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CHAPTER

18

Age-Period-Cohort Models
In Demography

JOHN R. WILMOTH
Department of Demography, University of California, Berkeley, California

Demographic events such as birth, death, marriage,
and migration mark life’s most important transitions
and, not surprisingly, are influenced by a multitude of
factors. These influences are not constant across time
or space, and thus demographic rates display consid-
erable variation. A crucial task of demographic analy-
sis is to identify the factors that account for this
variability.

One particular approach to this quite general
problem is to study the variation in demographic rates
along three critical dimensions: age of the event, year
(or period) of its occurrence, and cohort of the indi-
viduals involved. Within this framework, cohort may
refer to an individual’s year of birth or to the time of
some other important transition in the life course (e.g.,
a marriage cohort in a study of divorce). Likewise, age
may mean a person’s chronologic age at the time of
the event or the time elapsed since another important
transition (e.g., duration of employment in a study of
retirement).

The underlying assumption of age-period-cohort
(APC) analysis is that all factors influencing a demo-
graphic event or its rate of occurrence can be grouped
meaningfully into these three categories. Of course,
there may be interactions or overlap between the three
sets of factors, but it is assumed, implicitly, that these
influences are less important than the main effects
associated with each dimension. The typical analytic
strategy of APC studies, therefore, is first to identify
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patterns of change in demographic rates that are asso-
ciated with these three dimensions or sets of causal
factors. Once this elaborate description is available,
the analyst attempts to identify the specific influences
(biologic processes, historic trends, etc.) that are
responsible for the observed patterns in terms of age,
period, and cohort.

Based on this description, the logic of APC analysis
seems simple and relatively straightforward. There is,
however, a fundamental problem with this strategy
related to the fact that, mathematically,

cohort + age = period.

This relationship is illustrated by means of a Lexis
diagram in Figure 18-1. In the view of some
researchers, the exact mathematic connection between
age, period, and cohort renders all forms of APC analy-
sis meaningless, since changes in a demographic
process along one of the three dimensions cannot be
distinguished statistically from changes along the two
remaining dimensions (Glenn, 1976; Goldstein, 1979;
Rodgers, 1982). Other researchers have proposed a
variety of solutions for overcoming this problem and
claim that valid and useful results can still be derived
within an APC framework (Fienberg and Mason, 1979;
Clogg, 1982; Caselli and Capocaccia, 1989; Wilmoth,
1990). All researchers would agree, however, that the
identification problem that plagues APC analysis is a
fundamentally difficult and perplexing problem.

Copyright © 2006, Elsevier Inc.
All rights of reproduction in any form reserved.
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FIGURE 18-1 Lexis diagram showing the relationship between
age, period, and cohort of a demographic event. The lifeline of indi-
viduals born at time k (cohort) is represented by the diagonal arrow.
For such persons, a demographic event at age i occurs at time j = k
+ i (period).

In this chapter, we first discuss the theoretical moti-
vation of the age-period-cohort framework. We then
provide a formal definition and discussion of the
identification problem that affects APC modeling.
Although we do not provide a complete literature
review, we discuss strategies for estimating APC
models that have been proposed in particular contexts.
We also describe a small number of empirical applica-
tions of APC modeling that seem particularly inform-
ative. In conclusion, we offer some general remarks
about the applicability of the APC framework.

I. THEORETICAL MOTIVATION

We begin our theoretical discussion by asking,
“Why is the age-period-cohort framework useful?”
The period of an event, for example, has no direct
influence on its outcome but is merely a marker for
other factors that may affect a demographic process.
Periods may be associated with wars, epidemics, polit-
ical and legal changes, famines, inventions, scientific
discoveries, and changing fashions. It is these occur-
rences or situations, not the period itself, that account
for the variation in demographic rates along the period
dimension. Likewise, it is not cohort membership
and chronologic age themselves that influence demo-
graphic rates, but rather the characteristics associated
with those two dimensions.

