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VARIATION IN VITAL RATES
BY AGE, PERIOD, AND COHORT

John R. Wilmoth*

The analysis of age-specific vital rates is studied, and
special attention is given to the problem of decomposing an
array of rates into factors related to age, period, and cohort.
A complete, symmetric decomposition of the data array into
age, period, and cohort components is not attempted. Instead,
the paper focuses on the age and period dimensions and
derives an initial description of the matrix’s structure with
regard to changes only in those two directions. This two-
dimensional description is then augmented by a consideration
of residual patterns that seem clearly linked to cohorts. The
use of a model that is asymmetric in age, period, and cohort
is justified by a detailed discussion of the problems of identifi-
cation in models involving perfectly collinear independent vari-
ables. An important conclusion is that traditional modeling
approaches that treat age, period, and cohort in a symmetric
fashion are fundamentally flawed.
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296 JOHN R. WILMOTH

Vital rates trace the evolution over age and time of major
life events such as birth, death, marriage, divorce, and migration.
Although aggregate rates arc a less than perfect source of infor-
mation for studying life’s critical transitions, they are nevertheless
one of the main windows through which demographers and sociol-
ogists view social change. Methods of summarizing changes in aggre-
gate vital rates become, then, a topic of considerable interest.

The rescarch presented here grew out of an analysis of the
components of mortality change and, more specifically, out of a
desire to answer the question, Do cohorts remember their past
mortality experience? In other words. Is current mortality a function
of past mortality? These questions necessitated a very careful con-
sideration of the means available for decomposing large arrays of
age-specific mortality rates into separate age, period, and cohort
components. This paper, while offcring a qualified “yes™ to the
above questions, concentrates on the more general methodological
problem of summarizing variation in vital rates by age, period, and
cohort.

The message is sobering and yet optimistic. Using models of
the form

o

fi=a + B+ 2] B Vi Oim + Ok + €55 (1)
where k = j — i, I develop two separate but rclated arguments.
First, I argue that in all legitimate analyses of vital rates, the data-
description process must focus on two of the three age, period, or
cohort “dimensions.” Second, and equally important, I argue that
all is not lost as concerns the third and final dimension. I demon-
strate, taking age and period to be the primary dimensions in a
study of French male mortality for the years 1946-1981, that there
are evident sources of variability that can plausibly be associated
uniquely with cohorts.

The paper is divided into three major sections. I begin by
motivating the choice to use the above model through an exploratory
analysis of a large array of French mortality data. In the second
and shortest section, I review the literature on the influence of the
cohort life history on subsequent mortality and discuss the signifi-
cance of the current substantive findings. Finally, I examine the
issue of age-period-cohort modeling from a theoretical perspective
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to ground the proposed method in a general and coherent frame-
work.

Since this paper concentrates on the general problems of
model development and interpretation, it is imperative to give some
consideration to the constraints imposed on the parameters of the
model. A brief outline of the fitting algorithm is also given in the
appendix. All other details of the fitting procedures, however, are
omitted for brevity and are available in a separate technical report
(Wilmoth 1989).

1. EXPLORATORY DERIVATION OF THE MODEL

Flexible empirical modeling of arrays of vital rates has several
precedents in the work of McNeil and Tukey (1975), Hobcraft
and Gilks (1984), and particularly Breckenridge (1983, 1989). The
methods used in these cases bear a notable resemblance to the
association models (ANOAS) of Goodman (1986), Clogg (1982b),
and Becker and Clogg (1989). These studies have all made important
contributions to the problem of adapting models to empirical reality.
Flexible empirical modeling of vital rates has not yet, to my knowl-
edge, been successfully combined with an approach that accounts
simultaneously for variation by age, period, and cohort. Most
notably, Breckenridge (1983) adopted an exploratory approach
toward modeling an age X cohort array of Swedish fertility data
and discovered clear period patterns in the residuals, but she did
not include a term in the full model to account for this particular
form of period-specific variation. In the present study, I sacrifice a
degree of flexibility, since I do not consider the rich diversity of
robust fitting mechanisms advocated in some of these previous
works. However, by restricting my fitting methods to ordinary least
squares (OLS), I succeed in combining the most important elements
of the flexible modeling approach (i.e., those related to model
choice) with a simultaneous consideration of the age, period, and
cohort dimensions of variation.

The data examined throughout this paper consist of a rec-
tangular array of age-specific probabilities of death, g;, for French
males aged 0~89 over the years 1946-1981 (Vallin 1973, 1984). Thus,
i=0,..,8andj = 1946 ,..., 1981, implying that there are I = 90
rows (ages) and J = 36 columns (periods) in the matrix. The cohorts
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concerned are those whose life experience intersects this age X
period array. Thus, k& = 1857,...,1981, indicating that
I +J — 1 =125 cohorts are included in the study for at least one
year. At most, a cohort can be observed for 36 years, as is the case
for cohorts 1892-1946. Some cohorts are observed for very few
years, such as those just after 1857 or just before 1981, so we can
expect to learn very little about their particular mortality experience.
An age X period array is chosen mainly for convenience. In
addition, we will see that the rows and columns of such an array
demonstrate a very high degree of regularity and that we can exploit
this regularity of structure by age and period to learn something of
the nature of cohort mortality.

It is generally necessary to transform the raw data before
proceeding with any form of model fitting. In the present case an
appropriate transformation’ is

_ U
fo=og %) @
This transformation has the useful property that

i = log(m v1.) 3)

where u, 4, is the force of mortality (or hazard rate) at the midpoint
of the age interval. Thus, the chosen transformation has a theoretical
interpretation, since the pieces of an additive model of f; can be
expressed as proportional adjustments to an underlying hazard. As
pointed out by Emerson and Stoto (1983), a transformation chosen
for one reason often brings with it several serendipitous effects. In
this case, beyond the helpful theoretical interpretation, we can cite
variance stabilization and increased additivity of the data matrix as
two additional arguments in favor of the above transformation
(Wilmoth 1989, pp. 2-3).

The exploratory phase of analysis proceeds by fitting a series
of simple models to the transformed rates or to the residuals of a
previous model. It is sensible to begin by fitting an additive model,

fi=ait B+ €, 4)

'Tf the available data consist of rates, m;, instead of probabilities, g,
the transformation analogous to (2) is f; = log(m;;).
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where the parameters are constrained such that .8, = 0. Figure 1
shows the row effects, &;, which represent the average age pattern of
mortality (in logarithmic scale) over the period of study, 1946-1981.
Figure 2 shows the column effects, ,23,-, which represent the average
evolution of mortality over time. The first of these two curves
depicts the well-known pattern of mortality change over the age
range: high at birth, falling to a minimum around 11, rising to a
local peak in the late teens and early twenties, leveling for about
10 years, and then increasing exponentially after around age 30.2
The second curve documents the very rapid decline in mortality in
the period immediately following World War 11, a period of relative
stability in the 1960s, and then a resumption of the downward trend
(albeit at a slower pace) in the 1970s.

