + \epsilon_{x,t}
\]

(1)

*Stanford University and University of California at Berkeley. Corresponding author: Boe, boe@demog.berkeley.edu
using a Singular Value Decomposition (SVD) or some other appropriate method. This yields estimates of the vectors $a_x, b_x,$ and k_t. A second stage procedure adjusts k_t so that life expectancy at birth is exactly matched by the model for each year t. Estimates for a_x and b_x are listed in Table 2.2.

We now have a time series of k_t over T years. This time series is modeled using standard Box-Jenkins methods. (Tests for covariance with the residuals from the fertility model described below showed no association, so they were modeled independently). In most applications, it is well-fitted by a random walk with drift. In the Tuljapurkar-Lee model, Lee-Carter is estimated on mortality rates by single years of age and time, with both sexes combined, from the Social Security actuarial tables from 1950 to 1997. Model estimates are

$$k_t = k_{t-1} - 1.279864 + \eta_t,$$

where standard errors are in parentheses.

The fitted model for k_t can then be used to forecast k for each sex separately over the desired horizon, together with a probability distribution for each forecast year. A fixed additive offset factor is used for male and female k_t’s throughout the entire forecast period. The level of the offset is set so as to match the male/female mortality differential in 2001; for males, $k_{2001} = 21.87738$, and for females, $k_{2001} = -28.359$.

Using these sex-specific forecasts of k and equation (1), probability distributions and mean or median values of $m_{x,t}$ and the implied life expectancies can be calculated, along with probability distributions. These probability distributions reflect the innovation error in k, η, along with the uncertainty of the estimate of the drift in the k process. They typically will not include the ϵ terms, nor the uncertainty in the estimates of the a_x and b_x vectors, which do not add much to the uncertainty after the first decade or two. On all of this, see Lee and Carter (1992) and Lee and Miller (2001).

1.2 Fertility

A similar approach is followed, but the fertility rates themselves, rather than their logs, are modeled. The model for age specific fertility F is:

$$F_{x,t} = c_x + d_x f_t + \nu_{x,t},$$

which is again estimated using a SVD. Estimates for c_x and d_x are listed in Table 2.2. Time series models applied to the history of fertility in the U.S.
do not provide a plausible model or forecast for fertility for various reasons, so the mean of the forecast is constrained to equal a level specified ex ante, and in practice taken to equal the ultimate level of fertility assumed by the Social Security Actuaries, currently 1.95 children per woman. The fitted time series model then provides crucial information about the variability and autocovariance of fertility. See Lee (1993) for a discussion of all these issues, and exploration of some alternative modeling strategies.

The model is fitted to fertility rates by single years of age from 1933. Several sources are used to construct these data, including Whelpton (1954), Heuser (1976, 2003), and for more recent years, vital statistics data from the National Center for Health Statistics. The NCHS data on fertility among 5-year age groups is converted to data by single years of age using interpolation techniques. The fitted fertility time series model is a constrained ARMA that takes the following form:

\[f_t = -0.0924(1 - 0.9600) + 0.9600 f_{t-1} + \nu_t + 0.5232 \nu_{t-1}, \]

where the -0.0924 value is hard-wired in order to achieve a long-run TFR of 1.95. In order to start generating trajectories with these estimates, the last innovation value is required. It is given by

\[\frac{f_{2001} + 0.0924 - 0.9600(f_{2000} + 0.0924)}{0.5232} = 0.0137. \]

Combining the forecast of \(f_t \) with estimates of \(c_x \) and \(d_x \) using (3) yields a set of stochastic fertility projections.

1.3 Formulating population forecasts

Immigration was projected deterministically following the intermediate cost assumption of the Social Security Actuary, since it was thought better to treat it as a policy instrument than to attempt to forecast future policy. Population forecasts are constructed by setting initial conditions using the base period population age distribution from Social Security data. A single stochastic sample path is generated by drawing random numbers for the errors in the fertility and mortality equations, and thereby generating a trajectory of age specific fertility and mortality rates over the desired horizon, say 100 years. Sample paths containing a total fertility rate below 0 or greater than 4 are
discarded. In remaining paths, any negative age specific birth rates are set to 0. These are combined with the deterministic immigration rates. Using well-known accounting identities, the population forecast by age group is then calculated for this single sample path. The procedure is then repeated many times, sometimes 1,000 times and sometimes 10,000 times. The frequency distributions of outcomes of interest then provide estimates of the probability distributions for these outcomes, and joint distributions can be provided in a similar way.