It is worth considering, however, whether all three
dimensions should be important in all situations. In
the case of the classical demographic events (birth,
death, marriage, and migration) it seems obvious that
age, or duration, should be associated with sharp dif-
ferences in outcomes. Due to biologic mechanisms,
both the risk of death and the chance of giving birth
vary enormously with age. Owing mostly to social and
psychological mechanisms, the risk of divorce varies
depending on the duration of marriage and the prob-
ability of migration changes over the life cycle. The age
pattern of marriage is a complex function of both bio-
logic maturation and social convention.

The immediacy of period-specific events makes
their connection to demographic processes self-
evident. The role of cohort-specific influences, on the
other hand, is less obvious. In an influential article,
Ryder (1965) laid out the theoretical justification for the
use of cohorts in the study of social change. According
to Ryder, fresh cohorts enable the process of social
change, since young people are less constrained by
history and more capable of adapting to or creating
new modes of living. Furthermore, individuals expe-
rience certain critical events (e.g., infancy and child-
hood, education, military service, first employment)
alongside peers from their particular cohort and the
after-effects of these situations may mark them for life.
The imprint of life-defining events may be biologic or
social, but in either case we should expect cohorts to
represent an important dimension of variation in sub-
sequent demographic processes.

The direction and magnitude of the influence of
cohort membership on demographic phenomena
have been a matter of considerable speculation,
although few firmly established generalizations
have emerged. Perhaps the most well-known theory
about the influence of cohort membership on demo-
graphic events is Easterlin’s explanation of the
American baby boom (Easterlin, 1961, 1978). Accord-
ing to this theory, smaller cohorts enjoy significant
advantages as they enter the job market, which facili-
tates family formation and thus raises fertility levels.
With regard to the baby boom, however, it is difficult
to distinguish the effects of cohort size from the effects
of an expanding postwar economy, both of which may
have influenced life chances and family behavior
around the 1950s.

In mortality studies, the discussion of the role of
cohorts has focused on the after-effects of adverse
events in early life on subsequent probabilities of death
or survival (for a review, see Elo and Preston, 1992).
Theoretically, it is possible that adverse events in early
life could result in either higher or lower mortality in
later life. On one hand, the survivors of a traumatic
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event or situation (e.g., famine, war, poverty) may be
weakened by the experience and thus demonstrate
unusually high levels of mortality later on. On the other
hand, it is possible that the survivors in these situations
may be an especially robust subset of the original cohort
and thus could display unexpectedly low levels of mor-
tality in subsequent years. These competing explana-
tions are often referred to as processes of debilitation and
selection, respectively. It is possible, of course, that both
processes are operating at the same time. In these situa-
tions, it is their relative magnitudes that should deter-
mine whether an affected cohort experiences unusually
high or low mortality in later years.

In summary, there is a sound theoretical basis for
believing that age, period, and cohort may all be impor-
tant dimensions of variation in demographic processes.
It is this theoretical interest that has encouraged the
development of statistical models incorporating all
three components. We now turn our attention to such
models.

II. AGE-PERIOD-COHORT MODELS

The standard age-period-cohort model has the fol-
lowing form:

flrig) = p+ o + B+ 6 + &

In this formulation, 7 is an observed demographic
rate for some event that occurs at age i in year j for
cohort k (thus, k = - i); the function, f{-), is some trans-
formation applied to the observed rates; the parame-
ter, u, establishes an overall level for f(r;); the
parameters, ;, 8, and 6, describe patterns of change
in f(r;x) by age, period, and cohort, respectively; and
the last term, &, represents error (either in the speci-
fication of the model or in the original data) and
random fluctuations.

Although the standard APC model is quite simple
in form, its parameters are not easily estimated. The
central difficulty is that there is no obvious means of
identifying a unique set of parameter estimates that
provide an optimal fit to the observed data. This iden-
tification problem affects not only the statistical esti-
mation of the parameters but also their subsequent
interpretation.

1. Identification Problem

The identification problem of the standard APC
model is easily illustrated by considering the model in
its estimated form:

gijk=,a+ &i+[3,+ ék

Thus, the predicted value of the transformed rates,
i equals the sum of the four estimated parameters, [,
&,, ﬂl’ and 9k

The first task in identifying a unique solution for
this model involves constraining the levels of the four
parameters. A common approach is to require that

Z&,‘ =z[§j=2ék =0
i j k

With this solution, 2 gives some average level of
f(rix), and the other three sets of parameters describe
changes in the transformed rates with respect to the
average. Alternatively, we could requ1re that ¢&; = /3,
6, =0 for some specific choice of i, j, and k. In this case,
A gives the predicted value of this particular f(r;;), and
the other parameters describe changes with respect to
this point of reference.'