This simple model can explain approximately 99.5 percent of
the total variance in the matrix. My interest in this analysis, how-
ever, is in examining the ways in which an additive model fails to
reflect completely the structure of the matrix. Although by this
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Row Effects — a,
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x
x
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0O 10 20 30 40 50 60 70 80 90
Age

FIGURE 1 Row effects for the additive model. French male mortality, ages 0-89, years
1946-1981.

2Obviously, the increase after age 30 in Figure 1 is linear, since the rates have
been transformed.
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FIGURE 2 Column effects for the additive model. French male mortality, ages 0-89,
years 1946-1981.

simple measure one could argue that the matrix demonstrates near
perfect additivity and that further analysis is therefore unwarranted,
the patterns of nonadditivity in the matrix present considerable
substantive interest and should not be ignored. The high percentage
of variance explained by a strictly additive model reflects primarily
the stark contrasts in mortality across the age range, a pattern whose
general contours have changed only slightly since World War 1II.
The nature of those changes, although small relative to the variation
in mortality over the age range, may nevertheless have implications
for an understanding of the components of mortality change and
thus should not be ignored.?

Residual analysis for the additive model is quite revealing.
Figure 3 shows the average residuals by period for three age groups:
0-4, 15-24, and 50-89. The fit seems particularly deficient for ages
0—4 and 15-24, although the two patterns of deviation are different.

31t is in fact the row effects, @;, which alone account for around 99 percent of
the total variance. From this perspective, the column effects, §;, account for
only about 50 percent of the remaining variance and hence of changing mortality
patterns over time. The remaining 50 percent needs to be examined subsequent-

ly.



VARIATION IN VITAL RATES 301

@
)

0.4 0.6

Average Residuals
0.2

1

1950 1955 1960 1965 1970 1975 1980 1985
Year
FIGURE 3 Average residuals from the additive model for age groups 0-4, 15-24, and
50-89. French male mortality, ages 0-89, years 1946-1981.

-0.6 -0.4 -0.2 0.0

At the youngest ages, the decline in mortality has been much faster
than average, resulting in strongly positive residuals for the early
years and negative ones for the later years. This tendency is balanced
by the evolution of mortality at older ages (50-89 in this case):
Across a very broad age range, mortality has declined at a rate that
is somewhat less than average. In the case of the 15-24 age group,
the decline was somewhat faster than average in the first half-
decade, then followed the average pattern of decrease for around
13 years, and finally began a period of relative increase compared
with the average rate of decline in the period since 1963. In examin-
ing the original data, we can see that mortality at these ages actually
increased in absolute terms during the 1960s and 1970s: The minima
over the period 1946-1981 for sq,5s and sq., were reached in 1963
and 1959, respectively.

To account for these kinds of deviations from additivity, the
additive model can be extended by including one or more rank-one
multiplicative terms. Defining residuals from the model given in (4)
as

ry=f;— & — B, (5)
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we then fit another model,

P

rijy = z] Do Vi 5jm + €. (6)
Equivalently, we calculate the first p terms of the singular value
decomposition (SVD). (See Good [1969] and Gabriel [1971] for
useful discussions of the SVD.)

At this stage of analysis, we are faced with the problem of
choosing p, the proper number of multiplicative terms for the model.
The first piece of evidence to be considered is the relative magnitude
of the singular values, ¢,,, since they are a measure of the variance
explained by each term of the SVD. From Table 1 it is apparent
that the first two terms are dominant, thus suggesting the choice
p =2

It is possible to confirm that the structure of the matrix
by row and column is well represented by an additive and two
multiplicative terms by examining successive sets of residuals,
formed by removing an additive term and zero, one, two, or three
multiplicative terms. (We call such models AM(0), AM(1), etc.)
Figures 4a and 4b show the mean absolute residuals by row and by
column in these four cases. These graphs demonstrate the successive
improvements in fit when one, two, and three multiplicative terms

TABLE 1
Singular Values, ¢,,, from a Singular Value
Decomposition of the Residual Matrix

(fi — @& = B)

C’l;m

3

6.3
3.6
1.4
1.0
0.9
0.8
0.64
0.62
0.56
0.53

OO 0 AN W

—
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FIGURE 4 Residuals from models AM(0) through AM(3). French male mortality, ages
0-89, years 1946-1981.

a. Mean absolute row residuals by age.
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b. Mean absolute column residuals by period.
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are added to the additive model. When two such terms are added,
the description offered by the model appears to be roughly uniform
across all rows and columns of the matrix. The addition of a third
multiplicative term, however, results in relatively minor improve-
ments and is thus recommended neither by the previous criterion
(see Table 1) nor by the current one.

Accepting the choice p = 2, then, we may begin to examine
the patterns of mortality change that are brought about by these
multiplicative terms. Figure 5 shows a four-level contour map rep-
resentation (Vaupel, Gambill, and Yashin 1985) of the first two
multiplicative terms and thus depicts the predominant residual pat-
terns of the simple additive model. Positive arcas (shaded dark)
mark regions of mostly positive residuals, indicating that the additive
model has consistently underestimated the true level of mortality
for certain ages and periods. Negative arcas (shaded light) corre-
spond to areas of negative residuals and hence to systematic overesti-
mates of mortality.

It is useful to view the joint description of the additive and
multiplicative terms in a comparison of the shape of the age curve
of mortality for, say, the first and last years of our study, 1946 and
1981. The changing shape of the mortality curve over this period is
quite apparent in Figure 6, which combines the additive pattern
from Figure 1 with the multiplicative adjustments to this pattern
from Figure 5. The two multiplicative terms thus reflect the slow
transformation in the shape of the age curve of mortality over the
years of the study. In particular, they depict the relatively faster
pace of decline at ages under 40 and the slower improvement at
higher ages. In addition, the increasing prominence of an “accident
hump™ around ages 15-25 is quite cvident in Figure 6.

The third and fourth terms of the SVD are of much smaller
magnitude and seem to depict a different kind of nonadditive struc-
ture. As can be seen in Figure 7, these two terms combine to form
a series of alternating positive and negative diagonal strips across
the matrix, undoubtedly reflecting the influence of cohort factors.
These contours can be represented more simply by calculating the
average residuals along diagonals after fitting an AM(2) model.
Formally, we definc

S/j = flj - CAY[ - BA/' - Z d;m ﬁim Sjm (7)

m=1
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FIGURE 6 Comparison of the shape of predicted age curves for 1946 and 1981, combin-
ing additive row effects and multiplicative terms. French male mortality, ages
0-89, years 1946-1981.

and fit a model of the form
S,'/' = 0/‘. + Efj’ (8)

where k = j — i, as before. The resulting estimates, 6, are called
residual diagonal effects and are graphed in Figure 8. The descrip-
tion they offer of the unusual mortality experience of certain cohorts
is simpler than, but analogous to, the patterns shown in Figure 7.