2 Economic projections

2.1 Productivity (growth in covered wages)

The relevant concept of productivity growth in the Social Security system is the real rate of growth in average covered wages. Although there are crucial differences between average covered wages and productivity, or total output per worker or per worker-hour, the TL model treats them as essentially interchangeable for several reasons. First, Social Security taxes and benefits both grow according to the same concept, rather than some mixture of the two. Second, it is difficult to obtain a time series of average covered wage growth, while productivity growth measures are quite abundant. Third, we believe that the variability in the two measures over time has been similar. Fourth, since we choose to assume a fixed long-run trend growth rate in average covered wages identical to that assumed by the Trustees, we believe there is little precision lost by using historical productivity series to estimate the variance structure of covered wage growth.

For modeling purposes, a demographically adjusted productivity growth series was constructed. First, an average wage profile by age and sex was calculated from the 1997 March CPS. Data on the age-sex composition of the labor force were also taken from CPS, from 1948 to the present. The effect of the changing age-sex composition of the labor force, based on these age-sex weights for wages, was then calculated for each year since 1948 and used to adjust the official measure of productivity growth in the private nonfarm business sector to remove the effect of changing demographic structure of the labor force. The adjustment made relatively little difference in general, and is discussed in greater detail in Lee and Tuljapurkar (1998).

Next, a constrained mean time series model was fit to the adjusted pro-
ductivity growth series. As with fertility, the time series model provides information about the variance, autocovariance and cross covariance of the series, but not about the long run mean, which is imposed as a value of 1.1 percent. An autoregressive model of order one was found to fit the data best:

\[g_t - 1.1 = 0.5327 \left(g_{t-1} - 1.1 \right) + \epsilon_{g,t}. \]

(6)

Productivity growth \(g_t \) is expressed in percentage points.

2.2 Asset returns

The bonds held in the Social Security Trust Fund are a special Treasury Issue with a rate of return equal to an average of rates on longer term Treasury bonds. The Social Security Administration’s website contains a time series of the effective interest rates on Trust Fund assets from 1940 to 2002.\(^1\) We use this special issue rate, minus the rate of inflation as measured by the CPI-U, as our baseline real interest rate. Historical stock returns, defined as total returns on the S&P 500 Index adjusted for the reinvestment of dividends, are available over the same period from Ibbotson Associates (2002) as well as from other sources. The jump-off points for the two series are 3.8 and -15.84 percent respectively.

We fit a VAR of order three that recognizes the conjoined behavior of real bond returns, \(r_t \), and real stock returns, \(s_t \), subject to the assumption that they will tend to revert to their respective long-run means of 3 and 7 percent. The equations take the following form, where an asterisked variable denotes its level minus its long-run mean:

\[r_t^* = \begin{pmatrix} 1.1555 \\ -0.7993 \\ 0.4772 \end{pmatrix} \cdot \begin{pmatrix} r_{t-1}^* \\ r_{t-2}^* \\ r_{t-3}^* \end{pmatrix} + \begin{pmatrix} 0.0131 \\ -0.0165 \\ 0.0093 \end{pmatrix} \cdot \begin{pmatrix} s_{t-1}^* \\ s_{t-1}^* \\ s_{t-1}^* \end{pmatrix} + \epsilon_{r,t} \]

(7)

\[s_t^* = \begin{pmatrix} 1.4392 \\ -0.3591 \\ 0.0091 \end{pmatrix} \cdot \begin{pmatrix} r_{t-1}^* \\ r_{t-2}^* \\ r_{t-3}^* \end{pmatrix} + \begin{pmatrix} 0.0227 \\ -0.2088 \\ 0.0039 \end{pmatrix} \cdot \begin{pmatrix} s_{t-1}^* \\ s_{t-1}^* \\ s_{t-1}^* \end{pmatrix} + \epsilon_{s,t}. \]

(8)

The 144-element variance-covariance matrix is not presented here due to space considerations. Shocks for the probabilistic trajectories are generated by resampling from the residuals.