Constraints of this sort are common in other statis-
tical applications (analysis of variance, regression,
etc.). Obviously, they involve an arbitrary choice about
how to obtain a unique solution, but this choice affects
only the level of the various parameters and thus does
not fundamentally confuse their interpretation. APC
models, however, present an additional, more per-
plexing identification problem involving not only the
level of the various parameters but also their slope.

For example, suppose that &, ﬁ,, and 6, were

- adjusted such that

0(‘?=ai+l~i
Bi= -
Ot= 6+ Ak,

where 1 is some real number. Now, note that the pre-
dicted values in the model are the same for any choice
of A, since k=j —i

D=0+ of + BF + 9*

—ﬂ+a+lz+ﬁ, Aj+ 0+ Ak
_p+a+/3,+ek+,1 (i-j+k
—/1+&+,B,+9k

! Perhaps the best choice, for reasons of mathematic conven-
ience, is to require that

Zwiéi = Zwl-[ii = Zwkék =0,
i i k

where w;, w;, and wy are weights corresponding to the number of
observations for each particular age, period, and cohort. In a rec-
tangular age-by-period array, for example, w; and w; would be con-
stant (equaling the number of columns and rows, respectively) and
thus would fall out of the equation. In this situation, only w; would
vary, equaling the number of elements in a diagonal of the matrix
corresponding to an individual cohort.
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Since different sets of age, period, and cohort
parameters yield identical predicted values, there is
no means of choosing between alternative solutions
on the basis of goodness-of-fit. As with the earlier
problem of uniquely identifying the level of
these parameters, a unique solution demands an
arbitrary choice. In this case, however, alternative
solutions may have vastly different implications, since
the speed and even direction of change in the age,
period, and cohort components of the process are
affected. In fact, by careful manipulation of 4, the
linear trend in the three sets of parameters can be
altered ad libitum.?

Typically, discussions of APC models have focused
on the problem of uniquely identifying the linear
trend in the age, period, and cohort parameters.
Higher order components of these parameters
(quadratic, cubic, etc.) and interactions between the
three sets of factors have generally been ignored
because they make identification of the model even
more difficult (Fienberg and Mason, 1985; Clogg,
1982). However, second- and higher order components
of the main effects are not uniquely identified if inter-
action terms are added to the standard APC model
(Wilmoth, 1990).

2. Estimation Strategies

In this chapter, we do not attempt to provide a com-
plete review of the literature on APC modeling. For
that purpose, we refer the reader to excellent discus-
sions by other authors (Hobcraft, Menken, and Preston,
1982; Mason and Fienberg, 1985). Instead of a review of
the literature, we provide an overview of the main
strategies that have been proposed for estimating
and/or modifying the standard APC model in light of
the identification problem discussed earlier. We divide
these approaches into three groups: arbitrary assump-
tions, interaction terms and demographic translation,
and direct measurement. See also the excellent discus-
sion of these topics by Holford (1991).

2 Note that the transformed parameters, o7, B} and 6%, as defined
here, would not normally sum to zero. Alternatively, define them as
follows:

=+ A-(i—1)
B=B-2-(j-])
O=0+A-(k-k

where 7, j, and k are defined as the means of i, j, and k. It can be
shown that the sums of these transformed parameters equal zero if
the data matrix is rectangular. If the data array is not rectangular, a
convenient solution is to use weights, as defined in Footnote 1, both
for defining the parameter constraints and for computing the means
of i, j, and k in the above formulas.

a. Arbitrary Assumptions

The first strategy for identifying an APC model is to
make some arbitrary assumption about the linear trend
in one of the three dimensions. Specific applications
differ, however, depending on whether the assumption
is viewed by the analyst(s) as an accurate reflection of
an underlying reality or merely as a convenient strategy
for estimating an arbitrary statistical model.