The exploratory analysis thus suggests the model referred to
in the introduction:

P

fi/‘ =+ B+ EI Do Vim 8jm + 60, + €, (1)
where 7, j, and k = j — i index rows (ages), columns (periods), and
diagonals (cohorts), respectively. This is called the AMD model or,
when p is specified, the AM(p)D model. The a;’s and B’s are the
row and column effects, respectively. The a;’s give the shape of the
underlying age curve of mortality over the entire period, while the
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FIGURE 7 Two-level contour map representation of the third and fourth terms of the
singular value decomposition, applied to the residuals of a simple additive
model. French male mortality, ages 0-89, years 1946-1981 (dark = positive,
light = negative).

B/’s indicate the level of the curve for year j. The multiplicative part
shows the slow evolution in the shape of the age curve over time.
Finally, the diagonal effects, 6,, depict the average amount of
“excess mortality” for cohort k over the period of study.

Since the terms of this model are not independent, it is not
optimal to fit successive portions of the model to the residuals of a
previous fit, as was done in the exploratory analysis. Rather, it is
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FIGURE 8 Residual diagonal effects (original and smoothed), calculated directly after
removal of an additive term and two multiplicative terms. French male
mortality, ages 0-89, years 1946-1981.

preferable to fit the model globally, for example, by minimizing the
sum of squared residuals for the entire model. It is important for
now to limit the fitting procedure to the simplest technique
available—i.e., OLS—both to facilitate computation and to center
the discussion on more crucial topics, such as the choice of con-
straints, parameter interpretation, and, eventually, the arrangement
of the matrix being analyzed (age X period, etc.). In any case,
previous work has indicated that alternative fitting routines, such
as weighted least squares or robust methods, are unlikely to substan-
tially alter the results (Wilmoth 1988, pp. 61-64).

The difference between fitting the complete AMD model and
the step-by-step exploratory procedure demonstrated above is most
evident in the magnitude of the estimates for 6,. Thus, Figure 9
shows that the residual (i.e., exploratory) diagonal contours re-
covered in the current example are only about one half the size of
those found by an iterative (i.e., complete) solution. This difference
is due to the additive part and the first two multiplicative terms,
which together consume a portion of the diagonal patterns in the
initial steps of the exploratory procedure. Through an iterative
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FIGURE 9 Estimated diagonal effects (original and smoothed) from exploratory and
complete fits. French male mortality, ages 0-89, years 1946-1981.

procedure that minimizes the sum of squared residuals of (1), the
full magnitude of the underlying diagonal contours is recovered.
(See section 3 below).

In this way I have motivated by mostly empirical arguments
the choice to analyze the array of French male mortality rates using
the particular model given in equation (1). I have referred to
equation (1) as the AMD model because it contains additive, multi-
plicative, and diagonal components. This particular analysis was
motivated not simply by the regularity of empirical structure thus
documented but also by specific substantive issues concerning the
factors affecting the long-term mortality experience of cohorts and
by general methodological questions regarding the difficulties of
analyzing vital rates within an age-period-cohort framework. The
next two sections of this paper deal in turn with each of these topics.

2. THE PECULIAR MORTALITY EXPERIENCE OF
CERTAIN COHORTS

The effects of the life history on the subsequent mortality
experience of cohorts has been a topic of great interest to demogra-
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phers. The theoretical debate centers around the probable net
effects of two countervailing processes: debilitation and selection.
The surviving members of a cohort may be debilitated by adverse
environmental influences that shift their distribution of frailty,
resulting in a higher level of subsequent mortality than would other-
wise have been the case. Conversely, these same adverse environ-
mental conditions may select out the relatively weaker members of
the cohort through premature death without altering the future
susceptibility of the survivors, resulting later on in a lower level of
observed aggregate mortality than otherwise expected.

Numerous demographic works have emphasized the debili-
tative effects of adverse environmental circumstances, which may
act to increase mortality in the long term (Kermack, McKendrick,
and McKinley 1934a,b; Coale and Kisker 1986; Preston and van de
Walle 1978; Horiuchi 1983; Vallin 1973; Okubo 1981). Others have
postulated the potential selective effects of high mortality early in
life on the subsequent mortality of a population that is hetero-
geneous in its susceptibility to death and disease (Vaupel, Manton,
and Stallard 1979; Bourbeau and Legare 1981; Levinson 1959; Beard
1961). The particular influence of war on subsequent morbidity and
mortality has also been a frequent topic of inquiry in psychological
and medical journals (Archibald and Tuddenham 1965; Murphy
1975; Hocking 1970; Maskin 1941; Déthienne and Donnay 1976;
Hearst, Newman, and Hulley 1986), where the general consensus
has been that war has an unambiguously debilitative effect (both
physiologically and psychologically) on survivors.

Some of the demographic studies listed above, particularly
those by Horiuchi, Vallin, and Okubo, have also been concerned
with the long-term effects of war on the aggregate mortality experi-
ence of certain cohorts. These authors documented patterns of
unusually high or low levels of mortality in the postwar period for
various European countries and Japan. Their methods were gener-
ally less sophisticated, less powerful, and in some instances, more
difficult to interpret, but they succeeded in documenting many of
the same unusual patterns of cohort mortality that are evident in
Figure 9 of this paper (see also Wilmoth 1988, pp. 98-113). Still,
their descriptions were less complete and, apparently, less accurate.
In particular, I have shown elsewhere (Wilmoth 1988; Wilmoth,
Vallin, and Caselli 1989) that many of these patterns are present
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for females as well as males, whereas Horiuchi claimed that they
were a peculiarly male phenomenon. Furthermore, the excess mor-
tality of cohorts born in the late 1950s and early 1960s had not been
noted before application of the current methods.

The current technique also allows us to quantify more pre-
cisely the size of the deviation in the level of cohort mortality.
Since, as noted above,

fij = log(l-“tﬂ,j)’ (3)

we can interpret the diagonal term of the AMD model as a pro-
portional adjustment to the underlying hazard of death. The esti-
mated adjustment to the cohort force of mortality, w, at the mid-
point of the age interval is

exp(6) =1+ 6. 9)

Referring back to Figure 9, then, we see that the mortality of the
most affected cohorts deviates by approximately 5 or 6 percent from
the underlying levels. The peak-to-trough difference is thus on the
order of 10 percent or slightly higher.

Unfortunately, a fully adequate interpretation of these pat-
terns in light of processes of debilitation and selection has yet to be
found. It had been suggested that excess mortality for groups of
male cohorts born around 1900 and 1930 may be related to early
combat experiences near the end of the World Wars or to nutritional
deprivation in adolescence resulting from the social and economic
dislocations at these times (see especially Horiuchi 1983; Wilmoth
et al. 1989). These explanations fail to account for the presence of
similar patterns of excess mortality among Japanese cohorts, both
male and female, born around 1900, since Japan was only nominally
involved in World War I (see Wilmoth 1988, pp. 107-13). Further-
more, the presence of similar patterns for females suggests that
combat experience in the wars may not be the crucial explanatory
variable. Finally, the apparent recurrence of a similar pattern for
cohorts born after World War II suggests that the phenomenon may
operate through mechanisms at least partially unrelated to the two
wars.