\(^1\)http://www.ssa.gov/OACT/ProgData/effectiveRates.html
References

Table 1: Estimates of mortality SVD: a_x and b_x

<table>
<thead>
<tr>
<th>age</th>
<th>a_x</th>
<th>b_x</th>
<th>age</th>
<th>a_x</th>
<th>b_x</th>
<th>age</th>
<th>a_x</th>
<th>b_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-9.4255</td>
<td>0.0254</td>
<td>41</td>
<td>-6.1166</td>
<td>0.0096</td>
<td>82</td>
<td>-2.5803</td>
<td>0.0086</td>
</tr>
<tr>
<td>1</td>
<td>-7.5241</td>
<td>0.0223</td>
<td>42</td>
<td>-6.0476</td>
<td>0.0101</td>
<td>83</td>
<td>-2.4786</td>
<td>0.0085</td>
</tr>
<tr>
<td>2</td>
<td>-7.9330</td>
<td>0.0201</td>
<td>43</td>
<td>-5.9764</td>
<td>0.0105</td>
<td>84</td>
<td>-2.3757</td>
<td>0.0083</td>
</tr>
<tr>
<td>3</td>
<td>-8.1690</td>
<td>0.0202</td>
<td>44</td>
<td>-5.9093</td>
<td>0.0107</td>
<td>85</td>
<td>-2.2731</td>
<td>0.0081</td>
</tr>
<tr>
<td>4</td>
<td>-8.4324</td>
<td>0.0207</td>
<td>45</td>
<td>-5.8332</td>
<td>0.0109</td>
<td>86</td>
<td>-2.1724</td>
<td>0.0079</td>
</tr>
<tr>
<td>5</td>
<td>-8.5048</td>
<td>0.0204</td>
<td>46</td>
<td>-5.7568</td>
<td>0.0110</td>
<td>87</td>
<td>-2.0736</td>
<td>0.0076</td>
</tr>
<tr>
<td>6</td>
<td>-8.5304</td>
<td>0.0193</td>
<td>47</td>
<td>-5.6760</td>
<td>0.0111</td>
<td>88</td>
<td>-1.9766</td>
<td>0.0075</td>
</tr>
<tr>
<td>7</td>
<td>-8.5827</td>
<td>0.0187</td>
<td>48</td>
<td>-5.5875</td>
<td>0.0113</td>
<td>89</td>
<td>-1.8813</td>
<td>0.0073</td>
</tr>
<tr>
<td>8</td>
<td>-8.6393</td>
<td>0.0189</td>
<td>49</td>
<td>-5.4976</td>
<td>0.0114</td>
<td>90</td>
<td>-1.7875</td>
<td>0.0071</td>
</tr>
<tr>
<td>9</td>
<td>-8.7618</td>
<td>0.0195</td>
<td>50</td>
<td>-5.4045</td>
<td>0.0115</td>
<td>91</td>
<td>-1.6948</td>
<td>0.0069</td>
</tr>
<tr>
<td>10</td>
<td>-8.8642</td>
<td>0.0206</td>
<td>51</td>
<td>-5.3116</td>
<td>0.0115</td>
<td>92</td>
<td>-1.6029</td>
<td>0.0067</td>
</tr>
<tr>
<td>11</td>
<td>-8.8641</td>
<td>0.0204</td>
<td>52</td>
<td>-5.2224</td>
<td>0.0114</td>
<td>93</td>
<td>-1.5121</td>
<td>0.0064</td>
</tr>
<tr>
<td>12</td>
<td>-8.6099</td>
<td>0.0168</td>
<td>53</td>
<td>-5.1391</td>
<td>0.0111</td>
<td>94</td>
<td>-1.4225</td>
<td>0.0062</td>
</tr>
<tr>
<td>13</td>
<td>-8.1828</td>
<td>0.0120</td>
<td>54</td>
<td>-5.0575</td>
<td>0.0107</td>
<td>95</td>
<td>-1.3370</td>
<td>0.0060</td>
</tr>
<tr>
<td>14</td>
<td>-7.8184</td>
<td>0.0085</td>
<td>55</td>
<td>-4.9758</td>
<td>0.0103</td>
<td>96</td>
<td>-1.2571</td>
<td>0.0058</td>
</tr>
<tr>
<td>15</td>
<td>-7.5044</td>
<td>0.0061</td>
<td>56</td>
<td>-4.8891</td>
<td>0.0100</td>
<td>97</td>
<td>-1.1815</td>
<td>0.0058</td>
</tr>
<tr>
<td>16</td>
<td>-7.2948</td>
<td>0.0048</td>
<td>57</td>
<td>-4.7973</td>
<td>0.0097</td>
<td>98</td>
<td>-1.1121</td>
<td>0.0058</td>
</tr>
<tr>
<td>17</td>
<td>-7.1536</td>
<td>0.0043</td>
<td>58</td>
<td>-4.6993</td>
<td>0.0096</td>
<td>99</td>
<td>-1.0467</td>
<td>0.0058</td>
</tr>
<tr>
<td>18</td>
<td>-7.0707</td>
<td>0.0045</td>
<td>59</td>
<td>-4.5992</td>
<td>0.0095</td>
<td>100</td>
<td>-0.9815</td>