Unique estimates of the standard APC model (with
three main effects, as described in prior sections) can
be obtained by assuming that the parameters pertain-
ing to some pair of cohorts (or ages or periods) are
equal. For example, one could assume that 8y = 6, for
a specific cohort k’. This restriction permits estimation
of the model, although at the expense of assuming that
the cohort-specific effects for cohorts k" and k” + 1 are
equal. Arguably, such an assumption is justified in spe-
cific cases based on prior knowledge.

In a widely cited paper, Fienberg and Mason (1979)
illustrated the application of the standard APC model
to the analysis of educational attainment in the United
States. Here, the dependent variable consisted of pro-
portions of individuals ages 20 and above who had, at
some previous moment in their lives, advanced from
one educational level to the next. These proportions
were computed using decennial census data from 1940
to 1970. The authors noted correctly that educational
attainment should under most circumstances be con-
stant or slightly increasing over the adult life of a
cohort (this expectation could be violated only by
selective migration or differential mortality). In other
words, age effects are of little importance in this model
and can reasonably be set equal over some age range.
Similarly, period effects can have little impact on the
educational attainment of adults (most of whom have
completed their schooling prior to the period of obser-
vation). Indeed, the authors justify the inclusion of
period effects in the model based solely on concerns
about changes in the recording of educational data in
decennial censuses.

Due to the relative unimportance of these two sets
of components (age and period) a priori, the choice by
Fienberg and Mason to use educational attainment as
an illustration of APC modeling is somewhat puzzling.
Their resolution of the standard identification problem
in this particular case was relatively straightforward
and unproblematic, since the authors merely equated
age effects for age groups 30 to 34 through 55 to 59
years.’ This example illustrates the sensible use of

3 Obviously, the model would have been fully identified if age
effects for only two age groups had been set equal. Fienberg and
Mason (1979: 53) argue, however, that there are “a priori grounds for
interpreting age effects primarily at the tails of the age distribution”
and thus prefer to equate the coefficients throughout the middle age
range.
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prior information to resolve the APC identification
problem. It provides little guidance, however, about
how to resolve the identification problem in situations
where there is no strong basis for asserting the equal-
ity of at least one pair of effects a priori.

In another application of the APC model, Clogg
(1982) examines rates of labor force participation in
the United States. Here, there are strong reasons for
expecting that the dependent variable is influenced by
factors related to age, period, and cohort, but there is
only a very weak basis for supposing, a priori, a par-
ticular relationship between some pair of effects. Nev-
ertheless, the author constrains the last two cohort
effects to differ by one or two percent (depending on
the specific example) as a means of obtaining a unique
set of parameter estimates. The substantive justifica-
tion of this choice can fairly be termed weak, although
arguably it has little impact on the conclusions of the
study. .

In general, even if prior knowledge supports the
choice of a specific identifying restriction, it is impor-
tant to recognize the sensitivity of the results to minor
violations of the chosen assumption. If 6¢ and 6., are
close but not equal, for example, the error that results
from equating them will be slight for adjacent cohorts,
but much larger for distant ones (Clogg, 1982). The
importance of this imprecision will depend on the
application, and the sensitivity of the results to any
particular assumption can often be assessed quite
easily. Nevertheless, the validity of results derived
from APC models in which this last identifying con-
straint is, allegedly, a reflection of underlying reality
remains quite dubious in most cases.

Alternatively, rather than asserting the reality of
identifying constraints, certain parameter restrictions
can be adopted as a matter of convenience merely to
obtain a unique solution. For example, Pullum (1980)
fit the standard APC model by equating two adjacent
cohort parameters but avoided interpreting the result-
ing estimates literally. Pullum’s main purpose in fitting
such a model was merely to determine whether the fit
(in a model of American fertility rates) is improved

. more by the addition of period or cohort parameters.

He concluded that cohort parameters provide less
explanatory power (per additional parameter)
than period parameters. Since he was interested only
in the overall fit of each model, not in the parameter
estimates, the choice of identifying constraints was
irrelevant.