Resolution of these problems of interpretation will probably
come only through extensive comparative study, through consider-
ation of differences in the form and magnitude of these peculiar
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patterns of cohort mortality across a variety of countries and causes
of death. I do not intend in this paper to resolve this issue. Rather,
I intend to outline a method that seems to be a powerful means of
documenting the existence of these unusual and strangely persistent
patterns. It is worth noting that when this method is applied separ-
ately to French male mortality data from two disjoint time periods
(1946-1963 and 1964-1981), it recovers a similar description of
cohort mortality in both cases, indicating that the peculiarity is
indeed persistent across the entire postwar period up to 1981. Fur-
thermore, any concerns that the accuracy of the general description
may be due to artifacts of the method or of the data being analyzed
may safely be put aside. The method has been thoroughly tested
using simulated data to verify its ability to accurately recover pat-
terns of this kind (see section 3), and this accuracy is further
corroborated by the findings of authors who used different methods
and yet found similar results. That the findings are not a simple
artifact of the data is supported by the fact that strikingly similar
results have been found for a variety of countries with different
systems of vital registration (France, Japan, Austria, the Nether-
lands, Italy, and Sweden).

The task remains, then, to understand these patterns in light
of theories concerning the relations of cohort mortality at different
points in the life cycle. This topic will be taken up in future work.
The next section considers the relationship between these patterns
of cohort mortality and the general subject of age-period-cohort
analysis.

3. DATA ANALYSIS WITHIN THE AGE-PERIOD-
COHORT FRAMEWORK

It is well known that the analysis of vital rates within an age-
period-cohort (APC) framework presents substantial methodolog-
ical problems relating to the identity

cohort + age = period. (10)

The book Cohort Analysis in Social Research, edited by Mason and
Fienberg (1985), brings together a seminal article by Ryder (1965),
a review of the literature by Hobcraft, Menken, and Preston (1982),
and several other articles by Mason, Fienberg, and others that
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provide considerable insight into the general problem of APC analy-
sis. The purpose of this paper is not to provide a comprehensive
review of the topic but rather to justify a particular perspective
on data analysis within the APC framework and to explicate the
relationship between the general problem and the approach offered
in the previous sections of this paper.

First, it is notable that my approach to analyzing the given
array of French mortality data is strictly descriptive. It is not,
however, a blind foray into empirical modeling of data structures;
as outlined in the preceding section, it is a description informed by
a demand for substantive understanding. The notion that the APC
framework can best be thought of as a descriptive accounting scheme
was quite effectively argued by Clogg (19824, p. 461), who noted
that “because of the difficulties in specifying what it is that the age,
period, and cohort variables actually represent in terms of proximate
causal agents, an analysis that makes as few assumptions as possible
about the causal agents is certainly legitimate.” Clogg’s particular
application dealt with rates of women’s labor force participation.
His argument that the APC accounting framework is an appropriate
first step toward an understanding of the causal processes that have
generated an array of vital rates is valid in the present case as well,
and it probably holds true in general: One chooses to work within the
APC framework precisely because one lacks sufficient knowledge of
the relevant explanatory variables that might substitute for the age,
period, and cohort proxies.

Yet the notion that the APC framework is merely an account-
ing scheme through which one may derive an informative description
of an array of numbers seems antithetical to the recurrent argument
that the identification problem in these cases should be resolved
through reference to prior information about the phenomenon being
studied. Choosing on the basis of prior information to constrain two
age, period, or cohort parameters to be equal in order to achieve
model identification, as popularized by Fienberg and Mason (1978)
and replicated in one form or another by numerous researchers,
implies that the said parameters represent some sort of causal factor
about which some a priori knowledge is available. If one possesses
sufficient information to legitimately make such restrictions, then it
must surely be possible to go one step further and, abandoning the
accounting framework altogether, define and measure the underly-
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ing variables for which age, period, and cohort are mere proxies. I
am strictly opposed, therefore, to a hybrid approach that advocates,
on the one hand, an accounting procedure (implying a lack of
prior information) and, on the other, the imposition of identifying
restrictions supposedly based on a refined knowledge of the sub-
stantive phenomenon (implying possession of reliable prior
information).

There are several pertinent characteristics of descriptive
modeling within an APC framework that bear consideration. In
brief, the description should be accurate, informative, and parsi-
monious. Accuracy implies that the residuals of a fitted model
should contain no systematic patterns. An informative model is one
that lends itself to interpretations related to the causal processes
that have in fact yielded the data. Finally, a parsimonious model is
one that minimizes the number of fitted parameters without unduly
sacrificing accuracy and information.

Notably absent from this list is a concern for parameter bias
(cf. Clogg 19824, pp. 465-66). In an accounting scheme, parameter
estimates are not compared with an underlying probabilistic model
that is assumed to have some real-world validity. The parameter
estimates derived in this paper have no direct interpretation other
than in relation to the data structures they describe. Alternative
choices for the identifying restrictions used in fitting the AMD
model in section 1 would not be justified on the basis of a lesser
bias or a truer adherence to underlying age, period, and cohort
effects; rather, alternative descriptions could be justified, but only
on the grounds that they would be more informative, i.e. that
they would focus our attention more keenly on data patterns of
demographic interest.

To fit any model that contains age, period, and cohort
elements to an array of vital rates, one must choose a set of
identifying restrictions. In a descriptive analysis of the kind advo-
cated here, one chooses identifying constraints that facilitate the
process of informative data description. The constraints used in the
previous sections of this paper were a natural by-product of the
stepwise fitting procedure used in choosing the model: Each identify-
ing restriction was the result of fitting an additional model to the
residuals of a previous model (as described in detail below). They
are by no means the only correct constraints. Their justification
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rests on their utility in highlighting certain interesting features of
the data: the predominant additivity of the age and period patterns,
the evolutionary change in the shape of the age curve, and the
diagonal overlay corresponding to cohorts.

Most of the controversy in APC analysis has revolved around
identification of the linear trend in the simple three-way main-
effects model. The empirical or theoretical inadequacy of a model
that allows for no interaction terms should be obvious (as noted by
Glenn 1976, among others); but the inclusion of interaction terms
has been thought to so complicate the identification problem that
they have generally been avoided (see Fienberg and Mason 1985,
p. 71; Clogg 1982a, p. 464). Nevertheless, inattention to the
relationship between interaction terms and the identification of
higher-order patterns (quadratic, cubic, etc.) results in an over-
simplification of the problem, as can be readily demonstrated (cf.
Fienberg and Mason 1985, pp. 71-74).

The APC identity, equation (10), is of course only a special
instance of a more general problem of perfect collinearity. There-
fore, I develop the argument for any set of perfectly collinear
variables, X, Y, and Z. Suppose that data are collected in the form
Wy Xn> Yu» Zn), for n = 1, ..., N. The observations w,,, x,,, y,,, and
z,, are realizations of random variables W, X, Y, and Z. Suppose
furthermore that a given statistical model assumes that W is the
appropriate dependent variable and that X, Y, and Z are explana-
tory (proxy) variables affecting W. We are interested in a particular
situation in which the explanatory variables defy traditional assump-
tions of uncorrelatedness. Quite to the contrary, in this case they
are related by the simple identity

X+Y=2Z (11)

This instance of perfect collinearity is clearly analogous to the
relationship between age, period, and cohort expressed in equation
(10).