<td>0.0058</td>
</tr>
<tr>
<td>19</td>
<td>-7.0336</td>
<td>0.0050</td>
<td>60</td>
<td>-4.5009</td>
<td>0.0095</td>
<td>101</td>
<td>-0.9156</td>
<td>0.0058</td>
</tr>
<tr>
<td>20</td>
<td>-7.0034</td>
<td>0.0056</td>
<td>61</td>
<td>-4.4047</td>
<td>0.0094</td>
<td>102</td>
<td>-0.8499</td>
<td>0.0058</td>
</tr>
<tr>
<td>21</td>
<td>-6.9632</td>
<td>0.0060</td>
<td>62</td>
<td>-4.3100</td>
<td>0.0091</td>
<td>103</td>
<td>-0.7796</td>
<td>0.0058</td>
</tr>
<tr>
<td>22</td>
<td>-6.9459</td>
<td>0.0062</td>
<td>63</td>
<td>-4.2186</td>
<td>0.0088</td>
<td>104</td>
<td>-0.7146</td>
<td>0.0058</td>
</tr>
<tr>
<td>23</td>
<td>-6.9397</td>
<td>0.0060</td>
<td>64</td>
<td>-4.1291</td>
<td>0.0083</td>
<td>105</td>
<td>-0.6418</td>
<td>0.0058</td>
</tr>
<tr>
<td>24</td>
<td>-6.9393</td>
<td>0.0055</td>
<td>65</td>
<td>-4.0380</td>
<td>0.0079</td>
<td>106</td>
<td>-0.5807</td>
<td>0.0058</td>
</tr>
<tr>
<td>25</td>
<td>-6.9391</td>
<td>0.0050</td>
<td>66</td>
<td>-3.9485</td>
<td>0.0076</td>
<td>107</td>
<td>-0.4853</td>
<td>0.0058</td>
</tr>
<tr>
<td>26</td>
<td>-6.9440</td>
<td>0.0046</td>
<td>67</td>
<td>-3.8670</td>
<td>0.0075</td>
<td>108</td>
<td>-0.4414</td>
<td>0.0058</td>
</tr>
<tr>
<td>27</td>
<td>-6.9277</td>
<td>0.0043</td>
<td>68</td>
<td>-3.7937</td>
<td>0.0074</td>
<td>109</td>
<td>-0.3560</td>
<td>0.0058</td>
</tr>
<tr>
<td>28</td>
<td>-6.8907</td>
<td>0.0041</td>
<td>69</td>
<td>-3.7238</td>
<td>0.0075</td>
<td>110</td>
<td>-0.2207</td>
<td>0.0058</td>
</tr>
<tr>
<td>29</td>
<td>-6.8451</td>
<td>0.0040</td>
<td>70</td>
<td>-3.6508</td>
<td>0.0076</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>-6.7874</td>
<td>0.0040</td>
<td>71</td>
<td>-3.5733</td>
<td>0.0077</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>-6.7328</td>
<td>0.0041</td>
<td>72</td>
<td>-3.4929</td>
<td>0.0078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>-6.6768</td>
<td>0.0043</td>
<td>73</td>
<td>-3.4099</td>
<td>0.0079</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>-6.6197</td>
<td>0.0047</td>
<td>74</td>
<td>-3.3240</td>
<td>0.0080</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>-6.5620</td>
<td>0.0051</td>
<td>75</td>
<td>-3.2341</td>
<td>0.0081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>-6.5004</td>
<td>0.0056</td>
<td>76</td>
<td>-3.1416</td>
<td>0.0081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>-6.4354</td>
<td>0.0061</td>
<td>77</td>
<td>-3.0495</td>
<td>0.0082</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>-6.3741</td>
<td>0.0068</td>
<td>78</td>
<td>-2.9587</td>
<td>0.0084</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>-6.3131</td>
<td>0.0075</td>
<td>79</td>
<td>-2.8674</td>
<td>0.0085</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>-6.2500</td>
<td>0.0083</td>
<td>80</td>
<td>-2.7746</td>
<td>0.0086</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>-6.1876</td>
<td>0.0090</td>
<td>81</td>
<td>-2.6790</td>
<td>0.0087</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2: Estimates of fertility SVD: c_x and d_x