Pullum also noted, however, that the second (and
higher) differences of the parameter estimates in the
three-factor APC model are invariant to the choice of
an identifying assumption. In our notation, first dif-
ferences depend on the choice of 4, although second
differences do not. For example,

Aat= oty — of
=G+ A-(i+1) - [0+ A-i],
=&i+l_&i+l

whereas,

Ao = Aok, — Aot
= Qg = Oy + A= @ — 0 + A].
= Qg — 20641 + O

First differences are related to the linear trend, and
thus their dependence on 4 is a reminder that the slope
of the three sets of parameters cannot be uniquely
identified in the standard APC model. Second differ-
ences are measures of deviation from the linear trend,
and thus these quantities can be accurately estimated
in the simple model with three main effects (but no
interaction terms).

An analogous solution is to require that the slope of
one of the three sets of parameters be constrained to
equal zero. Following Wilmoth (1990), a simple three-
factor model applied to a rectangular age-by-period
array of demographic rates could be estimated by
using the following constraints:

zai =2Bj =Zwk9k =kak9k =0
i j k k

These constraints on 6; are equivalent to requiring that
both the level and the slope of a weighted least-squares
regression line fitted to the cohort parameters should
equal zero.*

Thus, one solution to the APC identification
problem is to choose, arbitrarily, one dimension whose
slope is constrained to equal zero (see also Caselli and
Capocaccia, 1989). As a matter of convenience, the
chosen dimension may correspond to the diagonals of
a rectangular array of demographic rates. The result-
ing parameter estimates for this third factor have a
simple interpretation: They represent deviations from
the long-term pattern of change in that dimension. An
analysis of such deviations is logically similar to an
analysis of second derivatives, since both emphasize
deviations from the long-term trend rather than
absolute effects.

b. Interaction Terms and Demographic Translation

An obvious shortcoming to the standard APC
model, aside from its problems of identifiability, is the
absence of interaction terms. To address this inade-
quacy, Wilmoth (1990) proposed models with the fol-
lowing form:

* Here, as in Footnotes 1 and 2, the ;Neights equal the length of
the diagonals corresponding to individual cohorts.
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p
flrg) = p+o +B; +z¢m7’im5;‘m + 6k +8ijk5
m=1

This model differs from the standard APC model by
the addition of p (usually one or two) multiplicative
terms. The use of these interaction terms is motivated
by the fact that the pace of change (over time) in demo-
graphic rates often differs by age. For example, mor-
tality rates have typically fallen much more rapidly at
younger than at older ages. This component of differ-
ential change by age cannot be expressed well in a
model with no age-period (or age-cohort) interactions.

The above model is appropriate for an analysis of
an age-period array of demographic rates, where the
rates of change in ;i differ by age. The multiplicative
terms capture these differential trends by age. The
cohort parameters, 6, constrained to have zero level
and slope, express deviations from the overall pattern
of change by age and period. In short, the 6, captures
residual patterns that seem truly to lie along diagonals
of the age-period array. Without the multiplicative
term(s), however, estimates of 6, may be heavily influ-
enced by age-period interactions. The introduction of
interaction terms by no means resolves the identifica-
tion problem in the standard APC model. Their use
is consistent, however, with the philosophy that the
proper means of including all three sets of parameters
in the model is to focus the description on two dimen-
sions only and to treat the third dimension as a sort of
residual.

The multiplicative interaction terms also help us to
understand the notion of demographic translation
(Ryder, 1964, 1980; see also Chapter 17). In the above
model, the cohort term, 6, has been reduced to a resid-
ual component, and thus the linear or long-term cohort
trend has been translated into the age and period
dimensions. Even this residual component of the
cohort trend, 6, can be expressed as age-period inter-
actions, if a sufficient number of multiplicative terms
are added to this model (Wilmoth, 1990). In this sense,
the choice to assign any portion of the variability in
demographic rates to one of the three dimensions is
arbitrary, because it is always possible to re-express the
pattern in terms of the other two dimensions by the
addition of a sufficient number of interaction terms.