Define the main-effects model for W in terms of X, Y, and
Z as follows:

E[W] = f(X) + &(Y) + h(2), (12)

where f(-), g(), and Ah(-) are functions of variables X, Y, and Z,
respectively, and where the expectation operator, E[-], is used
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merely to avoid the necessity of writing an error term in the equa-
tions.* In all practical appplications, we can write f, g, and A as
polynomial functions. Hence,

E[W]= a,+taX+aX"+ ..
by + b, Y+ bY2+ ... (13)
cotaZ+eZ>+ ...

It is thus clear that the main-effects model in (12) is not identifiable,
since the coefficients pertaining to both the constant and the linear
terms of the polynomial expansions of functions f, g, and A4 cannot
be uniquely determined. That the constant terms of f, g, and & are
not estimable comes as no surprise and is not unique to the situation
in which the explanatory variables are perfectly collinear (being
shared, for example, by traditional two-factor ANOVA). The
inability to derive unique estimates for the coefficients of the linear
term can be demonstrated simply by noting that

aX+b,Y+tcZ=(@a+MN)X+b, +N)Y+(c,—NZ

(14)
= aX+bY+c,Z

for any real A. Since either a,, b,, and ¢, or 4, b7, and ¢, reproduce
the same probabilistic model, the model implicit in equation (12) is
not identified. To estimate the main-effects model, it will be neces-
sary to constrain not only a,, b,, and c,, but also a,, b,, and ¢, in
some convenient manner.

Quadratic and higher terms in (13) do not present the same
problems of estimation: Though it is true that X + Y = Z, similar
identities do not hold at higher orders. If X + Y = Z, it is trivial
to show that X2 + Y?> # Z2, X? + Y* # Z?, etc.; therefore, only
the constant and linear terms require identifying constraints. If we
consider the main-effects model in which the functions f, g, and A
are assumed to have quadratic forms, the relationship between
interaction terms and the nonlinear part of the main effects becomes
apparent. Since X + Y = Z, the quadratic main-effects model,

4In the discussion that follows, I assume that X, Y, and Z are fixed,
i.e., that they are measured with precision. This assumption is conventional in
much of statistical reasoning, and it is certainly not too far from accurate in
this case, where X, Y, and Z correspond to ages, periods, and cohorts.
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EW]=ay+ a, X +a,X>+ by + b)Y+ b,Y>+ ¢y + ¢, Z + ¢, 22,
(15)

can be rewritten as
EW]= ay+a X+ a,X?>+ by, + b)Y+ b,Y?
+ ¢y + ) (X+Y) + co(X+Y)?
= aytby.cy (16)
+ (a;+c))X + (by+c,))Y
+ (ar+c)X? + (by+c)Y? + 26, XY.

Thus, a second-order main-effects model in X, Y, and Z can be
rewritten as a second-order model in X and Y alone if we include
an XY interaction term. Similarly, an nth-order main-effects model
in X, Y, and Z can be rewritten as an nth-order model in X and Y
alone if we include all appropriate interaction terms.

Hence, the more general model,

E[W]=f(X) + g(Y) + h(Z) + interaction terms in X, Y, and Z,
(17)

requires identifying constraints not only for the constant and linear
parts of f, g, and A but also for the quadratic and higher-order
terms. It is seen in this manner that there exists a separate identifi-
cation problem for each order of the polynomial expansions of f, g,
and A. I thus define nth-order identification to be the process of
constraining polynomial terms of order n, along with the correspond-
ing interaction terms, to produce an estimable model. Note that the
main-effects model, equation (12), resolves the second- and higher-
order identification problems by setting all interaction terms equal
to zero; it retains only the zeroth- and first-order problems.

I have thus demonstrated that the difficulties of modeling
posed by perfect collinearity among the explanatory variables can
have no purely statistical solution. Furthermore, the problem is not
limited to the linear term but affects constant, quadratic, and all
higher-order terms as well. It might seem that the only sensible
solution to the problem is to abandon one of the three explanatory
variables, although the findings of earlier sections of this paper
suggest that such a conclusion would be premature. On the one
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hand, the low-order identification problems may have no reasonable
solution other than combining the constant terms and dropping one
of the three explanatory variables from the linear, quadratic, and
other low-order terms (necessitating, of course, the inclusion of
interaction terms). On the other hand, there may be sound theoreti-
cal reasons for preferring a description of high-order data fluctu-
ations in terms of simple main effects ascribed to a single dimension,
say Z, rather than as complicated combinations of interaction terms
in the other dimensions, in this case X and Y. Stated otherwise, as
long as the aliasing that occurs between explanatory variables, X,
Y, and Z can be expressed in a relatively simple algebraic form
(such as occurs at low orders), there may be no substantive grounds
for distinguishing between main effects in Z or combinations of
main effects and interaction terms in X and Y. As the complexity
of the aliasing increases (that is, as we consider high-order terms of
polynomial functions f, g, and h), we can argue, on grounds of
substantive plausibility, that a representation in terms of main effects
in Z is more informative than one involving high-order interaction
terms in X and Y. Distinctions between high and low orders in this
sense can never be based on conventional statistical criteria. In
all instances, we must have recourse to arguments of theoretical
plausibility.

This discussion has outlined the critical mathematical proper-
ties of models containing perfectly collinear explanatory variables.
These arguments lead naturally to a rather pertinent conclusion:
Given the inevitable confounding between the main effects and
interaction terms in models of this kind, there is little utility in
attempting to build descriptions of the data, W, that are symmetric
in X, Y, and Z. On the contrary, the simplest and most informative
descriptions will result from building models that treat X, Y, and Z
in an asymmetric fashion. More precisely, it is eminently reasonable
to choose two primary dimensions of analysis, say X and Y, and to
relegate Z to a secondary status. One can then build a model in X
and Y, including both main effects and interaction terms, until the
resulting description of the dependent variable, W, is complete from
the standpoint of those patterns that may at least plausibly be
associated with the two primary explanatory variables. At this point
it is appropriate to search for residual variation that may be associ-
ated with variable Z. If any such residual variation is found, one
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can then go back and include a term for Z in the original model;
at this point it will be necessary to choose appropriate constraints
so as not to change the character of description, which should still
be focused primarily on X and Y and only secondarily on Z.

Because in this particular case complete arrays of mortality
data are most readily available in the age X period format, it was
natural first to formulate the description in terms of age and period
and then to search for residual variation relating to cohorts. Thus,
the main and interaction effects corresponding to age and period
capture by far the largest part of the variation in the observed
rates. The multiplicative terms are a particular form of age-period
interaction that quite successfully depicts the changing shape of the
age curve of mortality (see Figure 6). A third set of main effects
was added to describe patterns that could be modeled as an age-
period interaction (see Figure 7) but are more appropriately
analyzed in terms of cohorts (see Figures 8 and 9).