<table>
<thead>
<tr>
<th>age</th>
<th>c_x</th>
<th>d_x</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0.0079</td>
<td>-0.0025</td>
</tr>
<tr>
<td>16</td>
<td>0.0205</td>
<td>-0.0037</td>
</tr>
<tr>
<td>17</td>
<td>0.0381</td>
<td>-0.0010</td>
</tr>
<tr>
<td>18</td>
<td>0.0606</td>
<td>0.0082</td>
</tr>
<tr>
<td>19</td>
<td>0.0840</td>
<td>0.0233</td>
</tr>
<tr>
<td>20</td>
<td>0.1012</td>
<td>0.0420</td>
</tr>
<tr>
<td>21</td>
<td>0.1115</td>
<td>0.0591</td>
</tr>
<tr>
<td>22</td>
<td>0.1136</td>
<td>0.0722</td>
</tr>
<tr>
<td>23</td>
<td>0.1141</td>
<td>0.0793</td>
</tr>
<tr>
<td>24</td>
<td>0.1142</td>
<td>0.0814</td>
</tr>
<tr>
<td>25</td>
<td>0.1147</td>
<td>0.0768</td>
</tr>
<tr>
<td>26</td>
<td>0.1154</td>
<td>0.0679</td>
</tr>
<tr>
<td>27</td>
<td>0.1157</td>
<td>0.0567</td>
</tr>
<tr>
<td>28</td>
<td>0.1144</td>
<td>0.0487</td>
</tr>
<tr>
<td>29</td>
<td>0.1116</td>
<td>0.0404</td>
</tr>
<tr>
<td>30</td>
<td>0.1059</td>
<td>0.0358</td>
</tr>
<tr>
<td>31</td>
<td>0.1009</td>
<td>0.0260</td>
</tr>
<tr>
<td>32</td>
<td>0.0909</td>
<td>0.0246</td>
</tr>
<tr>
<td>33</td>
<td>0.0804</td>
<td>0.0225</td>
</tr>
<tr>
<td>34</td>
<td>0.0695</td>
<td>0.0248</td>
</tr>
<tr>
<td>35</td>
<td>0.0593</td>
<td>0.0251</td>
</tr>
<tr>
<td>36</td>
<td>0.0501</td>
<td>0.0256</td>
</tr>
<tr>
<td>37</td>
<td>0.0407</td>
<td>0.0257</td>
</tr>
<tr>
<td>38</td>
<td>0.0319</td>
<td>0.0264</td>
</tr>
<tr>
<td>39</td>
<td>0.0244</td>
<td>0.0251</td>
</tr>
<tr>
<td>40</td>
<td>0.0180</td>
<td>0.0234</td>
</tr>
<tr>
<td>41</td>
<td>0.0130</td>
<td>0.0180</td>
</tr>
<tr>
<td>42</td>
<td>0.0088</td>
<td>0.0146</td>
</tr>
<tr>
<td>43</td>
<td>0.0055</td>
<td>0.0109</td>
</tr>
<tr>
<td>44</td>
<td>0.0031</td>
<td>0.0086</td>
</tr>
<tr>
<td>45</td>
<td>0.0017</td>
<td>0.0058</td>
</tr>
<tr>
<td>46</td>
<td>0.0006</td>
<td>0.0038</td>
</tr>
<tr>
<td>47</td>
<td>0.0002</td>
<td>0.0024</td>
</tr>
<tr>
<td>48</td>
<td>0</td>
<td>0.0012</td>
</tr>
<tr>
<td>49</td>
<td>0</td>
<td>0.0006</td>
</tr>
<tr>
<td>50</td>
<td>0</td>
<td>0.0003</td>
</tr>
</tbody>
</table>