The only resolution of this logical dilemma is to
acknowledge, as a matter of plausibility, that certain
patterns must be due to changes in one specific dimen-
sion. For example, the residual cohort effects that
emerge in a complete analysis of an age-by-period
array (including at least some form of age-period inter-

5 For a full discussion of the constraints required for fitting this
model, see Wilmoth (1990).

action) cannot plausibly be attributed to age- and
period-specific factors. These residual cohort effects
tend to vary with high frequency and thus are not
easily translated into the age and period dimensions.
It is worth noting that Foster (1990) reached a similar
conclusion (i.e., that only high-frequency cohort effects
are plausibly identifiable) by an entirely different
method of analysis.

¢. Direct Measurement

Several analysts have noted that the only true reso-
lution of the identification problem affecting APC
analysis would be to measure directly the factors
whose effects are summarized by the coefficients of the
standard APC model. These factors would not typi-
cally be linearly related (although they might be
strongly collinear), and thus a unique solution for the
model could be found. An obvious difficulty with this
strategy is the problem of defining and then measur-
ing the proximate variables for which age, period, and
cohort are, admittedly, only rough approximations.

In a study of mortality in Italy, for example, Caselli
and Capocaccia (1989) use the probability of death in
infancy or during the first 15 years of life as a measure
of long-term cohort influences, whose magnitude may
vary over the life course. In our notation, their model
can be written

flrig) = 1+ 0+ B+ % Qi + &

where Q; equals either g or 1540- This model requires
no special identifying restrictions. Because the esti-
mated ¥’s are positive below age 45 and negative
above this age, the authors conclude that “higher mor-
tality early in life is associated with higher mortality
up to age 45 and lower levels at later ages” (Caselli and
Capocaccia, 1989, p. 152).

An alternative interpretation of these results,
however, is that the age-cohort term in their model is,
in reality, capturing the same sorts of patterns that
were treated as age-period interactions by Wilmoth
and colleagues (Wilmoth et al., 1989; Wilmoth, 1990).
Indeed, the multiplicative age-cohort term in the
model of Caselli and Capocaccia (1989) is remarkably
similar, in both its form and its estimated values, to
the multiplicative age-period term in the models by
Wilmoth and collaborators. In other words, the age-
cohort term in the above model may serve merely to
document the relatively more rapid rate of change in
mortality at younger than at older ages. Since infant- -
child mortality has declined almost monotonically for
the cohorts in question, its function in the model may
be simply to provide a marker for the second dimen-
sion of temporal mortality change.
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The innovative applications and clear explana-
tions of the age-period-cohort model by Caselli and
Capocaccia (1989) are certainly valuable. Their attempt
to measure age, period, or cohort effects directly,
however, illustrates some of the statistical difficulties
inherent in the task. As noted by Clogg (1982),

The selection of the proper causal variables to be considered
in a modeling procedure is a most difficult theoretical task,
one that is at least as difficult as applying the age-period-
cohort accounting framework (p. 460).

In other words, although it may seem in principle
that direct measurement is an obvious solution for the
APC identification problem, the practical application
of this technique is perhaps more fraught with diffi-
culties than the problem we are trying to overcome.

3. Empirical Examples

Two specific examples of the application of APC
models to demographic data are reviewed here. These
examples were chosen to illustrate two kinds of
conclusions that can legitimately be drawn from APC
models applied to time series of age-specific demo-
graphic rates. The first example, Pullum’s (1980) study
of American white fertility, illustrates the use of the
standard APC model to compare the variability by
cohort versus period. The second example, Wilmoth’s
(1990) analysis of French male mortality, employs a
more complicated APC model with interaction terms
to document the unusually high or low levels of mor-
tality for certain cohorts.

a. American White Fertility, 1920 to 1970

Pullum (1980) analyzed an age-by-period array of
age-specific fertility rates for American white women
aged 15 to 44 during years 1920 to 1970. He fit all three
possible two-factor models and the standard three-

factor APC model. Table 18-1 shows y* measures of fit
for each model in four time periods, each spanning
two decades (lower values indicate a better fit). The
period x cohort model is clearly inferior to the other
two-factor models, reflecting the primary importance
of age as a dimension of variation in this case. It is not
clear from the comparison in Table 18-1, however,
whether age should be paired with period or cohort to
obtain the best two-dimensional description of these
data.