The constraints used in fitting the full model were derived
during the exploratory analysis. This initial description of the data
array began by extracting a set of row effects, &;, which were
indexed by age. This meant that in calculating column effects, ,éj,
from this first set of residuals, the following property held true:>

ZB/ =0. (18)

Modeling the residuals of the additive model using the first two
terms of the SVD yielded estimates of the multiplicative parameters,
by Yim, and §;,,, with the following properties:

¢ > b, >0, (19)
i i
2?’51’?’:2 2 15,2 (21)
D V= 205, =1, (22)
i j

*These two steps were combined into one in fitting the additive model. Disag-
gregating this step tells us how the constraints can be derived in the stepwise
process of model building. Of course, all the constraints depend on the choice
to fit successive portions of the model by the OLS method.
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where m = 1 and 2. These properties imply that the multiplicative
terms are arranged in descending order cf importance (equation
(19)); that the left and right singular vectors, corresponding to ¥;,,
and §;,,, respectively, are centered around zero (equation (20)); and
that these latter form orthonormal sets of vectors (equations (21)
and (22)). In the final step of the exploratory analysis, a set of
diagonal averages was calculated from the residuals remaining after
the extraction of an additive and two multiplicative terms. The
resulting parameter estimates, 6, have the following properties:

D wib =0, (23)
k

> kw6, =0, (24)
k

where w, is the number of observations in the kth diagonal. These
last two equations indicate that the weighted sum and “slope” of
the estimated diagonal effects is zero. More precisely, a weighted
least squares regression line (with weights w,) fit to the estimated
values would be identical to the horizontal axis (see Wilmoth 1989,
pp- 5-7).

In fitting the entire AMD model, equation (1), these relation-
ships were retained as identifying constraints to avoid altering the
particular asymmetric quality of the description; age and period
were treated as primary dimensions and cohort as secondary. The
iterative routine that was used to minimize the sum of squared
residuals consisted of repeated calculations of additive, multiplica-
tive, and diagonal terms, always in that order. At each step of the
iteration, the original data were adjusted by removing the previously
calculated diagonal term (see the appendix). Still, the constraints
given above do not fully identify the model: From the various
combinations of parameters that satisfy the OLS criterion, we must
choose that solution that also minimizes the equation

zwkei (25)

Thus, one additional constraint is needed to insure that the diagonal
term continues to assume a subordinate position in the fully specified
model. The minimization of (25) is achieved by maintaining the
original order of fitting (additive, multiplicative, then diagonal) at
cach step of the iterative algorithm. (See the appendix or Wilmoth
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[1989, pp. 7-12] for a more detailed discussion.)

Within the framework of this particular model, we may justi-
fiably inquire about the types of cohort patterns that will be re-
covered separately in the diagonal term. Recoverability, in this
sense, will be distinguished from the more familiar notion of trans-
lation. Noting that observed period and cohort patterns are often
statistically indistinguishable, Ryder (1964, 1980) defined the pro-
cess of demographic translation to be the establishment of relation-
ships between these two dimensions of temporal change. Foster
(1986), following up on Ryder’s work, suggested that period and
cohort patterns of an event are likely to be distinguishable only in
the presence of high-frequency changes in the period or cohort
processes contributing to the observed rates. Thus, in fitting the
AMD model, equation (1), to age X period arrays of mortality
rates, we can expect to recover discernible diagonal patterns only
in the presence of rapid changes in the cohort factors generating
those rates. Slow, evolutionary changes in cohort processes will, I
predict, be easily translated by the model into combinations of age
and period parameters. This translation process is used not to deny
the existence or importance of long-term transformations of cohort
variables but to show that these changes are, as noted by Ryder,
observationally indistinguishable from comparable period move-
ments and, as such, cannot be separated within the context of an
APC accounting model.

High-frequency changes in the cohort dimension, on the other
hand, can often be recovered separately. It is impossible to define
mathematically where to draw the line between high-frequency
recoverable patterns and low-frequency translatable ones. In practi-
cal terms, however, a cohort pattern is recoverable (or high
frequency) when its translation into age and period patterns lacks
a plausible interpretation in terms of age- and period-related vari-
ables. Thus, as Figure 7 demonstrates, it is certainly possible to
translate the diagonal patterns recovered in the study of postwar
French male mortality into an age-period interaction (in the form
of two additional multiplicative terms). It is scarcely plausible,
however, to suggest that these patterns are the result of changes in
period factors (even in interaction with age) affecting mortality
during this period. Instead, it is suggested that the most informative
description of these patterns is obtained by relating them to cohorts,
as achieved by the addition of a diagonal term to the model.
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I have argued that period and cohort influences on age-
specific vital rates are observationally indistinguishable except in
the presence of rapid changes in one of these two sets of factors.
This assertion can be stated in the form of a hypothesis, which we
can test by simulating a matrix of size 90 x 36, consisting of an
additive term, a rank-two multiplicative structure, and a diagonal
term. (The error term is omitted so that we can concentrate on the
underlying structure.) Holding constant the additive and multiplicat-
ive inputs to the simulated matrix, we can investigate the success
with which a variety of diagonal inputs are recovered. (See the
appendix for parameter values for the simulated matrix.) We can
make two predictions concerning the recoverability of diagonal
patterns in applying the AM(2)D model to the simulated matrices:

1. If we compare simple diagonal inputs consisting of single-fre-
quency oscillations, relatively high-frequency inputs will be more
accurately recovered than relatively low-frequency ones.

2. If an input diagonal pattern is composite, consisting of both low-
and high-frequency components, then only the high-frequency
part will be well recovered.

Figures 10a, 10b, and 10c present results that are consistent
with these predictions. When we compare Figures 10a and 10b,
the superior recoverability of high-frequency diagonal patterns is
evident. Here, diagonal inputs taking the form of simple sine waves
are well recovered when the period of oscillation is relatively short
(25 years) and poorly recovered when the wavelength is considerably
greater (42 years). That 25-year diagonal cycles are well recovered
in simulations is reassuring, since the diagonal patterns discovered
in the French example are of approximately that frequency. In this
particular case, it appears that the accuracy with which cyclical
diagonal inputs are recovered is a function of the length of the cycle
relative to the total number of diagonals in the matrix. Thus, cyclical
patterns of length equal to around one fifth (or less) of the total
number of diagonals are well recovered; those around one third (or
greater) are poorly recovered; those around one fourth are re-
covered well except near the ends (i.e., for the shortest diagonals).

Figure 10c demonstrates the model’s ability to separate high-
and low-frequency diagonal patterns. From the input diagonal
effects, only the high-frequency component was well recovered in
the estimated values, 6,. All that was retained in this case were the
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FIGURE 10 Examples of the recoverability of diagonal patterns from simulated data.

a. High-frequency input diagonal effects (period = 25).
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c. Composite input diagonal effects containing high- and low-frequency components.
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rapid oscillations around a longer trend that first rises and then
falls. This example seems to confirm that long swings in period or
cohort influences are statistically indistinguishable, especially when
the fitted model contains interaction terms. Nevertheless, it does
appear possible to separate out the rapid changes in one of these
two factors using a model of the kind proposed here.