Table 18-2 reveals the greater importance of periods
than cohorts as a dimension of variation in these data
by comparing each two-factor model to the full APC
model. The values in this table (which can be derived
from those in Table 18-1) can be thought of as the
improvement in fit when age, period, or cohorts is
added as the third and final dimension of the standard
APC model or as the loss of fit when one of these
dimensions is removed from the full three-factor
model. In each case, the improvement or loss of fit is
measured relative to the change in degrees of freedom.

Pullum (1980) applied these same four models to an
age-by-cohort array of age-specific fertility rates for
American white women aged 15 to 44 years born
during years 1905 to 1926 (thus including all cohorts
whose reproductive lives fell entirely within the obser-
vation period) (Table 18-3). He notes that

In contrast to the previous applications to rectangular
[age-by-period] data, the inclusion of period effects appears
much more useful than the inclusion of cohort effects (p. 236,
emphasis in original).

For example, using measures like those presented here

in Table 18-2, the loss of fit caused by removing all

period parameters from the full APC model is 13.1

(increase in chi-square per degree of freedom) com-

pared to only 0.4 if the cohort dimension is eliminated.
In conclusion, Pullum stated (p. 241)

TABLE 18-1 »* Measure of Fit for Four Models Applied to Age-specific Fertility Rates, American White
Women, Aged 15-44 Years, 21-year Time Intervals

Model df Interval of time

1920-1940 1930-1950 1940-1960 1950-1970
Age x period 580 148.1 330.2 411.3 93.3
Age x cohort 551 90.2 397.8 411.6 800.2
Period x cohort 560 13,306.8 14,952.4 20,603.5 21,130.1
Age x period x cohort 532 216 133.1 98.0 40.8

Note: Data for each time interval were in age-by-period format. x* estimate is based on an artificial case base of 630,000

cases for each time interval.

Source: Pullum Thomas W., 1980. Separating age, period, and cohort effects in white U.S. fertility, 1920-1970. Social
Science Research, vol. 9(3), p. 227-244. New York, Academic Press, Table 2.
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TABLE 18-2 Reductions in }* Per df When Age, Period,
or Cohort is Added as Final Term of Standard APC
Model of Age-specific Fertility Rates, American White
Women, Aged 1544 Years, 21-year Time Intervals

Effect Interval of time

1920-1940 1930-1950 1940-1960 1950-1970
Age 474.5 529.3 732.3 753.2
Period 3.6 139 16.5 40.0
Cohort 2.6 4.1 6.5 1.1

Note: See note for Table 18-1.

Source: Pullum Thomas W., 1980. Separating age, period, and
cohort effects in white U.S. fertility, 1920-1970. Social Science Research,
vol. 9(3), p. 227-244. New York, Academic Press, Table 3.

TABLE 18-3 )* Measures of Fit for Four
Models Applied to Age-specific Fertility Rates,
American White Women, Aged 15-44 Years,
Cohorts Born 1905-1926

Model df Ve

Age x period 580 96.1
Age x cohort 609 730.4
Period x cohort 588 15,846.8
Age x period x cohort 560 87.6

Note: Data were in age-by-cohort format. 3 estimate
is based on an artificial case base of 660,000 woman-
years.

Source: Pullum Thomas W., 1980. Separating age,
period, and cohort effects in white U.S. fertility,
1920-1970. Social Science Research, vol. 9(3), p. 227-244.
New York, Academic Press, Table 4.

Despite the great theoretical appeal of the notion that conti-
nuities exist in the behavior of cohorts, we have found that
the explanatory gain per cohort parameter is far less than
the gain per period parameter. ... The implications for our
understanding of U.S. fertility are that, as a set, changes in
those temporal variables which cut across cohorts, such as
economic cycles, appear to be more important than changes
in those variables which distinguish cohorts, such as shared
socializing experiences.

Similar explorations of fertility patterns for other
populations and time periods seem warranted. Pullum
also suggested that these models could be usefully
applied to fertility rates by parity.

b. French Male Mortality, 1946 to 1981

Wilmoth (1990) fit an APC model with two age-
period interaction terms to age-specific mortality rates
for French males during years 1946 to 1981. The full
model, as stated earlier, was as follows:

Diagonal effect 6
0.08 T T T T T T T T

0.04

0.002
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FIGURE 18-2 Residual cohort effects estimated by two methods
in age-period-cohort model with interaction terms applied to age-
specific mortality rates, French males, aged 0-89, years 1946-1981.
Note: Data analyzed were in age-by-period format. The values
depicted here are measures of the average level of excess or deficit
mortality for each cohort (as a proportion of predicted levels) over
the observation period. (Source: Wilmoth [1990], p. 307).

p
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The interaction terms in this model describe varia-
tions in the pattern of mortality decline by age: The
first term captures the relatively faster decline at
younger compared to older ages, while the second
term reflects the pattern of increasing (or slowly
decreasing) levels of mortality in late adolescence and
early adulthood.

The cohort parameters in this model, 6, reflect
residual levels of mortality relative to the thorough
description by age and period. As shown here in
Figure 18-2, Wilmoth’s model can be used to docu-
ment the persistence of relatively high or low levels of
mortality for certain cohorts. Two sets of estimates for
6, were derived using different methods for fitting the
model, though the complete series is considered more
reliable.

Wilmoth demonstrated the presence of substantial
levels of excess or deficit mortality for various cohorts,
successfully rejecting alternative explanations, for
example, that the patterns were artifacts of bad data or
of the model itself. Nevertheless, his explanation of
their historical or biologic causes was less satisfactory.
He acknowledged the inadequacy of existing explana-
tions of these patterns when a comparison of results
from different populations is made.
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For example, it had been suggested that excess mor-
tality for groups of male cohorts born around 1900 and
1930 may be related to early combat experiences near
the end of the World Wars or to nutritional depriva-
tion in adolescence resulting from the social and eco-
nomic dislocations at these times (see Horiuchi, 1983;
Wilmoth et al., 1989). However, these explanations fail
to account for the presence of similar patterns of excess
mortality among Japanese cohorts, both male and
female, born around 1900, since Japan was only nom-
inally involved in World War I (see Wilmoth, 1988, p.
107-113). Furthermore, the presence of similar patterns
for females suggests that combat experience in the
wars may not be the crucial explanatory variable.
Finally, the apparent recurrence of a similar pattern for
cohorts born after World War II suggests that the phe-
nomenon may operate through mechanisms at least
partially unrelated to the two wars.

Although the failure to explain these findings does
not invalidate them, it does illustrate the difficulties of
interpreting cohort-specific variations in demographic
rates.

CONCLUSION

The studies by Pullum (1980) and Wilmoth (1990)
illustrate that valid results can be derived within an
APC framework if one accepts that there is no magic
solution to the identification problem. Instead, it is nec-
essary to seek findings that are invariant to the choice
of identifying constraints (e.g., measures of fit, second
differences) or that acknowledge the fundamental
arbitrariness of these constraints (e.g., residual cohort
effects with zero slope).

It is important to remember that the identification
problems affecting APC analysis are not some statisti-
cal aberration. Rather, they reflect a fundamental
lack of information in the data being analyzed. The
first identification problem, involving the level of the
various parameters, is not problematic in most situa-
tions, since our purpose in estimating these sorts of
models is to analyze patterns of change over age or
time, which are unaffected by an arbitrary choice of
level. Furthermore, this kind of identification problem
is familiar and affects other statistical methods as well.

The unusual aspect of APC analysis is that, even
for the simplest model, identifying constraints are
required in order to obtain unique estimates of the
linear trend in the parameters. This situation arises
directly from the relationship linking the three sets of
causal factors:

cohort + age = period

In regression analyses, of course, it is standard
practice to avoid using independent variables that are
highly collinear (either individually, or in some
combination). By their very nature, some variants of
APC analysis ignore the sound logic of this practice
and attempt, by some statistical trick, to perform the
impossible, namely, to extract more information than
what is contained in the data. Because of this funda-
mental lack of information, the results of an APC
analysis reflect both the underlying patterns in the
data and the assumptions adopted by the analyst. This
reality does not invalidate the method in all situations,
but it serves as an important reminder of the limita-
tions that affect all models used with the purpose of
separating age, period, and cohort effects.
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