Further study is needed to determine exactly what kinds of
diagonal patterns are recoverable or, conversely, translatable in
different circumstances. In particular, it would be useful to investi-
gate the behavior of noncyclical patterns. The proposed model
appears capable of serving as a means of investigating these ques-
tions in greater depth.

4. DISCUSSION

The methods of analysis advocated in this paper could be
questioned or criticized for a number of different reasons. In particu-
lar, there may be a few words of dissent related to the difficulties
of making causal interpretations of the estimated parameters, the
somewhat nebulous distinction between high- and low-frequency
patterns, the seemingly arbitrary choice to study an age X period
array, the general applicability of the AMD model to events other
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than mortality, the reliance on traditional and potentially trouble-
some fitting routines (i.e., OLS), and the perhaps excessive number
of parameters used in fitting the model. I will comment on each of
these points in order. '

First, it is clear that the parameters must be interpreted in
light of the model’s asymmetry. In the example studied in this
paper, age and period are indices for the primary dimensions,
whereas cohort is treated as a secondary explanatory variable. Thus,
the parameter estimates related to age and period are detailed
descriptions of mortality patterns from the perspective of the age
and year of death. It can be misleading to refer to the &’s and B;’s
as age and period effects, since they do not isolate causal processes
related uniquely to age and period. As descriptions of age and
period patterns of mortality, they may contain clues regarding causal
influences by age and period. In particular, rapid oscillatory changes
in age and period patterns undoubtedly point to the causal import-
ance of age- or period-specific factors. Ages and periods are, in this
sense, no different from cohorts. The age and period parameters in
this model, however, contain both high- and low-frequency patterns
of mortality change and hence probably reflect the causal influence
of factors related to age, period, and cohort. The cohort parameters,
since they are limited to depicting high-frequency patterns, reflect
changes that are more certainly related to cohort membership alone.

Second, the method could be criticized for its implicit depen-
dence on the distinction between high-frequency and low-frequency
changes in vital rates (alternatively referred to as high-order versus
low-order patterns, short-term versus long-term trends, rapid versus
evolutionary changes, etc.). It bears repeating that this distinction,
as I have operationalized it, is meaningful only within a substantive
context. Low-frequency patterns are those for which a plausible
explanation can be proposed relating to more than one of the three
age, period, or cohort dimensions of causality. In the present case,
the secular trend of mortality decline can reasonably be associated
with either period or cohort forces of change, and we are powerless,
at least in an examination of a single dataset, to discern what portion
of that decline should be attributed to one or the other temporal
dimension. That this decline is more rapid at younger than at
older ages does not alter this fundamental conclusion, since this
differential decrease may only implicate the importance of interac-
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tion effects. High-frequency patterns, on the other hand, are observ-
able changes that must almost surely be attributed separately to one
or another of the three causal domains. Thus, rapid oscillations in
cohort patterns of mortality indicate deviations from an underlying,
but probably unrecoverable, trend of cohort-related variables. Simi-
lar statements apply for ages or periods as well, but in all cases the
distinction between high— and low—frequency patterns can be made
only on the basis of substantive plausibility.

Third, since the model is asymmetrical in age, period, and
cohort, it is appropriate to question the choice to study an age X
period array. In particular, an age X cohort arrangement seems at
least as valid on theoretical grounds. (Compare, for example, the
contrasting depictions of period and cohort patterns of fertility in
Ryder [1980] and Breckenridge [1983]). The comparison between
the analysis of age X period arrays of mortality rates and the analysis
of age X cohort arrays is in fact a topic of current research, although
the problem is considerably more difficult than in the case of fer-
tility, given that the length of the human life span typically exceeds
the window of observation generally available in national mortality
statistics. We can nevertheless expect numerous similarities: If we
describe the structure of mortality first using age and cohort indices,
there will still be residual elements of variation related to periods,
which will fall along the reverse diagonals of an age X cohort array
(see the discussion of Swedish fertility by Breckenridge [1983], in
particular the graph on p. 85).

Several advantages to working with age X period arrays
naturally present themselves. First, we avoid the problem of incom-
plete cohort data, although current work is aimed at discovering
means of filling in missing data using the EM algorithm. Second,
in working with age X period arrays, we can limit the analysis to
high-quality postwar data, thus avoiding certain deficiencies in pre-
war vital registration systems (a problem for almost all countries,
including France). Limiting the analysis to the postwar period also
increases the number of countries available for detailed comparative
study: While for France there are comparable mortality data dating
from 1899 (although not always of a quality fully comparable to the
postwar data), for other countries such as Japan and Austria, we
possess data only for the postwar period. Beyond these practical
considerations, there is an empirical argument in favor of the age
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x period format: In these French data for the postwar era, there is
a marked regularity across periods in the age pattern of mortality.®
By exploiting this regularity of structure in an initial description by
age and period, we succeed quite nicely in isolating patterns that
point to the causal importance of cohorts. While at first glance it
may appear that the study of cohorts is being slighted, in fact, the
particular procedure developed here was motivated primarily by an
interest in factors affecting the long-term mortality experience of
cohorts, as should be clear from section 2.

Fourth, the applicability of the model to demographic events
other than mortality is another subject of current interest. Certain
adaptations will probably be necessary to account for the particu-
larities of fertility and marriage patterns over age and time. Again,
the work of Breckenridge (1983, 1989) is most relevant and suggests
that similar, although probably not identical, models may indeed
apply in a variety of circumstances. Even if adaptations of the
current methods are called for, the basic principles of analysis will
remain the same: We will be no more capable of distinguishing low-
frequency cohort or period influences on fertility or marriage than
in the case of mortality. Thus, while some details of model specifi-
cation may change, the fundamentals of the approach will remain
constant.

Fifth, it has proved difficult to develop the current methods
of analysis outside an OLS framework. Although other researchers
have succeeded in performing robust and resistant fits of similar
models containing additive and multiplicative terms (McNeil 1974;
McNeil and Tukey 1975; Breckenridge 1983), the addition of a
diagonal term so complicates the fitting procedure that alternative
fits seem to become a practical impossibility. The problem of missing
data in analyzing age X cohort arrays of mortality rates, yet to
be dealt with adequately in current applications, will undoubtedly
complicate the fitting procedure still further and render alternative
fits even less practical. Since it is possible to apply robust fitting
procedures separately to the various parts of the model (fitting first
additive and multiplicative models, then calculating diagonal effects

°Foster (1990) has noted a similar regularity in the period age pattern of fertility
for several countries, a regularity that is less prominent in the corresponding
cohort schedules. Pullum (1980) also pointed to more consistent patterns of
period than cohort fertility in the U.S.
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from the residuals), I did manage to compare the estimates from
the initial exploratory analysis, based on OLS techniques, with
analogous results derived using weighted least squares and robust
alternative procedures (Wilmoth 1988). These comparisons suggest
that there is little benefit to be gained. in this particular application,
from a consideration of non-OLS methods. This result is perhaps
not surprising given the high quality of the data, but in other
applications the OLS technique could prove more troublesome.

Finally, the model suffers to some ecxtent from an over-
abundance of parameters requiring estimation, and it could reason-
ably be suggested that the description of the structure of the matrix
is exceedingly detailed. Thus, the method can serve at present to
illustrate qualitative but not quantitative similarities and differences
between comparable arrays. It might be useful, for example, to
derive standard age schedules for the additive and multiplicative
portions of the model (the «’s and v,,’s) to facilitate comparisons
between sexes or among countries. While such a development might
be desirable eventually, it is not essential at this time. I have thus
far concentrated on several more immediate tasks (as summarized
below) and have purposefully avoided an overly narrow specification
of the model.

5. CONCLUSION

Although continued research on several related topics is both
possible and desirable, a number of important accomplishments
have already been achieved in this paper. First, a detailed descrip-
tion of the structure of one matrix of mortality rates has been given.
The general nature of that structure is common to mortality data
for both sexes and for several countries and causes of death. The
three pieces of the description (corresponding to the additive, multi-
plicative, and diagonal parts of the model) have separate and
informative interpretations. In particular, the diagonal portion of
the model effectively isolates cohorts whose mortality experience
seems either unusually high or low over an extended period of time.
These patterns may help us gain an understanding of the dynamics
of cohort mortality, especially as related to the effects of debilitation
and selection.
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Second, a flexible statistical model that serves as a tool for
discovering the structure of an array of vital rates has been proposed.
The model reflects an approach to the analysis of vital rates that
attempts to separate only the high-frequency components of age,
period, and cohort influences on the observed event. While two of
these three dimensions are favored in the description of the underly-
ing data structure, it is only in the remaining dimension that a
complete isolation of high-frequency patterns is achieved.

Finally, I have discussed the AMD model and its results
within the broader context of analysis within the APC framework.
I have argued in favor of a purely descriptive approach to APC
analysis, although it should be manifest that I intend for the process
of description to be informed by a substantive understanding of
the problem. The notion that analyses within the APC accounting
framework are plagued by a single identification problem, relating
to the linear trend of the three sets of effects, has been discarded
in favor of a view that recognizes the presence of a range of
identification problems. Stated otherwise, it has been shown that
all parts, not just the linear one, of the main effects in any one of
the three age, period, or cohort dimensions are confounded with
the main effects and interaction terms in the other two dimensions.
I'have contrasted notions of the recoverability and translation of age,
period, and cohort patterns. The manner in which high-frequency
patterns can be recovered while low-frequency ones are quite simply
translated has been illustrated, and the implications of this distinc-
tion for analysis within an APC accounting framework have been
detailed. It is hoped that the utility of descriptive models isolating
high-frequency patterns related to age, period, and cohort has been
established and that the futility of similar analyses attempting a
complete separation of both high- and low-frequency patterns has
been amply demonstrated.

APPENDIX

This appendix contains a minimal description of the algorithm
used in fitting the full AMD model, equation (1), and a more
detailed description of the matrices used in the simulations exercises.
A comprehensive discussion of the technical aspects of the pro-
cedure are available in a separate report (Wilmoth 1989).
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Fitting Algorithm

The model is fit according to the following iterative pro-
cedure:

a3 (fy-0), (A1)

. 1
e S (e =), (A2)

(Do), Vi ) —SVD,(fy—a"=B" = 0""), (A3

p
00 < S (e - X ew v, (A)
Wi (o) ot
where the third line indicates that the multiplicative terms are
derived from the first p terms of the SVD of the matrix
(fi — ali — B — 6~ V), w, is the number of observations in the
kth diagonal, and %, denotes summation over all elements within
the kth diagonal of the array. For starting values, 6 = 0 for all .
As noted in the text, the order of fitting on each iteration is
important and should not in general be altered. Iterations stop when
differences between successive estimates of 6, become sufficiently
small. For example, one can calculate the weighted average absolute
change in 6§,

2 w 05(]1) _ 65(}1*1) 1
k k| Eka | — sz Wkl 05‘”) _ 05:1—1)" (A-5)
k

and assume convergence when this average becomes less than some
predefined level (0.0005 for the matrices analyzed in this paper). It
1s also useful to establish a maximum number of iterations, such as
n = 25.

Simulation Exercises

To study the recoverability of diagonal patterns as discussed
in the text, I created three hypothetical matrices of size 90 X 36
having the form

F=A+M+0, (A-6)
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where A = (a; + B),M = (22,_1 . Yim 6m), and 0 = (6,). For
M, it is required that

2 Yim =2 8 =0. (A-7)

Conversely, the orthogonality constraints on M can safely be
ignored, as can the traditional restriction that the ;s sum to zero,
since these affect only the internal decompositions of A and M while
our focus is on 8. We need to pay special attention, however, to
the requirement that

> Wb =D, kw8, = 0. (A-8)
k k

We note first of all that estimates for M and 0 do not in any
way depend on the choice of A (see Wilmoth 1988, p. 139). Thus,
it is sufficient to concentrate on the choices for M and 0 and on the
proper manner of comparison between simulated and estimated
values.

We begin by defining the parameter sets v, and &), from
which v,, and §;,, will be derived:

Yh = I, i=1,...,9 (A-9)
0, i=1,..,10
i—10, i=11,...,20
Vo =
30—-i, i=21,...,30 (A-10)
0, = 31,...,90
o = J, j=91,...,126 (A-11)
and
&= (j— 108.5)?, j=091, ..., 126. (A-12)

All four vectors (v}, 2, 81, and 83) are centered (by subtracting out
their means) and scaled (by dividing through by their L? norms) to
obtain Y1, Y2, 81,Aand d,. We take ¢, = 6 and ¢, = 4, so that they
resemble ¢, and ¢, from Table 1. The first multiplicative term thus
represents differential rates of mortality decline by age, while the
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second mirrors a pattern of initial decline and subsequent increase
around age 20.

To obtain 0, we first define a diagonal matrix 0’, which does
not necessarily conform to the constraints in (A-8). In the first two
examples (Figures 10a and 10b), 0’ consists of a single sine curve
that completes a cycle of amplitude a cvery p years:

27k
6, = a x sin (;) k=1,..,125. (A-13)

In the first example, a = 0.05 and p = 25; in the second, a = 0.05
and p = 42. In the final example (Figure 10c), 6’ is a composite of
two sine curves:

2m(k—30)

2k
0,Q=a,Xsin<7T)+a2Xsin< fffff —) k=1,...125,
P P2 J
(A-14)

where a, = 0.05, a, = 0.10, p, = 25, and p, = 125.
Since 6’ will not typically adhere to the constraints in (A-8),

the 6, must be adjusted by fitting a weighted least squares regression

line, R,, and by taking 6, to be the residuals, 6, — R,. We can
write

R.,=c+dxk
c+dx(j-i),

(A-15)

where ¢ and d are some constants. Thus, the R, can be expressed
as a simple sum of functions of i and j. In formula (A-6), we then
conveniently take A = R = (R,) and 6 = 8’ — R. After estimation,
we thus compare § with 0, and not with 6’
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